
Software Engineering 1 Prepared by V.B.T.Shoba

Software Engineering and Testing

OBJECTIVES:

-oriented software engineering.

 make students to get experience and be ready for the large scale projects in IT Industry.

Unit I Introduction:- Evolution – From an Art form on Engineering Discipline: Evolution of an

Art into an Engineering Discipline. – Software Development of Projects: Program versus

Product – Emergence of Software Engineering: Early Computer Programming – High Level

Language Programming – Control Flow-based Design – Data Structure Oriented Design –

Object Oriented Design. Software Life Cycle Models:- A few Basic Concepts – Waterfall

Model and its Extension: Classical Waterfall Model – Iterative Waterfall Model – Prototyping

Model – Evolutionary Model. – Rapid Application Development (RAD): Working of RAD. –

Spiral Model. (12L)

 Unit II Software Project Management:- Responsibilities of a Software Project Manager –

Project Planning- Project Estimation Techniques-Risk Management. Requirements Analysis

and Specification:- Requirements Gathering and Analysis – Software Requirements

Specifications (SRS):Users of SRS Document – Characteristics of a Good SRS Document –

Important Categories of Customer Requirements – Functional Requirements – How to Identify

the Functional Requirements? – Organisation of the SRS Document. (12L)

Unit III Software Design:- Overview of the Design Process: Outcome of the Design Process –

Classification of Design Activities. – How to Characterize a good Software Design? Function-

Oriented Software Design:- Overview of SA/SD Methodology – Structured Analysis –

Developing the DFD Model of a System: Context Diagram – Structured Design – Detailed

Design. (12L) Page 29 of 57

Unit IV User Interface Design:- Characteristics of a good User Interface - Basic Concepts –

Types of User Interfaces – Fundamentals of Components based GUI Development: Window

System. Coding and Testing:- Coding – Software Documentation – Testing: Basic Concepts

and Terminologies – Testing Activities. – Unit Testing – Black-box Testing: Equivalence Class

Partitioning – Boundary Value Analysis. – White-box Testing. (12L)

Unit V Software Reliability and Quality Management:- Software Reliability: Hardware

versus Software Reliability. – Software Quality – Software Quality Management System – ISO

9000: What is ISO 9000 Certification? – ISO 9000 for Software Industry – Shortcomings of ISO

9000 Certification. – SEI Capability Maturity Model: Level 1 to Level 5. Software

Maintenance:- Characteristics of Software Maintenance: Characteristics of Software Evolution

– Software Reverse Engineering. (12L)

Text Book: Fundamentals of Software Engineering Fourth Edition by Rajib Mall – PHI

Learning Private Limited 2015.

Software Engineering 2 Prepared by V.B.T.Shoba

UNIT-1

SOFTWARE ENGINEERING

Software engineering discusses systematic and cost-effective techniques for software

development. These techniques help develop software using an engineering approach.

Is software engineering a science or an art?

 Writing good quality programs is an art.

 Past experiences have been systematically organized and wherever possible theoretical

basis to the empirical observations have been provided.

 An appropriate solution is chosen out of the candidate solutions based on various trade-

offs that need to be made on account of issues of cost, maintainability, and usability.

 Engineering disciplines such as software engineering make use of only well-understood

and well-documented principles

1. EVOLUTION—FROM AN ART FORM TO AN ENGINEERING DISCIPLINE

 Early programmers used an ad hoc programming style. This style of program

development is now variously being referred to as exploratory, build and fix, and code

and fix styles.

 The exploratory programming style is an informal style in the sense that there are no set

rules or recommendations that a programmer has to adhere to—every programmer

himself evolves his own software development techniques.

Software Engineering 3 Prepared by V.B.T.Shoba

 Organisations are spending increasingly larger portions of their budget on software as

compared to that on hardware.

2. SOFTWARE DEVELOPMENT PROJECTS

A Professional software is developed by a group of software developers working together in a

team.

a) Types of Software Development Projects

1. Software products

 Microsoft’s Windows and the Office suite, Oracle DBMS, software accompanying a

camcorder or a laser printer, etc. These software are available off-the-shelf for purchase

and are used by a diverse range of customers. These are called generic software products

2. Software services

 Customized software is developed according to the specification drawn up by one or at

most a few customers.

 Another type of software service i s outsourced software. Sometimes, it can make good

commercial sense for a company developing a large project to outsource some parts of its

development work to other companies

b) Software Projects Being Undertaken by Indian Companies

 Indian software companies have excelled in executing software services projects and

have made a name for themselves all over the world.

3. EMERGENCE OF SOFTWARE ENGINEERING

Software engineering techniques evolution is the result of a series of innovations and

accumulation of experience about writing good quality programs. They are

a) Early Computer Programming

b) High-level Language Programming

Software Engineering 4 Prepared by V.B.T.Shoba

c) Control Flow-based Design

d) Data Structure-oriented Design

e) Data Flow-oriented Design

f) Object-oriented Design

g) Web based Design

a) Early Computer Programming

 Every programmer developed his own individualistic style of writing programs according

to his intuition and used this style ad hoc while writing different programs.

 Then designated this style of programming as the build and fix (or the exploratory

programming) style.

b) High-level Language Programming

 In 1960s high-level languages such as FORTRAN, ALGOL, and COBOL were

introduced.

 Writing each high-level programming construct in effect enables the programmer to write

several machine instructions. Also, the machine details (registers, flags, etc.) are

abstracted from the programmer.

c) Control Flow-based Design

 experienced programmers advised other programmers to pay particular attention to the

design of a program’s control flow structure.

 A program’s control flow structure indicates the sequence in which the program’s

instructions are executed.

 If the flow chart representation is simple, then the corresponding code should be simple.

Software Engineering 5 Prepared by V.B.T.Shoba

 For example, for the program of Fig 1.9(a) you would have to understand the execution

of the program along the paths 1-2-3-7-8-10, 1-4-5-6-9-10, and 1-4-5-2-3-7-8-10. A

program having a messy control flow (i.e. flow chart) structure, would have a large

number of execution paths.

 Are GO TO statements the culprits?

Dijkstra [1968] published his (now famous) article ―GO TO Statements Considered

Harmful‖. GO TO statements alter the flow of control arbitrarily, resulting in too

many paths.

 Structured programming

o A program is called structured when it uses only the sequence, selection, and

iteration types of constructs and is modular.

o Very soon several languages such as PASCAL, MODULA, C, etc., became

available which were specifically designed to support structured programming.

d) Data Structure-oriented Design

 It is much more important to pay attention to the design of the important data structures

of the program than to the design of its control structure.

 Design techniques based on this principle are called data structure- oriented design

techniques.

 Using data structure-oriented design techniques, first a program’s data structures are

designed. The code structure is designed based on the data structure.

e) Data Flow-oriented Design

 The data flow-oriented techniques advocate that the major data items handled by a

system must be identified and the processing required on these data items to produce the

desired outputs should be determined.

Software Engineering 6 Prepared by V.B.T.Shoba

 The functions (also called as processes) and the data items that are exchanged between

the different functions are represented in a diagram known as a data flow diagram

(DFD).

f) Object-oriented Design

 Data flow-oriented techniques evolved into object-oriented design (OOD) techniques in

the late seventies.

 Natural objects relevant to a problem are first identified and then the relationships among

the objects such as composition, reference, and inheritance are determined. Each object

essentially acts as a data hiding (also known as data abstraction) entity.

g) Web based design

 Many of the present day software are required to work in a client-server environment

through a web browser-based access (called web-based software).

4. SOFTWARE LIFE CYCLE MODELS

In the software engineering approaches emphasize software development through a well-defined

and ordered set of activities. These activities are graphically modeled (represented) as well as

textually described and are variously called a s software life cycle model, software development

life cycle (SDLC) model, and software development process model.

.

a) A few basic concepts of Software life cycle

 The software life cycle has been defined to imply the different stages (or phases) over which

a software evolves from an initial customer request for it, to a fully developed software, and

finally to a stage where it is no longer useful to any user, and then it is discarded.

 The life cycle of every software starts with a request for it by one or more customers.

 This stage where the customer feels a need for the software and forms rough ideas about the

required features is known as the inception stage.

Software Engineering 7 Prepared by V.B.T.Shoba

 A software evolves through a series of identifiable stages (also called phases) on account

of the development activities carried out by the developers, until it is fully developed and

is released to the customers.

 Once installed and made available for use, the users start to use the software. This

signals the start of the operation (also called maintenance) phase.

 The maintenance phase usually involves continually making changes to the software to

accommodate the bug-fix and change requests from the user.

 The operation phase is usually the longest of all phases and constitutes the useful life of

a software.

 Finally the software is retired

 The life cycle of a software represents the series of identifiable stages through which

it evolves during its life time.

Software development life cycle (SDLC) model

 A software development life cycle (SDLC) model (also called software life cycle model

and software development process model) describes the different activities that need to be

carried out for the software to evolve in its life cycle.

 The terms software development life cycle (SDLC) and software development process

are interchangeable.

 An SDLC graphically depicts the different phases through which a software evolves. It

is usually accompanied by a textual description of the different activities that need to

be carried out during each phase.

 Process and methodology are at time used interchangeably, there is a subtle difference

between the two. First, the term process has a broader scope and addresses either all the

activities taking place during software development, or certain coarse grained activities

such as design (e.g. design process), testing (test process), etc. Further, a software process

not only identifies the specific activities that need to be carried out, but may also

prescribe certain methodology for carrying out each activity.

A software development process has a much broader scope as compared to a software

development methodology. A process usually describes all the activities starting from the

inception of a software to its maintenance and retirement stages, or at least a chunk of activities

in the life cycle. It also recommends specific methodologies for carrying out each activity. A

methodology, in contrast, describes the steps to carry out only a single or at best a few

individual activities.

Software development organisations have realized that adherence to a suitable life cycle model

helps to produce good quality software and that helps minimize the chances of time and cost

overruns.

 Programming-in-the-small refers to development of a toy program by a single programmer.

Software Engineering 8 Prepared by V.B.T.Shoba

 While development of a software of the former type could succeed even while an individual

programmer uses a build and fix style of development,

 Programming-in-the-large refers to development of a professional software through team

effort.

 Use of a suitable SDLC is essential for a professional software development project

involving team effort to succeed.

 A documented development process forms a common understanding of the activities to be

carried out among the software developers and helps them to develop software in a

systematic and disciplined manner.

 A documented development process model, besides preventing the misinterpretations that

might occur when the development process is not adequately documented, also helps to

identify inconsistencies, redundancies, and omissions in the development process.

Phase entry and exit criteria

 A good SDLC besides clearly identifying the different phases in the life cycle, should

unambiguously define the entry and exit criteria for each phase.

 The phase entry (or exit) criteria is usually expressed as a set of conditions that needs to

be be satisfied for the phase to start (or to complete).

 As an example, the phase exit criteria for the software requirements specification phase,

can be that the software requirements specification (SRS) document is ready, has been

reviewed internally, and also has been reviewed and approved by the customer.

 Only after these criteria are satisfied, the next phase can start.

5. WATERFALL MODEL AND ITS EXTENSIONS

The waterfall model and its derivatives were extremely popular in the 1970s.

Classical Waterfall Model

 Classical waterfall model is intuitively the most obvious way to develop software. The

classical waterfall model divides the life cycle into a set of phases as shown in figure below.

Phases of the classical waterfall model

 The different phases are feasibility study, requirements analysis and specification, design,

coding and unit testing, integration and system testing, and maintenance.

 The phases starting from the feasibility study to the integration and system testing phase are

known as the development phases.

 A software is developed during the development phases, and at the completion of the

development phases, the software is delivered to the customer.

Software Engineering 9 Prepared by V.B.T.Shoba

Fig. Phases of the classical water fall model

 After the delivery of software, customers start to use the software signaling the

commencement of the operation phase.

 As the customers start to use the software, changes to it become necessary on account of bug

fixes and feature extensions, causing maintenance works to be undertaken.

 Therefore, the last phase is also known as the maintenance

 An activity that spans all phases of software development is project management. Since it

spans the entire project duration, no specific phase is named after it.

 In the waterfall model, different life cycle phases typically require relatively different

amounts of efforts to be put in by the development team.

 On the average, about 60 per cent of the total effort put in by the development team in the

entire life cycle is spent on the maintenance activities alone.

Fig. Relative effort distribution among different phases.

 However, among the development phases, the integration and system testing phase requires

the maximum effort in a typical development project.

1. Feasibility study

 The main focus of the feasibility study stage is to determine whether it would be

financially and technically feasible to develop the software.

Software Engineering 10 Prepared by V.B.T.Shoba

 Feasibility study involves carrying out several activities such as

o collection of basic information relating to the software such as the different data

items that would be input to the system,

o the processing required to be carried out on these data,

o the output data required to be produced by the system, as well as various

constraints on the development.

 These collected data are analyzed to perform at the following:

o Development of an overall understanding of the problem

o Formulation of the various possible strategies for solving the problem
o Evaluation of the different solution strategies.

2. Requirements analysis and specification

 The aim of the requirements analysis and specification phase is to understand the exact

requirements of the customer and to document them properly.

 This phase consists of two distinct activities, namely requirements gathering and analysis,

and requirements specification.

a) Requirements gathering and analysis:

 The goal of the requirements gathering activity is to collect all relevant information regarding

the software to be developed from the customer with a view to clearly understand the

requirements.

 For this, first requirements are gathered from the customer and then the gathered

requirements are analyzed.

b)Requirements specification:

 After the requirement gathering and analysis activities are complete, the identified

requirements are documented.

 This is called a software requirements specification (SRS) document.

 The SRS document is written using end-user terminology.

 This makes the SRS document understandable to the customer.

3. Design

 The goal of the design phase is to transform the requirements specified in the SRS document

into a structure that is suitable for implementation in some programming language.

 During the design phase the software architecture is derived from the SRS document.

a) Procedural design approach:

 The traditional design approach is in use in many software development projects at the

present time.

 This traditional design technique is based on the data flow-oriented design approach.

 It consists of two important activities; first structured analysis of the requirements

specification is carried out where the detailed structure of the problem is examined.

 This is followed by a structured design step where the results of structured analysis are

transformed into the software design.

Software Engineering 11 Prepared by V.B.T.Shoba

Structured design consists of two main activities—architectural design (also called high-level

design) and detailed design (also called Low-level design).

 High-level design involves decomposing the system into modules, and representing the

interfaces and the invocation relationships among the modules.

 A high-level software design is sometimes referred to as the software architecture.

 During the detailed design activity, internals of the individual modules such as the data

structures and algorithms of the modules are designed and documented

b) Object-oriented design approach:

 In this technique, various objects that occur in the problem domain and the solution domain

are first identified and the different relationships that exist among these objects are identified.

 The object structure is further refined to obtain the detailed design.

 The OOD approach is credited to have several benefits such as lower development time and

effort, and better maintainability of the software.

4. Coding and unit testing

 The purpose of the coding and unit testing phase is to translate a software design into source

code and to ensure that individually each function is working correctly.

 The coding phase is also sometimes called the implementation phase, since the design is

implemented into a workable solution in this phase.

 Each component of the design is implemented as a program module.

 The end-product of this phase is a set of program modules that have been individually unit

tested.

