GOVERNMENT ARTS AND SCIENCE COLLEGE - NAGERCOIL (AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI)

```
                    DEPARTMENT OF MATHEMATICS
CLASS : II B.SC (MATHEMATICS)

\section*{SEMESTER - III}

\section*{CORE PAPER -V}

REAL ANALYSIS - I (90 Hours) (SMMA31)
Objectives:
```

L T P C
2404

```
-To lay a god foundation of classical analysis
-To study the behaviour of sequences and series

\section*{Unit I Real number system :}

The field of axioms, the order axioms, the rational numbers, the irrational numbers, upper bounds, maximum element, least upper bound (supremum). The completeness axiom, absolute values, the triangle inequality. Cauchy - schwartz's inequality.

11 L
Unit II Sequences : Bounded sequences - monotonic sequences - convergent sequences divergent and oscillating sequences - The algebra of limits. \(\quad \mathbf{1 7 L}\)

Unit III Behaviour of monotonic sequences - Cauchy's first limit theorem - Cauchy's second limit theorem - Cesaro's theorem - subsequences - Cauchy sequence Cauchy's general principle of convergence.

19L

Unit IV Series : Infinite series \(-\mathrm{n}^{\text {th }}\) term test - Comparison test - Kummer's test D'Alemberls ratio test - Raabe's test - Gauss test - Root test 23L

Unit V Alternating series - Leibnitz's test - Tests for convergence of series of arbitrary terms - Multiplication of series- Abel's Throrem-Mertens theorem-Power SeriesRadius of convergence

\section*{Text Books:}
- Arumugam .S and Thengapandi Issac - "sequences and series", New Gamma publishing House, Palayamkottai - 627002.
- Tom M. Apostol - Mathematical Analysis, II Edition, Narosa Publishing House, New Delhi (unit I)

Book for Reference :
- Goldberg . R - Methods of Real Analysis, Oxford and IBH Publishing Co., New Delhi.
\begin{tabular}{|c|l|c|}
\hline UNIT & \multicolumn{1}{|c|}{ CONTENT } & PAGE \\
\hline I & REAL NUMBER SYSTEM & 02 \\
\hline II & SEQUENCES & 05 \\
\hline III & BEHAVIOUR OF MONOTONIC SEQUENCES & 19 \\
\hline IV & SERIES & 28 \\
\hline V & ALTERNATIVE SERIES & 39 \\
\hline
\end{tabular}

\section*{UNIT I}

REAL NUMBER SYSTEM

\section*{Field Axioms}

Axiom 1: \(x+y=y+x, x y=y x(C o m m u t a t i v e ~ l a w) ~\)
Axiom 2: \(\mathrm{x}+(\mathrm{y}+\mathrm{z})=(\mathrm{x}+\mathrm{y})+\mathrm{z}, \mathrm{x}(\mathrm{yz})=(\mathrm{xy}) \mathrm{z}\) (Associative law)
Axiom 3: \(\mathrm{x}(\mathrm{y}+\mathrm{z})=\mathrm{xy}+\mathrm{xz}\) (Distributive law)
Axiom 4: Given any two real number x and y there exists a real number z such that
\[
\begin{aligned}
x+z & =y \ldots \ldots \\
z & =y-x \\
x+(y-x) & =y \\
(x-x)+y & =y \\
x-x & =0
\end{aligned}
\]

Therefore x is a negative of x .
Axiom 5: There exists atleast one real number \(x \neq 0\). If \(x\) and \(y\) are two real numbers with \(x\) \(\neq 0\). There exists a real number z such that \(\mathrm{xz}=\mathrm{y}\) implies \(\mathrm{z}=\frac{y}{x}\).
\[
\begin{gathered}
\mathrm{x}\left(\frac{y}{x}\right)=\mathrm{y} \\
\left(\frac{x}{x}\right) \mathrm{y}=\mathrm{y} \\
\Rightarrow\left(\frac{x}{x}\right) \mathrm{y}=1 . \mathrm{y} \\
\Rightarrow \mathrm{x} x^{-1}=1 \frac{y}{x} . \\
\Rightarrow x^{-1}=\frac{1}{x}, \mathrm{x} \neq 0 . " \\
\frac{1}{x} \text { is the inverse of } \mathrm{x} . \\
x^{-1} \text { is the reciprocal of } \mathrm{x} .