 The main objective of unit testing is to determine the correct working of the individual

modules. The specific activities carried out during unit testing include designing test cases,

testing, debugging to fix problems, and management of test cases.

5. Integration and System Testing

 Integration of different modules is undertaken soon after they have been coded and unit

tested.

 During the integration and system testing phase, the different modules are integrated in a

planned manner.

a) Integration testing is carried out to verify that the interfaces among different units are

working satisfactorily.

 On the other hand, the goal of system testing is to ensure that the developed

system conforms to the requirements that have been laid out in the SRS

document.

b) System testing usually consists of three different kinds of testing activities:

 alpha-testing: testing is the system testing performed by the development team.

 beta-testing: This is the system testing performed by a friendly set of customers.

 Acceptance testing: After the software has been delivered, the customer performs

system testing to determine whether to accept the delivered software or to reject it.

Software Engineering 12 Prepared by V.B.T.Shoba

6. Maintenance

 The total effort spent on maintenance of a typical software during its operation phase is much

more than that required for developing the software itself.

 Many studies carried out in the past confirm this and indicate that the ratio of relative effort

of developing a typical software product and the total effort spent on its maintenance is

roughly 40:60.

 Maintenance is required in the following three types of situations:

a) Corrective maintenance: This type of maintenance is carried out to correct errors that were

not discovered during the product development phase.

b) Perfective maintenance: This type of maintenance is carried out to improve the performance

of the system, or to enhance the functionalities of the system based on customer’s requests.

c) Adaptive maintenance: Adaptive maintenance is usually required for porting the software to

work in a new environment. For example, porting may be required to get the software to work on

a new computer platform or with a new operating system.

Shortcomings of the classical waterfall model

The classical waterfall model is a very simple and intuitive model. However, it suffers from

several shortcomings.

1. No feedback paths: Once a defect is detected at a later time, the developers need to redo

some of the work done during that phase and also redo the work of later phases that are affected

by the rework.

2. Difficult to accommodate change requests: The customers’ requirements usually keep on

changing with time. But, in this model it becomes difficult to accommodate any requirement

change requests made by the customer after the requirements specification phase is complete,

and this often becomes a source of customer discontent.

3. Inefficient error corrections:

This model defers integration of code and testing tasks until it is very late when the problems are

harder to resolve.

4. No overlapping of phases: This model recommends that the phases be carried out

sequentially—new phase can start only after the previous one completes.

6. ITERATIVE WATER FALL MODEL:
 The main change brought about by the iterative waterfall model to the classical waterfall

model is in the form of providing feedback paths from every phase to its preceding phases.

 The feedback paths allow for correcting errors committed by a programmer during some

phase, as and when these are detected in a later phase.

 For example, if during the testing phase a design error is identified, then the feedback path

allows the design to be reworked and the changes to be reflected in the design documents and

all other subsequent documents.

 There is no feedback path to the feasibility stage.

Software Engineering 13 Prepared by V.B.T.Shoba

Figure. Iterative waterfall model

Phase containment of errors: It is advantageous to detect these errors in the same phase in

which they take place, since early detection of bugs reduces the effort and time required for

correcting those.

 In the later case, it would be necessary not only to rework the design, but also to

appropriately redo the relevant coding as well as the testing activities, thereby incurring

higher cost.

 The principle of detecting errors as close to their points of commitment as possible is known

as phase containment of errors.

 After all, the end product of many phases is text or graphical documents, e.g. SRS document,

design document, test plan document, etc.

 Phase overlap

 In spite of the best effort to detect errors in the same phase in which they are committed,

some errors escape detection and are detected in a later phase. An important reason for phase

overlap is that usually the work required to be carried out in a phase is divided among the

team members.

 Some members may complete their part of the work earlier than other members. If strict

phase transitions are maintained, then the team members who complete their work early

would idle waiting for the phase to be complete, and are said to be in a blocking state.

Software Engineering 14 Prepared by V.B.T.Shoba

Shortcomings of the iterative waterfall model

1. Difficult to accommodate change requests: Based on the frozen requirements, detailed plans

are made for the activities to be carried out during the design, coding, and testing phases. Since

activities are planned for the entire duration, substantial effort and resources are invested in the

activities as developing the complete requirements specification, design for the complete

functionality and so on. Once requirements have been frozen, the waterfall model provides no

scope for any modifications to the requirements.

2. Incremental delivery not supported: In the iterative waterfall model, the full software is

completely developed and tested before it is delivered to the customer. There is no provision for

any intermediate deliveries to occur.

3. Phase overlap not supported: For most real life projects, it becomes difficult to follow the

rigid phase sequence prescribed by the waterfall model. By the term a rigid phase sequence, we

mean that a phase can start only after the previous phase is complete in all respects. As already

discussed, strict adherence to the waterfall model creates blocking states.

4. Error correction unduly expensive: In waterfall model, validation is delayed till the

complete development of the software. As a result, the defects that are noticed at the time of

validation incur expensive rework and result in cost escalation and delayed delivery.

5. Limited customer interactions: This model supports very limited customer interactions. It is

generally accepted that software developed in isolation from the customer is the cause of many

problems. In fact, interactions occur only at the start of the project and at project completion.

6. No support for risk handling and code reuse: It becomes difficult to use the waterfall model

in projects that are susceptible to various types of risks, or those involving significant reuse of

existing development artifacts. Please recollect that software services types of projects usually

involve significant reuse.

7. PROTOTYPING MODEL

 The prototype model suggests building a working prototype of the system, before

development of the actual software.

 A prototype is a toy and crude implementation of a system.

 It has limited functional capabilities, low reliability, or inefficient performance as compared

to the actual software.

 A prototype can be built very quickly by using several shortcuts.

 The shortcuts usually involve developing inefficient, inaccurate, or dummy functions.

 Normally the term rapid prototyping is used when software tools are used for prototype

construction.

 For example, tools based on fourth generation languages (4GL) may be used to construct the

prototype for the GUI parts.

Necessity of the prototyping model

 The prototyping model is advantageous to use for specific types of projects.

Software Engineering 15 Prepared by V.B.T.Shoba

 It is advantageous to use the prototyping model for development of the graphical user

interface (GUI) part of an application.

 Through the use of a prototype, it becomes easier to illustrate the input data formats,

messages, reports, and the interactive dialogs to the customer.

o The prototyping model is especially useful when the exact technical solutions are unclear to

the development team.

 Often, major design decisions depend on issues such as the response time of a hardware

controller, or the efficiency of a sorting algorithm, etc.

 In such circumstances, a prototype is often the best way to resolve the technical issues.

o The prototyping model is considered to be useful for the development of not only the GUI

parts of a software, but also for a software project for which certain technical issues are not

clear to the development team.

Figure 2.6: Prototyping model of software development.

Life cycle activities of prototyping model

 The prototyping model software is developed through two major activities—prototype

construction and iterative waterfall-based software development.

Prototype development: Prototype development starts with an initial requirements gathering

phase.

Software Engineering 16 Prepared by V.B.T.Shoba

 A quick design is carried out and a prototype is built.

 The developed prototype is submitted to the customer for evaluation.

 Based on the customer feedback, the requirements are refined and the prototype is suitably

modified.

 This cycle of obtaining customer feedback and modifying the prototype continues till the

customer approves the prototype.

Iterative development: Once the customer approves the prototype, the actual software is

developed using the iterative waterfall approach.

 In spite of the availability of a working prototype, the SRS document is usually needed to be

developed since the SRS document is invaluable for carrying out traceability analysis,

verification, and test case design during later phases.

Strengths of the prototyping model

 This model is the most appropriate for projects that suffer from technical and requirements

risks. A constructed prototype helps overcome these risks.

Weaknesses of the prototyping model

 The prototype model can increase the cost of development for projects that are routine

development work and do not suffer from any significant risks.

 Even when a project is susceptible to risks, the prototyping model is effective only for those

projects for which the risks can be identified upfront before the development starts.

 Since the prototype is constructed only at the start of the project, the prototyping model is

ineffective for risks identified later during the development cycle.

8. EVOLUTIONARY MODEL
 The software is developed over a number of increments. At each increment, a concept is

implemented and is deployed at the client site.

 The software is successively refined and feature-enriched until the full software is realized.

 In evolutionary model, the requirements, plan, estimates and solution evolve over the

iterations rather than fully defined and frozen in a major up front specification effort before

the development iterations begin.

 The evolutionary model is sometimes referred to as design a little, build a little, test a little,

deploy a little model.

 After the requirements have been specified, the design, build, test and deployment activities

are iterated.

Advantages:

 1. Effective elicitation of actual customer requirements: The user gets a chance to

experiment with a partially developed software much before the complete requirements

are developed. SO the change request after delivery of the complete software gets

substantially reduced.

 2. Easy handling change requests: Handling change requests is easier as no long term

plans are made. Reworks required are much smaller.

Disadvantages:

1. Feature division into incremental parts can be non-trivial: For small sized projects it is

difficult to divide the required features into several parts for incrementally implemented and

delivered. For larger problems, features are intertwined that expert would need considerable

effort to plan the incremental deliveries.

Software Engineering 17 Prepared by V.B.T.Shoba

2. Adhoc design: Design for only the current increment is done, the design can become adhoc

without specific attention being paid to maintainability and optimality.

Applicability of evolutionary model:

 The evolutionary model is well suited to use in object oriented software development

projects.

9. RAPID APPLICATION DEVELOPMENT (RAD):
 This model has the features of both prototyping and evolutionary models.

 In this model prototypes are constructed and incrementally the features are developed and

delivered to the customer.

 But the prototypes are not thrown away but are enhanced and used in the software

construction.

 The major goals of the RAD model are as follows:

1. To decrease the time taken and the cost incurred to develop software systems.

2. TO limit the costs of accommodating change requests.

3. TO reduce the communication gap between the customer and the developers.

Main motivation: The RAD model tries to overcome the problems of customer expectations,

change requests of the customer, taking long time to have a good solution by inviting and

incorporating customer feedback on successively developed and refined prototypes.

Working of RAD:

 In the RAD model, development takes place in a series of short cycles or iterations.

 At any time, the development team focuses on the present iteration only and therefore plans

are made for one increment at a time. The time planned for each iteration is called a time

box.

Software Engineering 18 Prepared by V.B.T.Shoba

 Each iteration is planned to enhance the implemented functionality of the application by only

a small amount.

 During each time box, a quick and duty prototype style software for some functionaly is

developed.

 The customer evaluates the prototype and gives feedback on the specific improvements.

 The development team consists of about five to six members including a customer

representative.

How does RAD facilitate accommodation of change requests:

 Features are delivered in small increments, incorporation of such change requests just after

the delivery of an incremental feature saves cost as this is carried out before large

investments have been made in development and testing of a large number of features.

How does RAD facilitate Faster development:

 The decrease in development time and cost and at the same time an increased flexibility to

incorporate changes are achieved in the RAD model in two ways:

 1. Minimal use of planning and heavy reuse of any existing code through rapid prototyping.

 2. The lack of long term an and detailed planning gives the flexibility to accommodate later

 requirements changes.

Applicability of RAD Model:

1. Customized software: Automated package , tailored, educational software.

2. Non-critical software: Developed product is usually far from being optimal in performance

and reliability.

3. Highly constrained project schedule: RAD aims to reduce development time at the expense

of good documentation, performance and reliability.

4. Large software: software supporting many features can incremental development and

delivery.

10. SPIRAL MODEL

 The model gets its name from the appearance of its diagrammatic representation that looks

like a spiral with many loops.

 The exact number of loops of the spiral is not fixed and can vary from project to projects.

 Each loop of the spiral is called a phase of the software process.

 The exact number of phases through with the product is developed can be varied by the

project manager depending upon the project risks.

 Over each loop one or more features of the product are elaborated and analyzed and the risks

at that point of time are identified and are resolved through prototyping.

Risk handling in spiral model:

 A risk is essentially any adverse circumstance that hamper the successful completion of a

software project.

Software Engineering 19 Prepared by V.B.T.Shoba

 The risk can be resolved by building a prototype of the subsystem and experimenting with

the exact fault.

Phases of the Spiral Model:

 Each phase in the model is split into four sectors(quadrants).

 In the first quadrant , a few features of the software are identified to be taken up for

immediate development based on how crucial it is to the software development

Quadrant 1: The objectives are investigated, elaborated and analyzed. The risks involved in the

phase objectives are identified. Alternative solutions are proposed.

Quadrant 2: The alternative solutions are evaluated to select the best possible solution. The

solutions are evaluated by developing an appropriate prototype.

Quadrant 3: Activities consist of developing and verifying the next level of the software, The

identified features have been implemented and next version of the software is available.

Quadrant 4: Reviewing the results of the stages traversed so far with the customer and

planning the next iteration of the spiral.

 The radius of the spiral at any point represents the cost incurred in the project so far.

 To the developers of a project the spiral model usually appears as a complex model to follow

since it is risk driven and is more complicated phase structure than other models.

 For projects having many unknown risks that show up as the development proceeds, the

spiral model would be the most appropriate development model to follow.

Software Engineering Page 1 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Software Engineering and Testing

 Unit II Software Project Management:- Responsibilities of a Software Project Manager –
Project Planning- Project Estimation Techniques-Risk Management. Requirements Analysis

and Specification:- Requirements Gathering and Analysis – Software Requirements
Specifications (SRS):Users of SRS Document – Characteristics of a Good SRS Document –

Important Categories of Customer Requirements – Functional Requirements – How to Identify
the Functional Requirements? – Organisation of the SRS Document. (12L)

UNIT-2

SOFTWARE PROJECT MANAGEMENT

 The main goal of software project management is to enable a group of developers to work
effectively towards the successful completion of a project.

 Project management involves use of a set of techniques and skills to steer a project to

success.
1.RESPONSIBILITIES OF A SOFTWARE PROJECT MANAGER:

a) Job responsibilities for managing software projects:

 A software project manager takes the overall responsibility of steering a project to success.

 Most managers takes the responsibilities of project proposal writing, project cost estimation,
scheduling, project staffing, software process tailoring, project monitoring and control,
software configuration management, risk management, managerial report writing and

presentation and interfacing with clients.
 The activities can be broadly classified into two major types

1. project planning
2. project monitoring and control.

1. Project planning: Project planning is done immediately after the feasibility study and before

the starting of the requirements analysis and specification phase.
Project planning involves estimating several characteristics of a project and then planning the

project activities based on these estimates made.
2. Project monitoring and control: This is undertaken once the development activities start.
The focus of project monitoring and control activities is to ensure that the software development

proceeds as per plan.
b) Skills necessary for managing software projects:

 Effective software project management calls for good qualitative judgment and decision
taking capabilities.

 Also good grasp of latest software project management techniques like cost estimation, risk

management and configuration management, good communication skills and the ability to
get work done.

 Three skills that are most critical to successful project management are the following:
1. knowledge of project management techniques.
2. Decision taking capabilities

3. Previous experience in managing similar projects.

Software Engineering Page 2 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

2.PROJECT PLANNING:

 Once a project has been found to be feasible, software project managers undertake project
planning.

 Project planning is undertaken and completed before any development activity starts.
 Project planning requires utmost care and attention as schedule delays can cause customer

dissatisfaction.

 During project planning, the project manager performs the following activities :

a) Estimation: the following attributes are estimated.
 Cost: How much is it going to cost to develop the software product?
 Duration: How long is it going to take to develop the product?

 Effort: How much effort would be necessary to develop the product?

b) Scheduling: After all the project parameters are estimated, the schedules of manpower and
other resources are developed.

c) Staffing: staff organisation and staffing plans are made.

d) Risk Management: This includes risk identification, analysis and abatement planning.

e) Miscellaneous plans: Plans like quality assurance plan and configuration management plan

etc.

Size is the most fundamental parameter based on which all other estimations and project plans
are made.
Figure shows the precedence ordering among planning activities.

1. Sliding window planning:

 Project managers undertake project planning over several stages.
 Planning a project over a number of stages protects managers from making big commitments

at the start of the project.

 This technique of staggered planning is known as sliding window planning.
 In the sliding window planning technique starting with an initial plan, the project is planned

more accurately over a number of stages.

Software Engineering Page 3 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

2. SPMP Document of project planning

3. PROJECT ESTIMATION TECHNIQUES:
Estimation of various project parameters is an important project planning activity. The different
parameters of a project that need to be estimated include—project size, effort required to

complete the project, project duration, and cost. Accurate estimation of these parameters is
important.
Project estimation techniques an broadly be classified into three main categories:

• Empirical estimation techniques
• Heuristic techniques

• Analytical estimation techniques

1. Empirical Estimation Techniques

Software Engineering Page 4 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Empirical estimation techniques are essentially based on making an educated guess of the project
parameters. While using this technique, prior experience with development of similar products is

helpful.
Although empirical estimation techniques are based on common sense and subjective decisions,

over the years, the different activities involved in estimation have been formalised to a large
extent.
2. Heuristic Techniques

Heuristic techniques assume that the relationships that exist among the different project
parameters can be satisfactorily modelled using suitable mathematical expressions. Once the

basic (independent) parameters are known, the other (dependent) parameters can be easily
determined by substituting the values of the independent parameters in the corresponding
mathematical expression. Different heuristic estimation models can be divided into the following

two broad categories—single variable and multivariable models.

 S i n g l e variable estimation models assume that various project characteristic can be

predicted based on a single previously estimated basic (independent) characteristic of the
software such as its size. A single variable estimation model assumes that the relationship

between a parameter to be estimated and the corresponding independent parameter can be
characterised by an expression of the following form:

Estimated Parameter = c1 * ed1

In the above expression, e represents a characteristic of the software that has already been
estimated (independent variable). Estimated Parameter is the dependent parameter (to be

estimated). The dependent parameter to be estimated could be effort, project duration, staff size,
etc., c1 and d1 are constants. The values of the constants c1 and d1 a r e usually determined
using data collected from past projects (historical data). The COCOMO model is an example of a

single variable cost estimation model.

 A multivariable cost estimation model assumes that a parameter can be predicted based

on the values of more than one independent parameter. It takes the following form:
Estimated Resource = c1 * p1d1 + c2 * p2d2 + ...

where, p1, p2, ... are the basic (independent) characteristics of the software already estimated,

and c1, c2, d1, d2, are constants.

 Multivariable estimation models are expected to give more accurate estimates

compared to the single variable models, since a project parameter is typically influenced
by several independent parameters.

The independent parameters influence the dependent parameter to different extents. This is
modelled by the different sets of constants c1 d1 , c2 , d2 , Values of these constants are
usually determined from an analysis of historical data.

3. Analytical Estimation Techniques

 Analytical estimation techniques derive the required results starting with certain basic

assumptions regarding a project. Unlike empirical and heuristic techniques, analytical
techniques do have certain scientific basis. Halstead’s software science derives some

interesting results.

 Halstead’s software science is especially useful for estimating software maintenance
efforts.

 In fact, it outperforms both empirical and heuristic techniques as far as estimating
software maintenance efforts is concerned.

Software Engineering Page 5 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

4. RISK MANAGEMENT
 Every project is susceptible to a large number of risks.

 A risk is any anticipated unfavorable event or circumstance that can occur while a project is

underway.

 It is necessary for the project manager to anticipate and identify different risks that a project

is susceptible to get.

 Risk management aims at reducing the chances of a risk becoming real as well as reducing
the impact of a risks that becomes real,

 Risk management consists of three essential activities- risk identification, risk assessment
and risk mitigation.

a) Risk identification:

 The project manager needs to anticipate the risks in a project as early as possible.

 When risk is identified, effective risk management plans are made and the possible impacts
of the risks is minimized.

 To identify the important risks it is necessary to categorize risks from each class are relevant
to the project.

 Three main categories of risks include project risks, technical risks and business risks.
1. Project risks: includes budgetary, schedule, personnel, resource and customer related

problems. Schedule slippage, software is intangible, difficult to monitor and control a software
project. The invisibility of the product being developed is an important reason why many
software projects suffer from the risk of schedule slippage.

2. Technical risks: includes potential design, implementation, interfacing, testing and
maintenance problems. Ambiguous specification, incomplete specification, changing

specification, technical uncertainty, development teams insufficient knowledge and technical
obsolescence.
3. Business risks: Includes risk of building an excellent product that no one wants, losing

budgetary commitments etc.
b) Risk Assessment:

 The objective of risk assessment is to rank the risks in terms of their damage causing
potential. For risk assessment, first each risk should be rated in two ways:

 The likelihood of a risk becoming real
 The consequence of the problems associated with that risk.

 The priority of each risk can be computed as follows p=r*s

 Where p is the priority with which the risk must be handled, r is the probability of the risk
becoming real and s is the severity of damage caused due to the risk becoming real.

c) Risk Mitigation:

 After all the identified risks of a project have been assessed plans are made to contain the

most damaging and the most likely risks first.

 Different types of risks require different containment procedures.

 There are three main strategies for risk containment.
1. Avoid the risk: Risks can be avoided in several ways. Risks arise due to project constrains

and can be avoided by suitably modifying the constraints.
The different categories of constraints give rise to risks are
 Process related risk: arise due to aggressive work schedule, budget and resource

utilization.

Software Engineering Page 6 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 Product related risk: arise due to commitment to challenging product features, quality,
reliability etc.

 Technology related risk: arise due to commitment to use certain technology.4
2. Transfer the risk: involves getting the risky components developed by a third party, buying

insurance cover.
3. Risk reduction: involves planning ways to contain the damage due to a risk. Most important
risk reduction techniques is to build a prototype.

Risk leverage is the difference in risk procedure divided by the cost of reducing the risk.

reductionoft

reductionafterosureriskreductionbeforeosurerisk
leveragerisk

cos

expexp

REQUIREMENTS ANALYSIS AND SPECIFICATION

5. Requirements gathering and Analysis:
 The requirements have to be gathered by the analyst from several sources in bits and pieces.

 Conceptually divide the requirements gathering and analysis activity into two separate tasks:
 Requirements gathering

 Requirements analysis
1. Requirements gathering:

 Also known as requirements elicitation.
 The primary objective of the requirements gathering task is to collect the requirements from

the stakeholders.

 A stakeholder is a source of the requirements and is usually a person, or a group of persons
who either directly or indirectly are concerned with the software.

 Good analysts share their experience and expertise with the customer and give his
suggestions to define certain functionalities more comprehensively make the functionalities
more general and more complete.

 The important ways to gather requirements:
1. Studying existing documentation:

 the analyst study all the available documents regarding the system.
 Customers provide Statement of Purpose(SoP) document to the developers.
 Documents discuss issues in which the software is required, basic purpose, the stakeholders.

2. Interview:

 Analyst have to identify the different categories of users and then determine the requirements

of each.
 Eg. In library automation software, library members, librarians and accountants.
 To systemize the requirements gathering, Delphi technique can be followed.

3. Task Analysis:

 Users have a black box view of a software and consider the software that provides a set of

services. A service supported by a software is called a task.
 Analyst tries to identify and understand the different steps to realize the required

functionality in consultation with the user.

 Task analysis helps the analyst to understand the nitty-gritty of various user tasks and to
represent each task as a hierarchy of subtasks.

Scenario analysis:
 A task have many scenarios of operation.
 For different types of scenarios of a task, the behavior of the software may be different.

 Eg. Book is issued successfully to the member and the book issue slip is printed.

Software Engineering Page 7 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Form Analysis:
 It is an important and effective requirements gathering activity that is undertaken by the

analyst.
 In form analysis the existing forms and the formats of the notifications produced are

analyzed to determine the data input to the system and the data that are output from the
system.

2. Requirements Analysis:

 After requirements gathering is complete, the analyst analyses the gathered requirements to
form a clear understanding of the exact customer requirements and to weed out any problems

in gathered requirements.
 The main purpose of the requirements analysis activity is to analyze the gathered

requirements to remove all ambiguities, incompleteness and inconsistencies from the

gathered customer requirements and to obtain a clear understanding of the software to be
developed.

 The basic questions to the project should be clearly understood by the analyst before carrying
out analysis.

o What is the problem?

o Why is it important to solve the problem?
o What exactly are the data input and data output of the system?

o What are the possible procedures to solve the problem?
o What are the likely complexities to solve the problem?
o Is there any external software or hardware?

 The analyst proceeds to identify and resolve the various problems that he detects in the
gathered requirements.

 The analyst needs to identify and resolve three main types of problems in the requirements:
 Anomaly
 Inconsistency

 Incompleteness
 Anomaly: is an ambiguity in a requirement. Any anomaly in any of the requirements lead to

the development of an incorrect system, since an anomalous requirement can be interpreted
in the several ways during development.

 Inconsistency: Two requirements are said to be inconsistent if one of the requirement

contradicts the other. Eg. The furnace should be switched off when the temperature of the
furnace rises above 500 degree Celsius.

 Incompleteness: An incomplete set of requirements is one in which some requirements have
been overlooked. The lack of these features should be felt by the customer much later, while
using the software.

6. SOFTWARE REQUIREMENTS SPECIFICATION(SRS)

After removing all incompleteness, inconsistencies and anomalies from the specification, analyst
organize the requirements in the form of an SRS document.

SRS document is probably the most important document and is the toughest to write.
1. USERS OF SRS DOCUMENT:

Some of the important categories of users of SRS document and their needs for use are as
follows:

Software Engineering Page 8 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

a) Users, Customers and Marketing Personnel: Stakeholders refer to SRS document to ensure
that the system in the document will meet their needs.

For generic products, marketing personnel need to understand the requirements.
b) Software developers: Software developers refer to SRS document to make sure that they are

developing exactly what is required by the customer.
c)Test Engineers: Test engineers use the SRS document to understand the functionalities and
based on this write the test cases to validate its working. The required functionality, input and

output data should be identified precisely.
d)User documentation writers: need to read the SRS document to ensure that they understand

the features of the product well enough to be able to write the users manual.
e) Project managers: refer to SRS document to ensure that they can estimate the cost of the
project easily and it contains all the information required to plan the project.

f) Maintenance engineers: The SRS document helps the maintenance engineers to understand
the functionalities supported by the system.

 SRS document can be used as a legal document to settle disputes between the customers
and developers in a court of law.
2. CHARACTERISTICS OF A GOOD SRS DOCUMENT:

The skill of writing a good SRS document comes from the experience gained from writing SRS
documents for many projects.

Some of the identified desirable qualities of an SRS document are the following:
a) Concise: SRS document should be concise and at the same time unambiguous, consistent and
complete. Verbose and irrelevant descriptions reduce readability and also increase the

possibilities of errors in the document.
b) Implementation-independent: SRS should be free of design and implementation decisions

that reflect actual requirements.
SRS document should specify the externally visible behavior of the system and not
implementation issues.

The SRS document should describe the system to be developed as a black box and should
specify only the externally visible behavior of the system.

c) Traceable: IT should be possible to trace a specific requirement to the design elements that
implement it and vice versa.
Traceability is also important to verify the results of a phase with respect to the previous phase

and to analyze the impact of changing a requirement on the design elements and the code.
d) Modifiable: Customers frequently change the requirements during the software development

due to variety of reasons.
SRS document undergoes several revisions during software development.
SRS document should be easily modifiable.

e) Identification of response to undesired events: SRS document discuss the system responses
to various undesired events and exceptional conditions that may arise

f) Verifiable: All requirements as documents in the SRS document should be verifiable.
To design test cases based on the description of the functionality as to whether or not
requirements have been met in an implementation.

Any feature of the required system that is not verifiable should be listed separately in the goals of
the implementation section of the SRS document.

Software Engineering Page 1 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

UNIT III

SOFTWARE DESIGN

 Overview of the Design Process: Outcome of the Design Process – Classification of Design

Activities. – How to Characterize a good Software Design? Function-Oriented Software

Design:- Overview of SA/SD Methodology – Structured Analysis – Developing the DFD Model

of a System: Context Diagram – Structured Design – Detailed Design.

SOFTWARE DESIGN:

The activities carried out during the design phase (called as design process) transform the SRS

document into the design document.

OVERVIEW OF THE DESIGN PROCESS

The design process essentially transforms the SRS document into a design document.

1. OUTCOME OF THE DESIGN PROCESS

The following items are designed and documented during the design phase.

Different modules required: The different modules in the solution should be clearly identified.

Each module is a collection of functions and the data shared by the functions of the module.

Each module should accomplish some well-defined task out of the overall responsibility of the

software. Each module should be named according to the task it performs. For example, in an

academic automation software, the module consisting of the functions and data necessary to

accomplish the task of registration of the students should be named handle student registration.

Control relationships among modules: A control relationship between two modules essentially

arises due to function calls across the two modules. The control relationships existing among

various modules should be identified in the design document.

Software Engineering Page 2 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Interfaces among different modules: The interfaces between two modules identify the exact

data items that are exchanged between the two modules when one module invokes a function of

the other module.

Data structures of the individual modules: Each module normally stores some data that the

functions of the module need to share to accomplish the overall responsibility of the module.

Suitable data structures for storing and managing the data of a module need to be properly

designed and documented.

Algorithms required to implement the individual modules: Each function in a module usually

performs some processing activity. The algorithms required to accomplish the processing

activities of various modules need to be carefully designed and documented with due

considerations given to the accuracy of the results, space and time complexities. Starting with the

SRS document (as shown in Figure 5.1), the design documents are produced through iterations

over a series of steps. The design documents are reviewed by the members of the development

team to ensure that the design solution conforms to the requirements specification.

 2. CLASSIFICATION OF DESIGN ACTIVITIES

 A good software design is seldom realized by using a single step procedure, rather it requires

iterating over a series of steps called the design activities. Depending on the order in

which various design activities are performed, we can broadly classify them into two

important stages.

• Preliminary (or high-level) design, and

• Detailed design.

The meaning and scope of these two stages can vary considerably from one design methodology

to another. However, for the traditional function-oriented design approach, it is possible to define

the objectives of the high-level design as follows:

 Through high-level design, a problem is decomposed into a set of modules. The control

relationships among the modules are identified, and also the interfaces among various

modules are identified.

 The outcome of high-level design is called the program structure or the software

architecture. High-level design is a crucial step in the overall design of a software.

Software Engineering Page 3 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 When the high-level design is complete, the problem should have been decomposed into

many small functionally independent modules that are cohesive, have low coupling among

themselves, and are arranged in a hierarchy.