\end{gathered}
\]

\section*{Order Axioms}

The existence of a relation < which establishes an ordering among the real numbers and which satisfy the following axioms.

Axiom 6: Exactly one of the relations \(x=y, x<y, x\rangle y\) holds.
Axiom 7: If \(\mathrm{x}<\mathrm{y}\),then for all z ,we have \(\mathrm{x}+\mathrm{z}<\mathrm{y}+\mathrm{z}\).
Axiom 8: If \(\mathrm{x}>0\) and \(\mathrm{y}>0\) then \(\mathrm{xy}>0\)
Axiom 9: If \(x>y\) and \(y>z\) then \(x>z\)

\section*{Rational Numbers}
\(\mathrm{Q}=\left\{\frac{a}{b} / \mathrm{a}\right.\) and b are integers \(\left.\mathrm{b} \neq 0\right\}\)

\section*{Example}
1. If a and b are rational numbers, then \(\frac{a+b}{2}\) is also a rational number.
2. Between any two rational numbers ,there are infinitely many rational numbers.
3. The field axiom and order axioms are satisfied by Q .

\section*{Irrational Numbers}

Real numbers which are not rational are called irrational numers

Theorem 1.1 : Given real numbers a and b such that \(\mathrm{a} \leq \mathrm{b}+\in\) for all \(\in>0\). Then \(\mathrm{a} \leq \mathrm{b}\).
Proof: We have to prove this theorem by contradiction method. Suppose \(\mathrm{a}>\mathrm{b}\).
Given \(\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a} \leq \mathrm{b}+\in\), for all \(\in>0\). Take \(\in=\frac{a-b}{2}\).
Then \(\mathrm{b}+\epsilon=\frac{a-b}{2}+\mathrm{b}\).
\[
\begin{aligned}
& \mathrm{b}+\epsilon=\frac{a-b+2 b}{2} \\
& \mathrm{~b}+\epsilon<\mathrm{a} .
\end{aligned}
\]

But given \(b+\in \geq a\), which is a contradiction.
Therefore our assumption is wrong.
Thus \(\mathrm{a} \leq \mathrm{b}\).

\section*{Definition :}

A subset \(A\) of \(R\) is said to be bounded above if there exists an element \(\alpha \in R\) such that \(\boldsymbol{a} \leq \boldsymbol{\alpha}\) for all \(\boldsymbol{a} \boldsymbol{\epsilon A}\).
\(\alpha\) is called an upper bound of \(A\).

\section*{Definition :}

A subset \(A\) of \(R\) is said to be bounded below if there exists an element \(\beta \in R\) such that \(\alpha \geq \beta\) for all \(a \in A\).
\(\beta\) is called a lower bound of \(A\).
Definition :
A is said to be bounded if it is both bounded above and bounded below.

\section*{Least Upper Bound and Greatest Lower Bound:}

\section*{Definition :}

Let \(A\) be a subset of \(R\) and \(\boldsymbol{u \epsilon \boldsymbol { R }}\). u is called the least upper bound or supremum of \(A\) if i) \(u\) is an upper bound of \(A\).
ii) \(v<u\) then \(v\) is not an upper bound of A .

\section*{Definition :}

Let \(A\) be a subset of \(R\) and \(1 \varepsilon R\). 1 is called the greatest lower bound or infimum
of \(A\) if i) \(l\) is a lower bound of \(A\).
if \(\boldsymbol{m}<l\) then \(m\) is not a lower bound of \(A\).