 Many different types of notations have been used to represent a high-level design. A notation

that is widely being used for procedural development is a tree-like diagram called the

structure chart. Another popular design representation techniques called UML that is being

used to document object-oriented design, involves developing several types of diagrams to

document the object-oriented design of a systems.

 Once the high-level design is complete, detailed design is undertaken.

 During detailed design each module is examined carefully to design its data structures and

the algorithms.

 The outcome of the detailed design stage is usually documented in the form of a module

specification (MSPEC) document.

 After the high-level design is complete, the problem would have been decomposed into small

modules, and the data structures and algorithms to be used described using MSPEC and can

be easily grasped by programmers for initiating coding.

3. HOW TO CHARACTERISE A GOOD SOFTWARE DESIGN?

 Coming up with an accurate characterization of a good software design that would hold

across diverse problem domains is certainly not easy.

 In fact, the definition of a ―good‖ software design can vary depending on the exact

application being designed.

 For example, ―memory size used up by a program‖ may be an important issue to

Characterize a good solution for embedded software development—since embedded

applications are often required to work under severely limited memory sizes due to cost,

space, or power consumption considerations.

 For embedded applications, factors such as design comprehensibility may take a back seat

while judging the goodness of design. Thus for embedded applications, one may sacrifice

design comprehensibility to achieve code compactness.

 Most researchers and software engineers agree on a few desirable characteristics that every

good software design for general applications must possess.

Software Engineering Page 4 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

These characteristics are listed below:

Correctness: A good design should first of all be correct. That is, it should correctly implement

all the functionalities of the system.

Understandability: A good design should be easily understandable. Unless a design solution is

easily understandable, it would be difficult to implement and maintain it.

Efficiency: A good design solution should adequately address resource, time, and cost

optimization issues.

Maintainability: A good design should be easy to change.

Understandability of a Design: A Major Concern

 While performing the design of a certain problem, assume that we have arrived at a large

number of design solutions and need to choose the best one.

 Obviously all incorrect designs have to be discarded first.

 Out of the correct design solutions, how can we identify the best one?

 Given that we are choosing from only correct design solutions, understandability of a design

solution is possibly the most important issue to be considered while judging the goodness of

a design.

An understandable design is modular and layered

 To be able to compare the understandability of two design solutions, we should at least have

an understanding of the general features that an easily understandable design should possess.

 A design solution should have the following characteristics to be easily understandable:

 It should assign consistent and meaningful names to various design components.

 It should make use of the principles of decomposition and abstraction in good

measures to simplify the design.

 A design solution should be modular and layered to be understandable.

Modularity

 A modular design is an effective decomposition of a problem. It is a basic characteristic of

any good design solution.

 A modular design, in simple words, implies that the problem has been decomposed into a set

of modules that have only limited interactions with each other.

Software Engineering Page 5 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 Decomposition of a problem into modules facilitates taking advantage of the divide and

conquer principle.

 If different modules have either no interactions or little interactions with each other, then

each module can be understood separately.

 This reduces the perceived complexity of the design solution greatly.

 To understand why this is so, remember that it may be very difficult to break a bunch of

sticks which have been tied together, but very easy to break the sticks individually.

 A design solution is said to be highly modular, if the different modules in the solution have

high cohesion and their inter-module couplings are low.

 A software design with high cohesion and low coupling among modules is the effective

problem decomposition bringing down the perceived problem complexity.

 Based on this classification, we would be able to easily judge the cohesion and coupling

existing in a design solution.

 From a knowledge of the cohesion and coupling in a design, the modularity of the design

solution can be achieved.

Layered design

 A layered design is one in which when the call relations among different modules are

represented graphically, it would result in a tree-like diagram with clear layering.

 In a layered design solution, the modules are arranged in a hierarchy of layers.

 A module can only invoke functions of the modules in the layer immediately below it.

 The higher layer modules can be considered to be similar to managers that invoke (order) the

lower layer modules to get certain tasks done.

Software Engineering Page 6 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 A layered design can be considered to be implementing control abstraction, since a module at

a lower layer is unaware of (about how to call) the higher layer modules.

4. FUNCTION-ORIENTED SOFTWARE DESIGN:-

The term top-down decomposition is often used to denote the successive decomposition of a set

of high-level functions into more detailed functions.

OVERVIEW OF SA/SD METHODOLOGY

SA/SD methodology involves carrying out two distinct activities:

 Structured analysis (SA)

 Structured design (SD)

During structured analysis, the SRS document is transformed into a data flow diagram (DFD)

model.

During structured design, the DFD model is transformed into a structure chart.

The structured analysis activity transforms the SRS document into a graphic model called the

DFD model. During structured analysis, functional decomposition of the system is achieved. It

is important to understand that the purpose of structured analysis is to capture the detailed

structure of the system as perceived by the user, whereas the purpose of structured design is to

define the structure of the solution that is suitable for implementation in some programming

language.

5. STRUCTURED ANALYSIS

The structured analysis technique is based on the following underlying principles:

 Top-down decomposition approach.

 Application of divide and conquer principle. Through this each high level function is

independently decomposed into detailed functions.

 Graphical representation of the analysis results using data flow diagrams (DFDs).

Software Engineering Page 7 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

A DFD is a hierarchical graphical model of a system that shows the different processing

activities or functions that the system performs and the data interchange among those functions.

Primitive symbols used for constructing DFDs

There are essentially five different types of symbols used for constructing DFDs. These primitive

symbols are depicted in Figure 6.2. The meaning of these symbols are explained as follows:

Function symbol: A function is represented using a circle.

External entity symbol: An external entity such as a librarian, a library member, etc. is

represented by a rectangle.

A data flow symbol represents the data flow occurring between two processes or between an

external entity and a process in the direction of the data flow arrow.

Data store symbol: A data store is represented using two parallel lines. It represents a logical

file. That is, a data store symbol can represent either a data structure or a physical file on disk

Output symbol: The output symbol i s as shown in Figure 6.2. The output symbol is used when

a hard copy is produced.

A data dictionary lists the purpose of all data items and the definition of all composite data

items in terms of their component data items.

6. DEVELOPING THE DFD MODEL OF A SYSTEM

A DFD model of a system graphically represents how each input data is transformed to its

corresponding output data through a hierarchy of DFDs.

The DFD model of a problem consists of many of DFDs and a single data dictionary.

Example. Trading-house Automation System (TAS)) A trading house wants to develop a

computerized system that would automate various bookkeeping activities associated with its

business.

Software Engineering Page 8 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Software Engineering Page 9 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Data dictionary for the DFD model of TAS
response: [bill + material-issue-slip, reject-msg,apology-msg]
query: period /* query from manager regarding sales statistics*/

period: [date+date,month,year,day]
date: year + month + day year: integer
month: integer day: integer customer-id: integer
order: customer-id + {items + quantity}* + order#

a) Context Diagram

The context diagram is the most abstract (highest level) data flow representation of a system. It

represents the entire system as a single bubble. The bubble in the context diagram is annotated

with the name of the software system being developed (usually a noun).

The context diagram establishes the context in which the system operates; that is, who are the

users, what data do they input to the system, and what data they received by the system.

 1. Construction of context diagram: Examine the SRS document to determine:

• Different high-level functions that the system needs to perform.

• Data input to every high-level function.

• Data output from every high-level function.

• Interactions (data flow) among the identified high-level functions.

Software Engineering Page 10 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Construction of level 1 diagram: Examine the high-level functions described in the SRS

document. If there are three to seven high-level requirements in the SRS document, then

represent each of the high-level function in the form of a bubble. If there are more than seven

bubbles, then some of them have to be combined. If there are less than three bubbles, then some

of these have to be split.

Construction of lower-level diagrams: Decompose each high-level function into its constituent

subfunctions through the following set of activities:

•...Identify the different subfunctions of the high-level function.

•...Identify the data input to each of these subfunctions.

•...Identify the data output from each of these subfunctions.

•...Identify the interactions (data flow) among these subfunctions.

7. STRUCTURED DESIGN

 The aim of structured design is to transform the results of the structured analysis (that i s,

the DFD model) into a structure chart.

Software Engineering Page 11 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 A structure chart represents the software architecture. The various modules making other

modules), and the parameters that are passed among the different modules.

 The structure chart representation can be easily implemented using some programming

language. Since the main focus in a structure chart representation is on module structure

of a software and the interaction among the different modules, the procedural aspects.

The basic building blocks using which structure charts are designed are as following:

Rectangular boxes: A rectangular box represents a module. Usually, every rectangular box is

annotated with the name of the module it represents.

Module invocation arrows: An arrow connecting two modules implies that during program

execution control is passed from one module to the other in the direction of the connecting

arrow. However, just by looking at the structure chart, we cannot say whether a modules calls

another module just once or many times. Also, just by looking at the structure chart, we cannot

tell the order in which the different modules are invoked.

Data flow arrows: These are small arrows appearing alongside the module invocation arrows.

The data flow arrows are annotated with the corresponding data name. Data flow arrows

represent the fact that the named data passes from one module to the other in the direction of the

arrow.

Library modules: A library module is usually represented by a rectangle with double edges.

Libraries comprise the frequently called modules. Usually, when a module is invoked by many

other modules, it is made into a library module.

Selection: The diamond symbol represents the fact that one module of several modules

connected with the diamond symbol i s invoked depending on the outcome of the condition

attached with the diamond symbol.

Software Engineering Page 12 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Repetition: A loop around the control flow arrows denotes that the respective modules are

invoked repeatedly.

Flow chart versus structure chart

 Flow chart is a convenient technique to represent the flow of control in a program.

A structure chart differs from a flow chart in three principal ways: It is usually difficult to

identify the different modules of a program from its flow chart representation. Data interchange

among different modules is not represented in a flow chart. Sequential ordering of tasks that i s

inherent to a flow chart is suppressed in a structure chart.

Structure chart of a super market.

8. DETAILED DESIGN

 During detailed design the pseudo code description of the processing and the different

data structures are designed for the different modules of the structure chart.

 These are usually described in the form of module specifications (MSPEC).

 MSPEC is usually written using structured English.

 The MSPEC for the non-leaf modules describe the different conditions under which the

responsibilities are delegated to the lower level modules.

 The MSPEC for the leaf-level modules should describe in algorithmic form how the

primitive processing steps are carried out.

 To develop the MSPEC of a module, it is usually necessary to refer to the DFD model

and the SRS document to determine the functionality of the module.

Software Engineering Page 1 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

UNIT IV

User Interface Design

 Characteristics of a good User Interface - Basic Concepts(508) – Types of User Interfaces –

Fundamentals of Components based GUI Development: Window System. Coding and Testing:-

Coding – Software Documentation – Testing: Basic Concepts and Terminologies – Testing

Activities. – Unit Testing – Black-box Testing: Equivalence Class Partitioning – Boundary

Value Analysis. – White-box Testing.

User Interface Design

The user interface part of a software product is responsible for all interactions with the end-user.

1. CHARACTERISTICS OF A GOOD USER INTERFACE

1) Speed of learning: A good user interface should be easy to learn. Speed of learning is

hampered by complex syntax and semantics of the command issue procedures. A good user

interface should not require its users to memorize commands. Neither should the user be asked to

remember information from one screen to another while performing various tasks using the

interface. Besides, the following three issues are crucial to enhance the speed of learning:

a) U s e of metaphors and intuitive command names: Speed of learning an interface is greatly

facilitated if these are based on some day to-day real-life examples or some physical objects with

which the users are familiar with. The abstractions of real-life objects or concepts used in user

interface design are called metaphors. If the user interface of a text editor uses concepts similar

to the tools used by a writer for text editing such as cutting lines and paragraphs and pasting it at

other places, users can immediately relate to it.

b) Consistency: Once, a user learns about a command, he should be able to use the similar

commands in different circumstances for carrying out similar actions. This makes it easier to

learn the interface since the user can extend his knowledge about one part of the interface to the

other parts. Thus, the different commands supported by an interface should be consistent.

c) Component-based interface: Users can learn an interface faster if the interaction style of the

interface is very similar to the interface of other applications with which the user is already

familiar with. This can be achieved if the interfaces of different applications are developed using

some standard user interface components.

2. Speed of use: Speed of use of a user interface is determined by the time and user effort

necessary to initiate and execute different commands. This characteristic of the interface is

sometimes referred to as productivity support of the interface. It indicates how fast the users can

perform their intended tasks. The time and user effort necessary to initiate and execute different

commands should be minimal. This can be achieved through careful design of the interface. For

example, an interface that requires users to type in lengthy commands or involves mouse

movements to different areas of the screen that are wide apart for issuing commands can slow

Software Engineering Page 2 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

down the operating speed of users. The most frequently used commands should have the smallest

length or be available at the top of a menu to minimize the mouse movements necessary to issue

commands.

3. Speed of recall: Once users learn how to use an interface, the speed with which they can

recall the command issue procedure should be maximized. This characteristic is very important

for intermittent users. Speed of recall is improved if the interface is based on some metaphors,

symbolic command issue procedures, and intuitive command names.

4. Error prevention: A good user interface should minimize the scope of committing errors

while initiating different commands. The error rate of an interface can be easily determined by

monitoring the errors committed by average users while using the interface. This monitoring can

be automated by instrumenting the user interface code with monitoring code which can record

the frequency and types of user error and later display the statistics of various kinds of errors

committed by different users. Consistency of names, issue procedures, and behavior of similar

commands and the simplicity of the command issue procedures minimize error possibilities.

Also, the interface should prevent the user from entering wrong values.

5. Aesthetic and attractive: A good user interface should be attractive to use. An attractive user

interface catches user attention and fancy. In this respect, graphics-based user interfaces have a

definite advantage over text-based interfaces.

6. Consistency: The commands supported by a user interface should be consistent. The basic

purpose of consistency is to allow users to generalize the knowledge about aspects of the

interface from one part to another. Thus, consistency facilitates speed of learning, speed of recall,

and also helps in reduction of error rate.

7. Feedback: A good user interface must provide feedback to various user actions. Especially, if

any user request takes more than few seconds to process, the user should be informed about the

state of the processing of his request. In the absence of any response from the computer for a

long time, a novice user might even start recovery/shutdown procedures in panic. If required, the

user should be periodically informed about the progress made in processing his command.

8. Support for multiple skill levels: A good user interface should support multiple levels of

sophistication of command issue procedure for different categories of users. This is necessary

because users with different levels of experience in using an application prefer different types of

user interfaces. Experienced users are more concerned about the efficiency of the command issue

procedure, whereas novice users pay importance to usability aspects. When someone uses an

application for the first time, his primary concern is speed of learning. Thus, the skill level of

users improves as they keep using a software product and they look for commands to suit their

skill levels.

9. Error recovery (undo facility): While issuing commands, even the expert users can commit

errors. Therefore, a good user interface should allow a user to undo a mistake committed by him

while using the interface. Users are inconvenienced if they cannot recover from the errors they

commit while using software. If the users cannot recover even from very simple types of errors,

they feel irritated, helpless, and out of control.

Software Engineering Page 3 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

10. User guidance and on-line help: Users seek guidance and on-line help when they either

forget a command or are unaware of some features of the software. Whenever users need

guidance or seek help from the system, they should be provided with appropriate guidance and

help.

2. BASIC CONCEPTS

A) User Guidance and On-line Help

Users may seek help about the operation of the software any time while using the software. This

is provided by the on-line help system. This is different from the guidance and error messages

which are flashed automatically without the user asking for them. The guidance messages

prompt the user regarding the options he has regarding the next command, and the status of the

last command, etc.

a. On-line help system: Users expect the on-line help messages to be tailored to the context in

which they invoke the ―help system‖. Therefore, a good online help system should keep track of

what a user is doing while invoking the help system and provide the output message in a context-

dependent way. Also, the help messages should be tailored to the user’s experience level.

Further, a good on-line help system should take advantage of any graphics and animation

characteristics of the screen and should not just be a copy of the user’s manual.

b. Guidance messages: The guidance messages should be carefully designed to prompt the user

about the next actions he might pursue, the current status of the system, the progress so far made

in processing his last command, etc. A good guidance system should have different levels of

sophistication for different categories of users. For example, a user using a command language

interface might need a different type of guidance compared to a user using a menu or iconic

interface. Also, users should have an option to turn off the detailed messages.

c. Error messages: Error messages are generated by a system either when the user commits

some error or when some errors encountered by the system during processing due to some

exceptional conditions, such as out of memory, communication link broken, etc. Users do not

like error messages that are either ambiguous or too general such as ―invalid input or system

error‖. Error messages should be polite. Error messages should not have associated noise which

might embarrass the user. The message should suggest how a given error can be rectified. If

appropriate, the user should be given the option of invoking the on-line help system to find out

more about the error situation.

B) Mode-based versus Modeless Interface

A mode is a state or collection of states in which only a subset of all user interaction tasks can be

performed. In a modeless interface, the same set of commands can be invoked at any time during

the running of the software. Thus, a modeless interface has only a single mode and all the

commands are available all the time during the operation of the software. On the other hand, in a

mode-based interface, different sets of commands can be invoked depending on the mode in

which the system is, i.e., the mode at any instant is determined by the sequence of commands

already issued by the user.

Software Engineering Page 4 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

A mode-based interface can be represented using a state transition diagram, where each node of

the state transition diagram would represent a mode. Each state of the state transition diagram

can be annotated with the commands that are meaningful in that state.

C) Graphical User Interface (GUI) versus Text-based User Interface

In a GUI multiple windows with different information can simultaneously be displayed on the

user screen. This is perhaps one of the biggest advantages of GUI over text- based interfaces

since the user has the flexibility to simultaneously interact with several related items at any time

and can have access to different system information displayed in different windows. Iconic

information representation and symbolic information manipulation is possible in a GUI.

Symbolic information manipulation such as dragging an icon representing a file to a trash for

deleting is intuitively very appealing and the user can instantly remember it.

 A GUI usually supports command selection using an attractive and user-friendly menu

selection system. In a GUI, a pointing device such as a mouse or a light pen can be used for

issuing commands. The use of a pointing device increases the efficacy of command issue

procedure. On the flip side, a GUI requires special terminals with graphics capabilities for

running and also requires special input devices such a mouse.

On the other hand, a text-based user interface can be implemented even on a cheap

alphanumeric display terminal. Graphics terminals are usually much more expensive than

alphanumeric terminals. However, display terminals with graphics capability with bitmapped

high-resolution displays and significant amount of local processing power have become

affordable and over the years have replaced text-based terminals on all desktops. Therefore, the

emphasis of this chapter is on GUI design rather than text-based user interface design.

3. TYPES OF USER INTERFACES

User interfaces can be classified into the following three categories:

 Command language-based interfaces

 Menu-based interfaces

 Direct manipulation interfaces

A) Command Language-based Interface

A command language-based interface, is based on designing a command language which

the user can use to issue the commands. The user is expected to frame the appropriate commands

in the language and type them appropriately whenever required. A simple command language-

based interface might simply assign unique names to the different commands. Thus, a command

language-based interface can be made concise requiring minimal typing by the user. Command

language-based interfaces allow fast interaction with the computer and simplify the input of

complex commands.

Among the three categories of interfaces, the command language interface allows for

most efficient command issue procedure requiring minimal typing. Further, a command

language-based interface can be implemented even on cheap alphanumeric terminals. Also, a

command language-based interface is easier to develop compared to a menu-based or a direct-

manipulation interface because compiler writing techniques are well developed. One can

systematically develop a command language interface by using the standard compiler writing

tools Lex and Yacc.

Software Engineering Page 5 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Drawbacks. Usually, command language-based interfaces are difficult to learn and require the

User to memorize the set of primitive commands. Also, most users make errors while

formulating commands in the command language and also while typing them. Further, in a

command language-based interface, all interactions with the system is through a key-board and

cannot take advantage of effective interaction devices such as a mouse. Obviously, for casual and

inexperienced users, command language-based interfaces are not suitable.

Issues in designing a command language-based interface

Two overbearing command design issues are to reduce the number of primitive commands that a

user has to remember and to minimize the total typing required. The designer should try to

develop meaningful mnemonics and yet be concise to minimize the amount of typing required.

For example, the shortest mnemonic should be assigned to the most frequently used commands.

B) Menu-based Interface

 A menu-based interface does not require the users to remember the exact syntax of the

commands. A menu-based interface is based on recognition of the command names, rather than

recollection. Humans are much better in recognizing something than recollecting it. Further, in a

menu-based interface the typing effort is minimal as most interactions are carried out through

menu selections using a pointing device. This factor is an important consideration for the

occasional user who cannot type fast.

 Also, if the number of choices is large, it is difficult to design a menu-based interface. A

moderate-sized software might need hundreds or thousands of different menu choices. In fact, a

major challenge in the design of a menu-based interface is to structure large number of menu

choices into manageable forms. Some of the techniques available to structure a large number of

menu items:

Scrolling menu: Sometimes the full choice list is large and cannot be displayed within the menu

area, scrolling of the menu items is required. This would enable the user to view and select the

menu items that cannot be accommodated on the screen. However, in a scrolling menu all the

commands should be highly correlated, so that the user can easily locate a command that he

needs. This is important since the user cannot see all the commands at any one time.

Software Engineering Page 6 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

A scrolling menu is frequently used is font size selection in a document processor (see

Figure 9.1). Here, the user knows that the command list contains only the font sizes that are

arranged in some order and he can scroll up or down to find the size he is looking for. However,

if the commands do not have any definite ordering relation, then the user would have to in the

worst case, scroll through all the commands to find the exact command he is looking for, making

this organisation inefficient.

Walking menu: Walking menu is very commonly used to structure a large collection of menu

items. In this technique, when a menu item is selected, it causes further menu items to be

displayed adjacent to it in a sub-menu. An example of a walking menu is shown in Figure 9.2. A

walking menu can successfully be used to structure commands only if there are tens rather than

hundreds of choices since each adjacently displayed menu does take up screen space and the

total screen area is after all limited.

Hierarchical menu: This type of menu is suitable for small screens with limited display area

such as that in mobile phones. In a hierarchical menu, the menu items are organized in a

hierarchy or tree structure. Selecting a menu item causes the current menu display to be replaced

by an appropriate sub-menu. Thus in this case, one can consider the menu and its various

submenu to form a hierarchical tree-like structure.

Walking menu can be considered to be a form of hierarchical menu which is practicable

when the tree is shallow. Hierarchical menu can be used to manage large number of choices, but

the users are likely to face navigational problems because they might lose track of where they are

in the menu tree. This probably is the main reason why this type of interface is very rarely used.

C) Direct Manipulation Interfaces

Direct manipulation interfaces present the interface to the user in the form of visual models (i.e.,

icons or objects). For this reason, direct manipulation interfaces are sometimes called as iconic

interfaces. In this type of interface, the user issues commands by performing actions on the

visual representations of the objects, e.g., pull an icon representing a file into an icon

Software Engineering Page 7 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

representing a trash box, for deleting the file. Important advantages of iconic interfaces include

the fact that the icons can be recognized by the users very easily, and that icons are language

independent. For example, if one has to drag an icon representing the file to a trash box icon for

deleting a file, then in order to delete all the files in the directory one has to perform this

operation individually for all files —which could be very easily done by issuing a command like

delete *.*.

4. FUNDAMENTALS OF COMPONENT-BASED GUI DEVELOPMENT

Graphical user interfaces became popular in the 1980s. The main reason why there were

very few GUI-based applications prior to the eighties is that graphics terminals were too

expensive. For example, the price of a graphics terminal those days was much more than what a

high-end personal computer costs these days. Also, the graphics terminals were of storage tube

type and lacked raster capability.

One of the first computers to support GUI-based applications was the Apple Macintosh

computer. In fact, the popularity of the Apple Macintosh computer in the early eighties is

directly attributable to its GUI. In those early days of GUI design, the user interface programmer

typically started his interface development from the scratch. He would starting from simple pixel

display routines, write programs to draw lines, circles, text, etc. He would then develop his own

routines to display menu items, make menu choices, etc. The current user interface style has

undergone a sea change compared to the early style.

The current style of user interface development is component-based. It recognizes that

every user interface can easily be built from a handfull of predefined components such as menus,

dialog boxes, forms, etc. Besides the standard components, and the facilities to create good

interfaces from them, one of the basic support available to the user interface developers is the

window system. The window system lets the application programmer create and manipulate

windows without having to write the basic windowing functions.

1. Window System

Most modern graphical user interfaces are developed using some window system. A

window system can generate displays through a set of windows. Since a window is the basic

entity in such a graphical user interface, we need to first discuss what exactly a window is.

a. Window: A window is a rectangular area on the screen. A window can be considered to be a

virtual screen, in the sense that it provides an interface to the user for carrying out independent

Figure: Window with client and user areas marked.

Software Engineering Page 8 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

activities, e.g., one window can be used for editing a program and another for drawing pictures.

A window can be divided into two parts—client part, and non-client part. The client area makes

up the whole of the window, except for the borders and scroll bars. The client area is the area

available to a client application for display. The non-client-part of the window determines the

look and feel of the window. The look and feel defines a basic behaviour for all windows, such

as creating, moving, resizing, iconifying of the windows. The window manager is responsible for

managing and maintaining the non-client area of a window.

b. Window management system (WMS)

A graphical user interface typically consists of a large number of windows. Therefore, it

is necessary to have some systematic way to manage these windows. Most graphical user

interface development environments do this through a window management system (WMS). A

window management system is primarily a resource manager. It keeps track of the screen area

resource and allocates it to the different windows that seek to use the screen. From a broader

perspective, a WMS can be considered as a user interface management system (UIMS) —which

not only does resource management, but also provides the basic behaviour to the windows and

provides several utility routines to the application programmer for user interface development.

 A WMS simplifies the task of a GUI designer to a great extent by providing the basic

behaviour to the various windows such as move, resize, iconify, etc. as soon as they are created

and by providing the basic routines to manipulate the windows from the application program

such as creating, destroying, changing different attributes of the windows, and drawing text,

lines, etc.

A WMS consists of two parts (see Figure 9.4):

• a window manager, and

• a window system.

c. Window manager and window system:

The window manager is built on the top of the window system in the sense that it makes

use of various services provided by the window system. The window manager and not the

window system determines how the windows look and behave. In fact, several kinds of window

managers can be developed based on the same window system.

The window manager can be considered as a special kind of client that makes use of the

services (function calls) supported by the window system. The application programmer can also

directly invoke the services of the window system to develop the user interface. The relationship

between the window manager, window system, and the application program is shown in Figure

9.4.

This figure shows that the end-user can either interact with the application itself or with

the window manager (resize, move, etc.) and both the application and the window manger

invoke services of the window manager. Window manager is the component of WMS with

which the end user interacts to do various window-related operations such as window

repositioning, window resizing, iconification, etc.

Software Engineering Page 9 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 A widget is the short form of a window object. The data of an window object are the

geometric attributes (such as size, location etc.) and other attributes such as its background and

foreground colour, etc. The operations that are defined on these data include, resize, move, draw,

etc.

Widgets are the standard user interface components. A user interface is usually made up

by integrating several widgets. A few important types of widgets normally provided with a user

interface development system are described.

d. Component-based development

A development style based on widgets is called component-based (or widget-based) GUI

development style. There are several important advantages of using a widget-based design style.

One of the most important reasons to use widgets as building blocks is because they help users

learn an interface fast. In this style of development, the user interfaces for different applications

are built from the same basic components. Therefore, the user can extend his knowledge of the

behavior of the standard components from one application to the other.

e. Visual programming

Visual programming is the drag and drop style of program development. In this style of user

interface development, a number of visual objects (icons) representing the GUI components are

provided by the programming environment. The application programmer can easily develop the

user interface by dragging the required component types (e.g., menu, forms, etc.) from the

displayed icons and placing them wherever required.

Visual programming can be considered as program development through manipulation of

several visual objects. Reuse of program components in the form of visual objects is an

important aspect of this style of programming. Though popular for user interface development,

this style of programming can be used for other applications such as Computer-Aided Design

application (e.g., factory design), simulation, etc. User interface development using a visual

programming language greatly reduces the effort required to develop the interface.

Examples of popular visual programming languages are Visual Basic, Visual C++, etc.

Visual C++ provides tools for building programs with windowbased user interfaces for

Microsoft Windows environments. In visual C++ you usually design menu bars, icons, and

dialog boxes, etc. before adding them to your program. These objects are called as resources.

Software Engineering Page 10 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

You can design shape, location, type, and size of the dialog boxes before writing any C++ code

for the application.

f. Types of Widgets

Different interface programming packages support different widget sets.

a. Label widget: This is probably one of the simplest widgets. A label widget does nothing

except to display a label, i.e., it does not have any other interaction capabilities and is not

sensitive to mouse clicks. A label widget is often used as a part of other widgets.

b. Container widget: These widgets do not stand by themselves, but exist merely to contain

other widgets. Other widgets are created as children of the container widget. When the container

widget is moved or resized, its children widget also get moved or resized. A container widget has

no callback routines associated with it.

c. Pop-up menu: These are transient and task specific. A pop-up menu

appears upon pressing the mouse button, irrespective of the mouse position.

d. Pull-down menu : These are more permanent and general. You have to move the cursor to a

specific location and pull down this type of menu.

e. Dialog boxes: We often need to select multiple elements from a selection list. A dialog box

remains visible until explicitly dismissed by the user. A dialog box can include areas for entering

text as well as values. If an apply command is supported in a dialog box, the newly entered

values can be tried without dismissing the box. Though most dialog boxes ask you to enter some

information, there are some dialog boxes which are merely informative, alerting you to a

problem with your system or an error you have made. Generally, these boxes ask you to read the

information presented and then click OK to dismiss the box.

f. Push button: A push button contains key words or pictures that describe the action that is

triggered when you activate the button. Usually, the action related to a push button occurs

immediately when you click a push button unless it contains an ellipsis (. . .). A push button

with an ellipsis generally indicates that another dialog box will appear.

g. Radio buttons: A set of radio buttons are used when only one option has to be selected out of

many options. A radio button is a hollow circle followed by text describing the option it stands

for. When a radio button is selected, it appears filled and the previously selected radio button

from the group is unselected. Only one radio button from a group can be selected at any time.

This operation is similar to that of the band selection buttons that were available in old radios.

h. Combo boxes: A combo box looks like a button until the user interacts with it. When the user

presses or clicks it, the combo box displays a menu of items to choose from. Normally a combo

box is used to display either one-of-many choices when space is limited, the number of choices

is large, or when the menu items are computed at run-time.