\section*{Examples:}
1. Let \(A=\{1,3,5,6\}\). Then glb of \(A=1\) and lub of \(A=6\)
2. Let \(A=(0,1)\). Then glb of \(A=0\) and lub of \(A=1\). In this case both glb and lub do not belong to A .

\section*{Bounded Functions:}

\section*{Definition:}

Let \(\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{R}\) be any function. Then the range of \(f\) is a subset of R . f is said to be bounded function if its range is a bounded subset of \(R\).

\section*{Remark :}
\(f\) is a bounded function iff there exists a real number \(m\) such that \(|f(x)| \leq m\) for all \(x \in R\).
1. \(f:[0,1] \rightarrow R\) given by \(f(x)=x+2\) is a bounded function where as \(f: R \rightarrow R\) given by \(\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}+2\) is not a bounded function.
2. \(f: R \rightarrow R\) defined by \(f(x)=\sin x\) is a bounded function. Since \(|\sin \boldsymbol{x}| \leq 1\).

\section*{Absolute Value:}

Definition: For any real number \(x\) we defined the modulus or the absolute value of \(x\) denoted by \(|x|\) as follows \(|x|=\left\{\begin{array}{ll}x & \text { if } x>0 \\ -x & \text { if } x \leq 0\end{array}\right.\).

Clearly \(\quad|x| \geq 0\) for all \(x \in R\).

\section*{Triangle inequality}

For arbitrary real \(x\) and \(y\) we have \(|x+y| \leq|x|+|y|\)
Proof:
We know that \(-|x| \leq x \leq|x| \longrightarrow\) (1)
and \(\quad-|y| \leq y \leq|y| \longrightarrow(2)\)
\((1)+(2) \Rightarrow \quad-[|x|+|y|] \leq x+y \leq|x|+|y|\).
By theorem, "If \(a \geq 0\), then we have the inequality \(|x| \leq a\) iff \(-a \leq x \leq a\) ".

Hence, \(\quad|x+y| \leq|x|+|y|\).

\section*{Cauchy-schwarz inequality}

Theorem:1.1 If \(a_{1}, \ldots \ldots a_{n}\) and \(b_{1}, \ldots b_{n}\) are real numbers, then
\[
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2} \tag{1}
\end{equation*}
\]

Or, equivalently
\(\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}\)

We will use mathematical induction as a method for the proof. First we observe that \(\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \geq 0\)

By expanding the square we get
\(\left(a_{1} b_{2}\right)^{2}+\left(a_{2} b_{1}\right)^{2}-2 a_{1} b_{2} a_{2} b_{1} \geq 0\)
After rearranging it further and completing the square on the left-hand side, we get
\(a_{1}{ }^{2} b_{1}^{2}+2 a_{1} b_{1} a_{2} b_{2}+a_{2}{ }^{2} b_{2}{ }^{2} \leq a_{1}^{2} b_{1}^{2}+a_{1}{ }^{2} b_{2}{ }^{2}+a_{2}{ }^{2} b_{1}^{2}+a_{2}{ }^{2} b_{2}{ }^{2}\)
By taking the square roots of both sides, we reach
\(\left|a_{1} b_{16}+a_{2} b_{2}\right| \leq \sqrt{a_{1}^{2}+a_{2}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}}\)
which proves the inequality (2) for \(\mathrm{n}=2\).
Assume that inequality (2) is true for any \(n\) terms. For \(n+1\), we have that \(\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}}=\sqrt{\sum_{i=1}^{n} a_{i}^{2}+a_{n+1}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}+b_{n+1}^{2}}\)
By comparing the right-hand side of equation (4) with the right-hand side of inequality (3)
we know that
\(\sqrt{\sum_{i=1}^{n} a_{i}^{2}+a_{n+1}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}+b_{n+1}^{2}} \geq \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}+\left|a_{n+1} b_{n+1}\right| \mid}\)
Since we assume that inequality (2) is true for \(n\) terms, we have that
\(\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}+\left|a_{n+1} b_{n+1}\right| \geq \sum_{i=1}^{n} a_{i} b_{i}+\left|a_{n+1} b_{n+1}\right|}\)
\(\geq \sum_{i=1}^{n} a_{i} b_{i}\)
which proves the C-S inequality.