5. CODING

 Coding is undertaken once the design phase is complete and the design documents have

been successfully reviewed.

 After all the modules of a system have been coded and unit tested, the integration and

system testing phase is undertaken.

 The input to the coding phase is the design document produced at the end of the design

phase.

 Recollect that the design document contains not only the high-level design of the system

in the form of a module structure (e.g., a structure chart), but also the detailed design.

Software Engineering Page 11 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 The detailed design is usually documented in the form of module specifications where the

data structures and algorithms for each module are specified.

 During the coding phase, different modules identified in the design document are coded

according to their respective module specifications.

 The objective of the coding phase is to transform the design of a system into code in a

high-level language, and then to unit test this code..

 Good software development organisations require their programmers to adhere to some

well-defined and standard style of coding which is called their coding standard.

 The main advantages of adhering to a standard style of coding are the following:

 A coding standard gives a uniform appearance to the codes written by different

engineers.

 It facilitates code understanding and code reuse.

 It promotes good programming practices.

1. Coding Standards and Guidelines

 Good software development organisations usually develop their own coding standards

and guidelines depending on what suits their organisation best and based on the specific

types of software they develop.

 To give an idea about the types of coding standards that are being used, we shall only list

some general coding standards and guidelines that are commonly adopted by many

software development organisations, rather than trying to provide an exhaustive list.

Representative coding standards:

a. Rules for limiting the use of globals: These rules list what types of data can be declared

global and what cannot, with a view to limit the data that needs to be defined with global scope.

b. Standard headers for different modules: The header of different modules should have

standard format and information for ease of understanding and maintenance. The following is an

example of header format that is being used in some companies:

 Name of the module.

 Date on which the module was created.

 Author’s name.

 Modification history.

 Synopsis of the module. This is a small writeup about what the module does.

 Different functions supported in the module, along with their

 input/output parameters.

 Global variables accessed/modified by the module.

c. Naming conventions for global variables, local variables, and constant identifiers: A

popular naming convention is that variables are named using mixed case lettering. Global

variable names would always start with a capital letter (e.g., GlobalData) and local variable

names start with small letters (e.g., localData). Constant names should be formed using capital

letters only (e.g., CONSTDATA).

d. Conventions regarding error return values and exception handling mechanisms: The

way error conditions are reported by different functions in a program should be standard within

an organisation. For example, all functions while encountering an error condition should either

Software Engineering Page 12 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

return a 0 or 1 consistently, independent of which programmer has written the code. This

facilitates reuse and debugging.

e. Representative coding guidelines: The following are some representative coding guidelines

that are recommended by many software development organisations. Wherever necessary, the

rationale behind these guidelines is also mentioned.

f. Do not use a coding style that is too clever or too difficult to understand: Code should be

easy to understand. Many inexperienced engineers actually take pride in writing cryptic and

incomprehensible code. C l e v e r coding can obscure meaning of the code and reduce code

understandability; thereby making maintenance and debugging difficult and expensive.

 g. Avoid obscure side effects: The side effects of a function call include modifications to the

parameters passed by reference, modification of global variables, and I/O operations. An obscure

side effect is one that is not obvious from a casual examination of the code. Obscure side effects

make it difficult to understand a piece of code. For example, suppose the value of a global

variable is changed or some file I/O is performed obscurely in a called module. That is, this is

difficult to infer from the function’s name and header information. Then, it would be really hard

to understand the code.

h. Do not use an identifier for multiple purposes: The rationale that they give for such

multiple use of variables is memory efficiency, e.g., three variables use up three memory

locations, whereas when the same variable is used for three different purposes, only one memory

location is used. Use of variables for multiple purposes usually makes future enhancements

more difficult. For example, while changing the final computed result from integer to float type,

the programmer might subsequently notice that it has also been used as a temporary loop

variable that cannot be a float type.

i. Code should be well-documented: As a rule of thumb, there should be at least one comment

line on the average for every three source lines of code.

j. Length of any function should not exceed 10 source lines: A lengthy function is usually

very difficult to understand as it probably has a large number of variables and carries out many

different types of computations. For the same reason, lengthy functions are likely to have

disproportionately larger number of bugs.

k. Do not use GO TO statements: Use of GO TO statements makes a program unstructured.

This makes the program very difficult to understand, debug, and maintain.

6. SOFTWARE DOCUMENTATION

 When a software is developed, in addition to the executable files and the source code,

several kinds of documents such as users’ manual, software requirements

specification (SRS) document, design document, test document, installation manual,

etc., are developed as part of the software engineering process.

 All these documents are considered a vital part of any good software development

practice.

 Good documents are helpful in the following ways: Good documents help enhance

understandability of code.

 As a result, the availability of good documents help to reduce the effort and time required

for maintenance.

 Documents help the users to understand and effectively use the system.

 Good documents help to effectively tackle the manpower turnover problem.

Software Engineering Page 13 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 Even when an engineer leaves the organisation, and a new engineer comes in, he can

build up the required knowledge easily by referring to the documents.

 Production of good documents helps the manager to effectively track the progress of the

project.

 The project manager would know that some measurable progress has been achieved, if

the results of some pieces of work has been documented and the same has been reviewed.

 Different types of software documents can broadly be classified into the following:

Internal documentation: These are provided in the source code itself.

External documentation: These are the supporting documents such as SRS document,

installation document, user manual, design document, and test document.

1. Internal Documentation

 Internal documentation is the code comprehension features provided in the source code

itself. Internal documentation can be provided in the code in several forms. The important

types of internal documentation are the following:

 Comments embedded in the source code.

 Use of meaningful variable names.

 Module and function headers.

 Code indentation.

 Code structuring (i.e., code decomposed into modules and functions).

 Use of enumerated types.

 Use of constant identifiers.

 Use of user-defined data types.

 Careful experiments suggest that out of all types of internal documentation, meaningful

variable names is most useful while trying to understand a piece of code.

 The above assertion, of course, is in contrast to the common expectation that code

commenting would be the most useful.

 The research finding is obviously true when comments are written without much thought.

 For example, the following style of code commenting is not much of a help in understanding

the code.

a=10; /* a made 10 */

 A good style of code commenting is to write to clarify certain non-obvious aspects of the

working of the code, rather than cluttering the code with trivial comments.

 Good software development organisations usually ensure good internal documentation by

appropriately formulating their coding standards and coding guidelines.

 Even when a piece of code is carefully commented, meaningful variable names has been

found to be the most helpful in understanding the code.

2. External Documentation

 External documentation is provided through various types of supporting documents such

as users’ manual, software requirements specification document, design document, test

document, etc.

 A systematic software development style ensures that all these documents are of good

quality and are produced in an orderly fashion.

 An important feature that is required of any good external documentation is consistency

with the code.

Software Engineering Page 14 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 If the different documents are not consistent, a lot of confusion is created for somebody

trying to understand the software.

 In other words, all the documents developed for a product should be up-to-date and every

change made to the code should be reflected in the relevant external documents.

 Even if only a few documents are not up-to-date, they create inconsistency and lead to

confusion.

 Another important feature required for external documents is proper understandability by

the category of users for whom the document is designed.

 For achieving this, Gunning’s fog index is very useful.

Gunning’s fog index

 Gunning’s fog index (developed by Robert Gunning in 1952) is a metric that has been

designed to measure the readability of a document.

 The computed metric value (fog index) of a document indicates the number of years of

formal education that a person should have, in order to be able to comfortably understand

that document.

 That is, if a certain document has a fog index of 12, any one who has completed his 12
th

class would not have much difficulty in understanding that document.

 The Gunning’s fog index of a document D can be computed as follows:

 Observe that the fog index is computed as the sum of two different factors.

 The first factor computes the average number of words per sentence (total number of

words in the document divided by the total number of sentences).

 This factor therefore accounts for the common observation that long sentences are

difficult to understand.

 The second factor measures the percentage of complex words in the document.

 Note that a syllable is a group of words that can be independently pronounced.

 For example, the word ―sentence‖ has three syllables (―sen‖, ―ten‖, and ―ce‖). Words

having more than three syllables are complex words and presence of many such words

hamper readability of a document.

Example. Consider the following sentence: ―The Gunning’s fog index is based on the premise

that use of short sentences and simple words makes a document easy to understand.‖ Calculate

its Fog index.

The fog index of the above example sentence is

0.4 x(23/1) + (4/23) X 100 = 26

If a users’ manual is to be designed for use by factory workers whose educational qualification is

class 8, then the document should be written such that the Gunning’s fog index of the document

does not exceed 8.

Software Engineering Page 15 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

7. TESTING

Basic Concepts and Terminologies
 How to test a program?

 Testing a program involves executing the program with a set of test inputs and observing

if the program behaves as expected.

 If the program fails to behave as expected, then the input data and the conditions under

which it fails are noted for later debugging and error correction.

 A highly simplified view of program testing is schematically shown in Figure 10.1.

 The tester has been shown as a stick icon, who inputs several test data to the system and

observes the outputs produced by it to check if the system fails on some specific inputs.

Unless the conditions under which a software fails are noted down, it becomes difficult for the

developers to reproduce a failure observed by the testers.

For examples, a software might fail for a test case only when a network connection is enabled.

Terminologies

 As is true for any specialised domain, the area of software testing has come to be

associated with its own set of terminologies.

A mistake is essentially any programmer action that later shows up as an incorrect result

during program execution.

 A programmer may commit a mistake in almost any development activity.

 For example, during coding a programmer might commit the mistake of not initializing a

certain variable, or might overlook the errors that might arise in some exceptional

situations such as division by zero in an arithmetic operation.

 Both these mistakes can lead to an incorrect result.

An error is the result of a mistake committed by a developer in any of the development

activities.

 Among the extremely large variety of errors that can exist in a program.

 One example of an error is a call made to a wrong function.

 The terms error, fault, bug, and defect are considered to be synonyms in the area of

program testing.

 Though the terms error, fault, bug, and defect are all used interchangeably by the

program testing community.

A failure of a program essentially denotes an incorrect behavior exhibited by the program

during its execution.

 An incorrect behaviour is observed either as an incorrect result produced or as an

inappropriate activity carried out by the program.

 Every failure is caused by some bugs present in the program.

Software Engineering Page 16 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 In other words, we can say that every software failure can be traced to some bug or other

present in the code.

 The number of possible ways in which a program can fail is extremely large.

 Out of the large number of ways in which a program can fail, in the following we give

three randomly selected examples: – The result computed by a program is 0, when the

correct result is 10.

– A program crashes on an input.

– A robot fails to avoid an obstacle and collides with it.

 It may be noted that mere presence of an error in a program code may not necessarily

lead to a failure during its execution.

A test case is a triplet [I , S, R], where I is the data input to the program under test, S is the state

of the program at which the data is to be input, and R is the result expected to be produced by the

program.

 The state of a program is also called its execution mode.

 As an example, consider the different execution modes of a certain text editor software.

 The text editor can at any time during its execution assume any of the following

execution modes—edit, view, create, and display.

 In simple words, we can say that a test case is a set of test inputs, the mode in which the

input is to be applied, and the results that are expected during and after the execution of

the test case.

A test scenario is an abstract test case in the sense that it only identifies the aspects of the

program that are to be tested without identifying the input, state, or output.

 A test case can be said to be an implementation of a test scenario.

 In the test case, the input, output, and the state at which the input would be applied is

designed such that the scenario can be executed.

 An important automatic test case design strategy is to first design test scenarios through

an analysis of some program abstraction (model) and then implement the test scenarios as

test cases.

A test script is an encoding of a test case as a short program. Test scripts are developed for

automated execution of the test cases.

 A test case is said to be a positive test case if it is designed to test whether the software

correctly performs a required functionality.

 A test case is said to be negative test case, if it is designed to test whether the software

carries out something, that is not required of the system.

 As one example each of a positive test case and a negative test case, consider a program

to manage user login.

 A positive test case can be designed to check if a login system validates a user with the

correct user name and password.

 A negative test case in this case can be a test case that checks whether the login

functionality validates and admits a user with wrong or bogus login user name or

password.

A test suite is the set of all test that have been designed by a tester to test a given program.

Testability of a requirement denotes the extent to which it is possible to determine whether an

implementation of the requirement conforms to it in both functionality and performance.

Software Engineering Page 17 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 In other words, the testability of a requirement is the degree to which an implementation

of it can be adequately tested to determine its conformance to the requirement.

A failure mode of a software denotes an observable way in which it can fail.

 In other words, all failures that have similar observable symptoms, constitute a failure

mode.

 As an example of the failure modes of a software, consider a railway ticket booking

software that has three failure modes—failing to book an available seat, incorrect seat

booking (e.g., booking an already booked seat), and system crash.

Equivalent faults denote two or more bugs that result in the system failing in the same failure

mode.

 As an example of equivalent faults, consider the following two faults in C language—

division by zero and illegal memory access errors.

 These two are equivalent faults, since each of these leads to a program crash.

Verification versus validation

 The objectives of both verification and validation techniques are very similar since both

these techniques are designed to help remove errors in a software.

 In spite of the apparent similarity between their objectives, the underlying principles of

these two bug detection techniques and their applicability are very different.

 Verification is the process of determining whether the output of one phase of software

development conforms to that of its previous phase; whereas validation is the process of

determining whether a fully developed software conforms to its requirements

specification. Thus, the objective of verification is to check if the work products

produced after a phase conform to that which was input to the phase.

 For example, a verification step can be to check if the design documents produced after

the design step conform to the requirements specification.

 On the other hand, validation is applied to the fully developed and integrated software to

check if it satisfies the customer’s requirements.

 The primary techniques used for verification include review, simulation, formal

verification, and testing.

 Review, simulation, and testing are usually considered as informal verification

techniques. Formal verification usually involves use of theorem proving techniques or

use of automated tools such as a model checker.

 On the other hand, validation techniques are primarily based on product testing.

 Note that we have categorized testing both under program verification and validation.

 The reason being that unit and integration testing can be considered as verification steps

where it is verified whether the code is a s per the module and module interface

specifications.

 On the other hand, system testing can be considered as a validation step where it is

determined whether the fully developed code is as per its requirements specification.

 Verification does not require execution of the software, whereas validation requires

execution of the software.

 Verification is carried out during the development process to check if the development

activities are proceeding alright, whereas validation is carried out to check if the right as

required by the customer has been developed.

Software Engineering Page 18 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 The primary objective of the verification steps are to determine whether the steps in

product development are being carried out alright, whereas validation is carried out

towards the end of the development process to determine whether the right product has

been developed.

 Verification techniques can be viewed as an attempt to achieve phase containment of

errors. Phase containment of errors has been acknowledged to be a cost-effective way to

eliminate program bugs, and is an important software engineering principle.

 The principle of detecting errors as close to their points of commitment as possible is

known as phase containment of errors.

 Phase containment of errors can reduce the effort required for correcting bugs.

 While verification is concerned with phase containment of errors, the aim of validation is

to check whether the deliverable software is error free.

 The activities involved in these two types of bug detection techniques together are called

the ―V and V‖ activities. Based on the above discussions, we can conclude that:

 Error detection techniques = Verification techniques + Validation techniques

8. Testing Activities
 Testing involves performing the following main activities:

Test suite design: The set of test cases using which a program is to be tested is designed

possibly using several test case design techniques.

Running test cases and checking the results to detect failures: Each test case is run and

the results are compared with the expected results.

 A mismatch between the actual result and expected results indicates a failure.

 The test cases for which the system fails are noted down for later debugging.

Locate error: In this activity, the failure symptoms are analysed to locate the errors.

 For each failure observed during the previous activity, the statements that are in error are

identified.

Error correction: After the error is located during debugging, the code is appropriately

changed to correct the error.

 The testing activities have been shown schematically in Figure 10.2. As can be seen, the

test cases are first designed, the test cases are run to detect failures. The bugs causing the

failure are identified through debugging, and the identified error is corrected. Of all the

above mentioned testing activities, debugging often turns out to be the most time-

consuming activity.

Software Engineering Page 19 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Why Design Test Cases?

 When test cases are designed based on random input data, many of the test cases donot

contribute to the significance of the test suite,

 That is, they do not help detect any additional defects not already being detected by other

test cases in the suite.

 Testing a software using a large collection of randomly selected test cases does not

guarantee that all (or even most) of the errors in the system will be uncovered.

 Consider the following example code segment which determines the greater of two

integer values x and y.

 This code segment has a simple programming error:

if (x>y) max = x;

else max = x;

 For the given code segment, the test suite {(x=3,y=2);(x=2,y=3)} can detect the error,

whereas a larger test suite {(x=3,y=2);(x=4,y=3); (x=5,y=1)} does not detect the error.

 All the test cases in the larger test suite help detect the same error, while the other error

in the code remains undetected.

 So, it would be incorrect to say that a larger test suite would always detect more errors

than a smaller one, unless of course the larger test suite has also been carefully designed.

 A minimal test suite is a carefully designed set of test cases such that each test case helps

detect different errors.

 This is in contrast to testing using some random input values.

There are essentially two main approaches to systematically design test cases:

 Black-box approach

 White-box (or glass-box) approach

In the black-box approach, test cases are designed using only the functional specification of

the software.

 That is, test cases are designed solely based on an analysis of the input/out behaviour

(that is, functional behaviour) and does not require any knowledge of the internal

structure of a program. For this reason, black-box testing is also known as functional

testing.

 On the other hand, designing white-box test cases requires a thorough knowledge of the

internal structure of a program, and therefore white-box testing is also called structural

testing.

 Black- box test cases are designed solely based on the input-output behaviour of a

program. In contrast, white-box test cases are based on an analysis of the code.

 These two approaches to test case design are complementary.

 That is, a program has to be tested using the test cases designed by both the approaches,

and one testing using one approach does not substitute testing using the other.

Testing in the Large versus Testing in the Small

 A software product is normally tested in three levels or stages:

– Unit testing

– Integration testing

– System testing

 During unit testing, the individual functions (or units) of a program are tested.

Software Engineering Page 20 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 Unit testing is referred to as testing in the small, whereas integration and system testing

are referred to as testing in the large.

 After testing all the units individually, the units are slowly integrated and tested after

each step of integration (integration testing).

 Finally, the fully integrated system is tested (system testing). Integration and system

testing are known as testing in the large.

 ―Why test each module (unit) in isolation first, then integrate these modules and test, and

again test the integrated set of modules—why not just test the integrated set of modules

once thoroughly?‖

 There are two main reasons to it. First while testing a module, other modules with which

this module needs to interface may not be ready.

 Moreover, it is always a good idea to first test the module in isolation before integration

because it makes debugging easier.

 If a failure is detected when an integrated set of modules is being tested, it would be

difficult to determine which module exactly has the error.

9. UNIT TESTING

 Unit testing is undertaken after a module has been coded and reviewed.

 This activity is typically undertaken by the coder of the module himself in the coding

phase.

 Before carrying out unit testing, the unit test cases have to be designed and the test

environment for the unit under test has to be developed.

Driver and stub modules

 In order to test a single module, we need a complete environment to provide all relevant

code that is necessary for execution of the module. That is, besides the module under test,

the following are needed to test the module:

 The procedures belonging to other modules that the module under test calls.

 Non-local data structures that the module accesses.

 A procedure to call the functions of the module under test with appropriate parameters.

 Modules required to provide the necessary environment (which either call or are called

by the module under test) are usually not available until they too have been unit tested.

 Stubs and drivers are designed to provide the complete environment for a module so that

testing can be carried out.

Stub: The role of stub and driver modules is pictorially shown in Figure 10.3.

Software Engineering Page 21 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 A stub procedure is a dummy procedure that has the same I/O parameters as the function

called by the unit under test but has a highly simplified behaviour. For example, a stub

procedure may produce the expected behaviour using a simple table look up mechanism.

Driver: A driver module should contain the non-local data structures accessed by the module

under test. Additionally, it should also have the code to call the different functions of the unit

under test with appropriate parameter values for testing.

10. BLACK-BOX TESTING

 In black-box testing, test cases are designed from an examination of the input/output

values only and no knowledge of design or code is required. The following are the two

main approaches available to design black box test cases:

– Equivalence class partitioning

– Boundary value analysis

1. Equivalence Class Partitioning

 In the equivalence class partitioning approach, the domain of input values to the program

under test is partitioned into a set of equivalence classes.

 The partitioning is done such that for every input data belonging to the same equivalence

class, the program behaves similarly.

 The main idea behind defining equivalence classes of input data is that testing the code

with any one value belonging to an equivalence class is as good as testing the code with

any other value belonging to the same equivalence class.

 Equivalence classes for a unit under test can be designed by examining the input data and

output data.

 The following are two general guidelines for designing the equivalence classes:

 If the input data values to a system can be specified by a range of values, then one valid

and two invalid equivalence classes need to be defined. For example, if the equivalence

class is the set of integers in the range 1 to 10 (i.e., [1,10]), then the invalid equivalence

classes are [−∞,0], [11,+∞].

Example 10.6 For a software that computes the square root of an input integer that can assume

values in the range of 0 and 5000. Determine the equivalence classes and the black box test suite.

Answer: There are three equivalence classes—The set of negative integers, the set of integers in

the range of 0 and 5000, and the set of integers larger than 5000. Therefore, the test cases must

include representatives for each of the three equivalence classes. A possible test suite can be: {–

5,500,6000}.

Software Engineering Page 22 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

2. Boundary Value Analysis

 A type of programming error that is frequently committed by programmers is missing out

on the special consideration that should be given to the values at the boundaries of

different equivalence classes of inputs.

 The reason behind programmers committing such errors might purely be due to

psychological factors.

 Programmers often fail to properly address the special processing required by the input

values that lie at the boundary of the different equivalence classes.

 For example, programmers may improperly use < instead of <=, or conversely <= for <,

etc.

 Boundary value analysis-based test suite design involves designing test cases using the

values at the boundaries of different equivalence classes.

 To design boundary value test cases, it is required to examine the equivalence classes to

check if any of the equivalence classes contains a range of values.

 For those equivalence classes that are not a range of values (i.e., consist of a discrete

collection of values) no boundary value test cases can be defined.

 For an equivalence class that is a range of values, the boundary values need to be

included in the test suite.

 For example, if an equivalence class contains the integers in the range 1 to 10, then the

 boundary value test suite is {0,1,10,11}.

Example 10.9 For a function that computes the square root of the integer values in the range

of 0 and 5000, determine the boundary value test suite.

Answer: There are three equivalence classes—The set of negative integers, the set of

integers in the range of 0 and 5000, and the set of integers larger than 5000. The boundary

value-based test suite is: {0,-1,5000,5001}.

11. WHITE-BOX TESTING

 White-box testing is an important type of unit testing. A large number of white-box

testing strategies exist. Each testing strategy essentially designs test cases based on

analysis of some aspect of source code and is based on some heuristic.

Basic Concepts

 A white-box testing strategy can either be coverage-based or fault based.

Fault-based testing

 A fault-based testing strategy targets to detect certain types of faults. These faults that a

test strategy focuses on constitutes the fault model of the strategy. An example of a fault-

based strategy is mutation testing.

Coverage-based testing

 A coverage-based testing strategy attempts to execute (or cover) certain elements of a

program. Popular examples of coverage-based testing strategies are statement coverage,

branch coverage, multiple condition coverage, and path coverage-based testing.

Testing criterion for coverage-based testing

 A coverage-based testing strategy typically targets to execute (i.e., cover) certain program

elements for discovering failures.

Software Engineering Page 23 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 The set of specific program elements that a testing strategy targets to execute is called the

testing criterion of the strategy.

 For example, if a testing strategy requires all the statements of a program to be executed

at least once, then we say that the testing criterion of the strategy is statement coverage.

We say that a test suite is adequate with respect to a criterion, if it covers all elements of

the domain defined by that criterion.

Stronger versus weaker testing

 We have mentioned that a large number of white-box testing strategies have been

proposed. It therefore becomes necessary to compare the effectiveness of different testing

strategies in detecting faults.

 We can compare two testing strategies by determining whether one is stronger, weaker,

or complementary to the other.

 A white-box testing strategy is said to be stronger than another strategy, if the stronger

testing strategy covers all program elements covered by the weaker testing strategy, and

the stronger strategy additionally covers at least one program element that is not covered

by the weaker strategy.

 When none of two testing strategies fully covers the program elements exercised by the

other, then the two are called complementary testing strategies.

 The concepts of stronger, weaker, and complementary testing are schematically

illustrated in Figure 10.6.

 Observe in Figure 10.6(a) that testing strategy A is stronger than B since B covers only a

proper subset of elements covered by B. On the other hand, Figure 10.6(b) shows A and

B are complementary testing strategies since some elements of A are not covered by B

and vice versa.

 If a stronger testing has been performed, then a weaker testing need not be carried out.

 A test suite should, however, be enriched by using various complementary testing

strategies.

Software Engineering Page 1 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Unit V

Software Reliability and Quality Management:- Software Reliability: Hardware versus

Software Reliability. – Software Quality – Software Quality Management System – ISO 9000:

What is ISO 9000 Certification? – ISO 9000 for Software Industry – Shortcomings of ISO 9000

Certification. – SEI Capability Maturity Model: Level 1 to Level 5. Software Maintenance:-

Characteristics of Software Maintenance: Characteristics of Software Evolution – Software

Reverse Engineering. (12L)

1. SOFTWARE RELIABILITY

 The reliability of a software product essentially denotes its trustworthiness or dependability.

Alternatively, the reliability of a software product can also be defined as the probability of

the product working ―correctly‖ over a given period of time. the main reasons that make

software reliability more difficult to measure than hardware reliability:

 The reliability improvement due to fixing a single bug depends on where the bug is located in

the code.

 The perceived reliability of a software product is observer-dependent.

 The reliability of a product keeps changing as errors are detected and fixed.

2. HARDWARE VERSUS SOFTWARE RELIABILITY

 An important characteristic feature that sets hardware and software reliability issues apart is

the difference between their failure patterns.

 Hardware components fail due to very different reasons as compared to software

components. Hardware components fail mostly due to wear and tear, whereas software

components fail due to bugs.

3. SOFTWARE QUALITY

 A good quality product does exactly what the users want it to do, since for almost every product,

fitness of purpose is interpreted in terms of satisfaction of the requirements laid down in the SRS

document.

Although ―fitness of purpose‖ is a satisfactory definition of quality for many products such as a

car, a table fan, a grinding machine, etc.—―fitness of purpose‖ is not a wholly satisfactory

definition of quality for software products.

Software Engineering Page 2 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 To give an example of why this is so, consider a software product that is functionally correct.

That is, it correctly performs all the functions that have been specified in its SRS document.

Even though it may be functionally correct, we cannot consider it to be a quality product, if it

has an almost unusable user interface.

 Another example is that of a product which does everything that the users wanted but has an

almost incomprehensible and unmaintainable code.

 Therefore, the traditional concept of quality as ―fitness of purpose‖ for software products is

not wholly satisfactory.

 Unlike hardware products, software lasts a long time, in the sense that it keeps evolving to

accommodate changed circumstances.

 The modern view of a quality associates with a software product several quality factors (or

attributes) such as the following:

Portability : A software product is said to be portable, if it can be easily made to work in

different hardware and operating system environments, and easily interface with external

hardware devices and software products.

Usability: A software product has good usability, if different categories of users (i.e., both expert

and novice users) can easily invoke the functions of the product.

Reusability: A software product has good reusability, if different modules of the product can

easily be reused to develop new products.

Correctness: A software product is correct, if different requirements as specified in the SRS

document have been correctly implemented.

Maintainability: A software product is maintainable, if errors can be easily corrected as and

when they show up, new functions can be easily added to the product, and the functionalities of

the product can be easily modified, etc.

McCall’s quality factors

 McCall distinguishes two levels of quality attributes [McCall].

 The higher level attributes, known as quality factor s or external attributes can only be

measured indirectly.

 The second-level quality attributes are called quality criteria.

 Quality criteria can be measured directly, either objectively or subjectively.

 By combining the ratings of several criteria, we can either obtain a rating for the quality

factors, or the extent to which they are satisfied.

 For example, the reliability cannot be measured directly, but by measuring the number of

defects encountered over a period of time.

 Thus, reliability is a higher-level quality factor and number of defects is a low-level quality

factor.

ISO 9126

 ISO 9126 defines a set of hierarchical quality characteristics.

 Each sub characteristic in this is related to exactly one quality characteristic.

 This is in contrast to the McCall’s quality attributes that are heavily interrelated. Another

difference is that the ISO characteristic strictly refers to a software product, whereas

McCall’s attributes capture process quality issues as well.

 The users as well as the managers tend to be interested in the higher-level quality attributes

(quality factors).

Software Engineering Page 3 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

4. SOFTWARE QUALITY MANAGEMENT SYSTEM

A quality management system (often referred to as quality system) is the principal methodology

used by organisations to ensure that the products they develop have the desired quality. Some of

the important issues associated with a quality system:

Managerial structure and individual responsibilities

 A quality system is the responsibility of the organisation as a whole.

 Every organisation has a separate quality department to perform several quality system

activities. The quality system of an organisation should have the full support of the top

management. Without support for the quality system at a high level in a company, few

members of staff will take the quality system seriously.

Quality system activities

The quality system activities encompass the following: Auditing of projects to check if the

processes are being followed.

 Collect process and product metrics and analyze them to check if quality goals are being

met.

 Review of the quality system to make it more effective.

 Development of standards, procedures, and guidelines.

 Produce reports for the top management summarizing the effectiveness of the quality

system in the organisation.

 A good quality system must be well documented.

Without a properly documented quality system, the application of quality controls and

procedures become ad hoc, resulting in large variations in the quality of the products delivered.

Also, an undocumented quality system sends clear messages to the staff about the attitude of the

organisation towards quality assurance. International standards such as ISO 9000 provide

guidance on how to organize a quality system.

Evolution of Quality Systems

Quality systems have rapidly evolved over the last six decades. Prior to World War II, the usual

method to produce quality products was to inspect the finished products to eliminate defective

products. For example, a company manufacturing nuts and bolts would inspect its finished goods

and would reject those nuts and bolts that are outside certain specified tolerance range. Since

that time, quality systems of organisations have undergone four stages of evolution as shown in

Figure 11.3.