\section*{Theorem:1.2}

Given real numbers a and b such that \(a \leq b+\varepsilon\) for every \(\varepsilon>0\). Then \(a \leq b\)
Proof:
\[
\begin{align*}
& \text { Given } a \leq b+\varepsilon \text { for every } \varepsilon>0 \text {.........(1) } \\
& \text { Suppose } b<a \\
& \text { Choose } \varepsilon=a-b / 2 \\
& \text { Now, } b+\varepsilon=b+a-b / 2 \\
& \begin{array}{r}
=(2 b+a-b) / 2 \\
\quad=(a+b) / 2<(a+a) / 2 \\
\quad=2 a / 2=a
\end{array}
\end{align*}
\]

Therefore, \(b+\varepsilon<a\), which is a contradiction to (1)
Hence \(a \leq b\)

\section*{Theorem: 1.3}

If n is positive integer which is not a perfect square, then \(\sqrt{n}\) is irrational.
Proof:
Let n contains no square factor \(>1\)
Suppose \(\sqrt{n}\) is rational
Then \(\sqrt{n}=a / b\), where \(a\) and \(b\) are integers having no factor in common.
implies \(n=\frac{a^{2}}{b^{2}}\)
\(\Rightarrow b^{2} n=a^{2}\)
But \(b^{2} n\) is a multiple of \(n\), so \(a^{2}\) is also a multiple of \(n\)
However if \(a^{2}\) is a multiple of \(n\), a itself must be a multiple of \(n\). (since \(n\) has no square
factor \(>1\) )
\(\Rightarrow a=c n\), where c is an integer
sub in (1)
\(b^{2} n=c^{2} n^{2}\)
\(b^{2}=n c^{2}\)
Therefore \(b\) is a multiple of \(n\), which is a contradiction to \(a\) and \(b\) have no factor in common.
Hence \(\sqrt{n}\) is irrational
If n has a square factor, then \(\mathrm{n}=\mathrm{m}^{2} \mathrm{k}\), where \(\mathrm{k}>1\) and k has no square factor \(>1\).
Then \(\sqrt{n}=m \sqrt{k}\)
If \(\sqrt{n}\) is rational, then the numbers \(\sqrt{k}\) is also
rational. Which is a contradiction to \(k\) is no square
factor \(>1\). Hence \(n\) has no square factor.

\section*{Problem:}

Prove that \(\sqrt{2}\) is irrational.

Theorem : If \(e^{x}=1+\mathrm{x}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots+\frac{x^{n}}{n!}+\ldots\), then e is irrational.
Proof: Let \(\mathrm{x}=1\). Then \(e^{1}=1+1+\frac{1^{2}}{2!}+\frac{1^{3}}{3!}+\frac{1^{4}}{4!}+\ldots\)
and let \(\mathrm{x}=-1\). Then \(e^{-1}=1-1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots\).
\(S_{n}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\) then \(S_{2 k-1}=\sum_{k=0}^{n} \frac{(-1)^{2 k-1}}{(2 k-1)!}\)
\(e^{-1}-S_{2 k-1}=\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots\).
\(0<e^{-1}-S_{2 k-1}<\frac{1}{(2 k)!}\)
\(0<e^{-1}-S_{2 k-1}<\frac{1}{(2 k-1)!2 k}\)
\(0<(2 k-1)!\left(e^{-1}-S_{2 k-1}\right)=\frac{1}{2 k} \leq 1 / 2\) for any integer \(\mathrm{k} \geq 1\).
Since \((2 k-1)\) ! Is an integer, \((2 k-1)!\left(e^{-1}-S_{2 k-1}\right)\) is always an integer.
\[
0<(2 k-1)!\left(e^{-1}-S_{2 k-1}\right)=\frac{1}{2 k} \leq 1 / 2
\]

If \(e^{-1}\) is rational, \((2 k-1)!e^{-1}\) is an integer, which would lie between 0 and \(1 / 2\).