The initial product inspection method gave way to quality control (QC) principles. Quality

control (QC) focuses not only on detecting the defective products and eliminating them, but also

on determining the causes behind the defects, so that the product rejection rate can be reduced.

Software Engineering Page 4 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Thus, quality control aims at correcting the causes of errors and not just rejecting the defective

products.

The next breakthrough in quality systems, was the development of the quality assurance (QA)

principles.

The basic premise of modern quality assurance is that if an organization’s processes are good

and are followed rigorously, then the products are bound to be of good quality.

The modern quality assurance paradigm includes guidance for recognizing, defining, analyzing,

and improving the production process.

Total quality management (TQM) advocates that the process followed by an organisation must

continuously be improved through process measurements.

TQM goes a step further than quality assurance and aims at continuous process improvement.

TQM goes beyond documenting processes to optimizing them through redesign.

A term related to TQM is business process re-engineering BPR), which is aims at re-engineering

the way business is carried out in an organisation, whereas our focus in this text is re-engineering

of the software development process.

5. ISO 9000

International standards organisation (ISO) is a consortium of 63 countries established to

formulate and foster standardization. ISO published its 9000 series of standards in 1987.

6. WHAT IS ISO 9000 CERTIFICATION?

 ISO 9000 certification serves as a reference for contract between independent parties.

 In particular, a company awarding a development contract can form his opinion about the

possible vendor performance based on whether the vendor has obtained ISO 9000

certification or not

 In this context, the ISO 9000 standard specifies the guidelines for maintaining a quality

system. The ISO standard addresses both operational aspects (that is, the process) and

organizational aspects such as responsibilities, reporting, etc.

 In a nutshell, ISO 9000 specifies a set of recommendations for repeatable and high quality

product development.

 It is important to realize that ISO 9000 standard is a set of guidelines for the production

process and is not directly concerned about the product it self.

 ISO 9000 is a series of three standards—ISO 9001, ISO 9002, and ISO

The ISO 9000 series of standards are based on the premise that if a proper process is followed for

production, then good quality products are bound to follow automatically.

The types of software companies to which the different ISO standards apply are as follows:

ISO 9001: This standard applies to the organisations engaged in design, development,

production, and servicing of goods. This is the standard that is applicable to most software

development organisations.

ISO 9002: This standard applies to those organisations which do not design products but are

only involved in production. Examples of this category of industries include steel and car

manufacturing industries who buy the product and plant designs from external sources and are

involved in only manufacturing those products. Therefore, ISO 9002 is not applicable to

software development organisations.

Software Engineering Page 5 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

ISO 9003: This standard applies to organisations involved only in installation and testing of

products.

7. ISO 9000 FOR SOFTWARE INDUSTRY

 ISO 9000 is a generic standard that is applicable to a large gamut of industries, starting from

a steel manufacturing industry to a service rendering company.

 Therefore, many of the clauses of the ISO 9000 documents are written using generic

terminologies and it is very difficult to interpret them in the context of software development

organisations.

 An important reason behind such a situation is the fact that software development is in many

respects radically different from the development of other types of products.

 Two major differences between software development and development of other kinds of

products are as follows:

 Software is intangible and therefore difficult to control. It means that software would not be

visible to the user until the development is complete and the software is up and running. It is

difficult to control and manage anything that you cannot see and feel.

 In contrast, in any other type of product manufacturing such as car manufacturing, you can

see a product being developed through various stages such as fitting engine, fitting doors, etc.

Therefore, it becomes easy to accurately determine how much work has been completed and

to estimate how much more time will it take.

 During software development, the only raw material consumed is data. In contrast, large

quantities of raw materials are consumed during the development of any other product.

 As an example, consider a steel making company. The company would consume large

amounts of raw material such as iron-ore, coal, lime, manganese, etc. Not surprisingly then,

many clauses of ISO 9000 standards are concerned with raw material control. These clauses

are obviously not relevant for software development organisations.

 Due to such radical differences between software and other types of product development, it

was difficult to interpret various clauses of the original ISO standard in the context of

software industry.

 Therefore, ISO released a separate document called ISO 9000 part-3 in 1991 to help interpret

the ISO standard for software industry.

 At present, official guidance is inadequate regarding the interpretation of various clauses of

ISO 9000 standard in the context of software industry and one has to keep on cross

referencing the ISO 9000-3 document.

8. SHORTCOMINGS OF ISO 9000 CERTIFICATION

Even though ISO 9000 is widely being used for setting up an effective quality system in an

organisation, it suffers from several shortcomings.

Some of these shortcomings of the ISO 9000 certification process are the following:

 ISO 9000 requires a software production process to be adhered to, but does not guarantee the

process to be of high quality. It also does not give any guideline for defining an appropriate

process.

 ISO 9000 certification process is not fool-proof and no international accredition agency

exists. Therefore it is likely that variations in the norms of awarding certificates can exist

among the different accredition agencies and also among the registrars.

Software Engineering Page 6 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

 Organisations getting ISO 9000 certification often tend to downplay domain expertise and

the ingenuity of the developers. These organisations start to believe that since a good process

is in place, the development results are truly person-independent.

 That is, any developer is as effective as any other developer in performing any particular

software development activity. In manufacturing industry there is a clear link between

process quality and product quality.

 Once a process is calibrated, it can be run again and again producing quality goods. Many

areas of software development are so specialised that special expertise and experience in

these areas (domain expertise) is required.

 Also, unlike in case of general product manufacturing, ingenuity and effectiveness of

personal practices play an important art in determining the results produced by a developer.

 In other words, software development is a creative process and individual skills and

experience are important.

 ISO 9000 does not automatically lead to continuous process improvement. In other words, it

does not automatically lead to TQM.

9. SEI CAPABILITY MATURITY MODEL

 S E I capability maturity model (SEI CMM) was proposed by Software Engineering Institute

of the Carnegie Mellon University, USA. CMM is patterned after the pioneering work of

Philip Crosby who published his maturity grid of five evolutionary stages in adopting quality

practices in his book ―Quality is Free‖ [Crosby79].

 The Unites States Department of Defence (US DoD) is the largest buyer of software product.

It often faced difficulties in vendor performances, and had to many times live with low

quality products, late delivery, and cost escalations. In this context, SEI CMM was originally

developed to assist the U.S. Department of Defense (DoD) in software acquisition.

 Most of the major DoD contractors began CMM-based process improvement initiatives as

they vied for DoD contracts. It was observed that the SEI CMM model helped organisations

to improve the quality of the software they developed and therefore adoption of SEI CMM

model had significant business benefits.

 In simple words, CMM is a reference model for apprising the software process maturity into

different levels. This can be used to predict the most likely outcome to be expected from the

next project that the organisation undertakes. It must be remembered that SEI CMM can be

used in two ways— capability evaluation and software process assessment.

 Capability evaluation and software process assessment differ in motivation, objective, and

the final use of the result. Capability evaluation provides a way to assess the software process

capability of an organisation. Capability evaluation is administered by the contract awarding

authority, and therefore the results would indicate the likely contractor performance if the

contractor is awarded a work.

 On the other hand, software process assessment is used by an organisation with the

objective to improve its own process capability. Thus, the latter type of assessment is for

purely internal use by a company.

 The different levels of SEI CMM have been designed so that it is easy for an organisation to

slowly build its quality system starting from scratch. SEI CMM classifies software

development industries into the following five maturity levels:

Level 1: Initial

Software Engineering Page 7 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

A software development organisation at this level is characterized by adhoc activities.

Very few or no processes are defined and followed. Since software production processes are not

defined, different engineers follow their own process and as a result development efforts become

chaotic. Therefore, it is also called chaotic level.

The success of projects depend on individual efforts and heroics. When a developer

leaves the organisation, the successor would have great difficulty in understanding the process

that was followed and the work completed. Also, no formal project management practices are

followed. As a result, time pressure builds up towards the end of the delivery time, as a result

short-cuts are tried out leading to low quality products.

Level 2: Repeatable

 At this level, the basic project management practices such as tracking cost and schedule

are established. Configuration management tools are used on items identified for configuration

control. Size and cost estimation techniques such as function point analysis, COCOMO,

etc.,are used.

 The necessary process discipline is in place to repeat earlier success on projects with

similar applications. Though there is a rough understanding among the developers about the

process being followed, the process is not documented.

 Configuration management practices are used for all project deliverables. Please

remember that opportunity to repeat a process exists only when a company produces a family

of products. Since the products are very similar, the success story on development of one

product can repeated for another.

 In a non repeatable software development organisation, a software product development

project becomes successful primarily due to the initiative, effort, brilliance, or enthusiasm

displayed by certain individuals.

 On the other hand, in a non-repeatable software development organisation, the chances of

successful completion of a software project is to a great extent depends on who the team

members are. For this reason, the successful development of one product by such an

organisation doesnot automatically imply that the next product development will be successful.

Level 3: Defined

At this level, the processes for both management and development activities are defined and

documented. There is a common organisation-wide understanding of activities, roles, and

responsibilities. The processes though defined, the process and product qualities are not

measured. At this level, the organisation builds up the capabilities of its employees through

periodic training programs. Also, review techniques are emphasized and documented to achieve

phase containment of errors. ISO 9000 aims at achieving this level.

Level 4: Managed

At this level, the focus is on software metrics. Both process and product metrics are collected.

Quantitative quality goals are set for the products and at the time of completion of development

it was checked whether the quantitative quality goals for the product are met. Various tools like

Pareto charts, fishbone diagrams, etc. are used to measure the product and process quality. The

process metrics are used to check if a project performed satisfactorily. Thus, the results of

process measurements are used to evaluate project performance rather than improve the process.

Level 5: Optimizing

At this stage, process and product metrics are collected. Process and product measurement data

are analyzed for continuous process improvement. For example, if from an analysis of the

process measurement results, it is found that the code reviews are not very effective and a large

Software Engineering Page 8 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

number of errors are detected only during the unit testing, then the process would be fine tuned

to make the review more effective. Also, the lessons learned from specific projects are

incorporated into the process. Continuous process improvement is achieved both by carefully

analyzing the quantitative feedback from the process measurements and also from application of

innovative ideas and technologies. At CMM level 5, an organisation would identify the best

software engineering practices and innovations (which may be tools, methods, or processes) and

would transfer these organisation wide. Level 5 organisations usually have a department whose

sole responsibility is to assimilate latest tools and technologies and propagate them organisation-

wide. The focus of each level and the corresponding key process areas are shown in the
Table 11.1:

SEI CMM provides a list of key areas on which to focus to take an organisation from one

level of maturity to the next. Thus, it provides a way for gradual quality improvement over

several stages. Each stage has been carefully designed such that one stage enhances the

capability already built up.

 For example, trying to implement a defined process (level 3) before a repeatable process

(level 2) would be counterproductive as it becomes difficult to follow the defined process due to

schedule and budget pressures.

Substantial evidence has now been accumulated which indicate that adopting SEI CMM

has several business benefits. However, the organisations trying out the CMM frequently face a

problem that stems from the characteristic of the CMM itself.

10. CHARACTERISTICS OF SOFTWARE MAINTENANCE

First classify the different maintenance efforts into a few classes. Software maintenance

is becoming an important activity of a large number of organisations. This is no surprise, given

the rate of hardware obsolescence, the immortality of a software product per se, and the demand

of the user community to see the existing software products run on newer platforms, run in

newer environments, and/or with enhanced features. When the hardware platform changes, and a

software product performs some low-level functions, maintenance is necessary. Also, whenever

the support environment of a software product changes, the software product requires rework to

cope up with the newer interface. For instance, a software product may need to be maintained

when the operating system changes. Thus, every software product continues to evolve after its

development through maintenance efforts.

Software Engineering Page 9 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

Types of Software Maintenance

There are three types of software maintenance, which are described as follows:

Corrective: Corrective maintenance of a software product is necessary either to rectify the bugs

observed while the system is in use.

Adaptive: A software product might need maintenance when the customers need the product to

run on new platforms, on new operating systems, or when they need the product to interface with

new hardware or software.

Perfective: A software product needs maintenance to support the new features that users want it

to support, to change different functionalities of the system according to customer demands, or to

enhance the performance of the system.

11. CHARACTERISTICS OF SOFTWARE EVOLUTION

Lehman and Belady have studied the characteristics of evolution of s e v e r a l software products

[1980]. They have expressed their observations in the form of laws. Their important laws are

presented in the following subsection. But a word of caution here is that these are generalizations

and may not be applicable to specific cases and also most of these observations concern large

software projects and may not be appropriate for the maintenance and evolution of very small

products.

Lehman’s first law: A software product must change continually or become progressively less

useful. Every software product continues to evolve after its development through maintenance

efforts. Larger products stay in operation for longer times because of higher replacement costs

and therefore tend to incur higher maintenance efforts. This law clearly shows that every product

irrespective of how well designed must undergo maintenance. In fact, when a product does not

need any more maintenance, it is a sign that the product is about to be retired/discarded. This is

in contrast to the common intuition that only badly designed products need maintenance. In fact,

good products are maintained and bad products are thrown away.

Lehman’s second law: The structure of a program tends to degrade as more and more

maintenance is carried out on it. The reason for the degraded structure is that when you add a

function during maintenance, you build on top of an existing program, often in a way that the

existing program was not intended to support. If you do not redesign the system, the additions

will be more complex that they should be. Due to quick-fix solutions, in addition to degradation

of structure, the documentations become inconsistent and become less helpful as more and more

maintenance is carried out.

Lehman’s third law: Over a program’s lifetime, its rate of development is approximately

constant. The rate of development can be quantified in terms of the lines of code written or

modified. Therefore this law states that the rate at which code is written or modified is

approximately the same during development and maintenance.

12. SOFTWARE REVERSE ENGINEERING

 Software reverse engineering is the process of recovering the design and the requirements

specification of a product from an analysis of its code.

 The purpose of reverse engineering is to facilitate maintenance work by improving the

understandability of a system and to produce the necessary documents for a legacy system.

Reverse engineering is becoming important, since legacy software products lack proper

documentation, and are highly unstructured. Even well-designed products become legacy

software as their structure degrades through a series of maintenance efforts.

Software Engineering Page 10 Prepared By V.B.T.Shoba, Asst. Prof. GASC, Ngl.

The first stage of reverse engineering usually focuses on carrying out cosmetic changes to the

code to improve its readability, structure, and understandability, without changing any of its

functionalities. A way to carry out these cosmetic changes is shown schematically in Figure 13.1.

A program can be reformatted using any of the several available pretty printer programs which

layout the program neatly. Many legacy software products are difficult to comprehend with

complex control structure and unthoughtful variable names. Assigning meaningful variable

names is important because we had seen in that meaningful variable names is the most helpful

code documentation. All variables, data structures, and functions should be assigned meaningful

names wherever possible. Complex nested conditionals in the program can be replaced by

simpler conditional statements or whenever appropriate by case statements.

After the cosmetic changes have been carried out on a legacy software, the process of extracting

the code, design, and the requirements specification can begin. These activities are schematically

shown in Figure 13.2. In order to extract the design, a full understanding of the code is needed.

Some automatic tools can be used to derive the data flow and control flow diagram from the

code. The structure chart (module invocation sequence and data interchange among modules)

should also be extracted. The SRS document can be written once the full code has been

thoroughly understood and the design extracted.