Which is a contradiction.
Hence, e cannot be rational.

\section*{UNIT - II}

\section*{SEQUENCES}

Definition. Let \(\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}\) be a function and let \(\mathrm{f}(\mathrm{n})=\mathrm{a}_{\mathrm{n}}\). Then \(a_{1}, a_{2}, \ldots, a_{n}\) is called the sequences in \(\mathbb{R}\) determined by the function \(f\) and is denoted by \(\left(a_{n}\right)\).
\(a_{n}\) is called the \(n^{\text {th }}\) term of the sequence. The range of the function \(f\) which is a subset of \(\mathbb{R}\), is called the range of the sequence

\section*{Examples.}
a) The function \(\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}\) given by \(f(n)=n\) determines the sequence \(1,2,3, \ldots, \ldots, n\),
b) The function \(\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}\) given by \(f(n)=n^{2}\) determines the sequence \(1,4,9, \ldots, \ldots, n^{2}, \ldots\)

\section*{Definition:}

A sequence ( \(a_{n}\) ) is said to be bounded above if there exists a real number \(k\) such that \(a_{n} \leq \mathrm{k}\) for all \(\mathrm{n} \in \mathbb{N}\). k is called an upper bound of the sequence \(\left(a_{n}\right)\).
A sequence ( \(a_{n}\) ) is said to be bounded below if there exists a real number k such that \(a_{n} \geq \mathrm{k}\) for all n . k is called a lower bound of the sequence \(\left(a_{n}\right)\).
A sequence ( \(a_{n}\) ) is said to be a bounded sequence if it is both bounded above and below.

\section*{Note.}

A sequence \(\left(a_{n}\right)\) is bounded if there exists a real number \(k>0\) such that \(\left|a_{n}\right|<k\) for alln

\section*{Examples.}
1. Consider the sequence \(1,1 / 2,1 / 3, \ldots .1 / n \ldots\)... Here 1 is the \(l . u . b\) and 0 is the g.I.b. It is a bounded sequence.
2. The sequence \(1,2,3, \ldots . . . . ., n, \ldots \ldots\). is bounded below but not bounded above. 1 is the \(g\). \(l . b\) of the sequence.
3. The sequence \(-1,-2,-3, \ldots-n, \ldots\) is bounded above but not bounded below.
-1 is the \(l . u . b\) of the sequence.
4. \(1,-1,1,-1, \ldots\). is a bounded sequence. 1 is the I. u. b -1 is the g. I. b of the sequence
5. Any constant sequence is a bounded sequence. Here \(1 . \mathrm{u} . \mathrm{b}=\mathrm{g} . \mathrm{l} . \mathrm{b}=\) the constant term of the sequence.

\section*{Monotonic sequence}

Definition: A sequence ( \(a_{n}\) ) is said to be monotonic increasing if \(a_{n} \leq a_{n+1}\) for all n . ( \(a_{n}\) ) is said to be monotonic decreasing if \(a_{n} \geq a_{n+1}\) for all \(n\). ( \(a_{n}\) ) is said to be strictly monotonic decreasing if \(a_{n}<a_{n+1}\) forall n . ( \(a_{n}\) ) is said to be monotonic if it is either monotonic increasing or monotonic decreasing.

\section*{Example.}
1. \(1,2,2,3,3,3,4,4,4,4, \ldots\). is a monotonic increasing sequence.
2. \(1,2,3,4 \ldots \ldots \ldots\). is a strictly monotonic increasing sequence
3. The sequence ( \(a_{n}\) ) given by \(1,-1,1,-1,1, \ldots\) is neither monotonic increasing nor monotonic decreasing. Hence \(\left(a_{n}\right)\) is not a monotonic sequence.
4. \(\left(\frac{2 n-7}{3 n+2}\right)\) is a monotonic increasing sequence.

Proof:
\[
\begin{aligned}
a_{n}-a_{n+1} & =\frac{2 n-7}{3 n+2}-\frac{2(n+1)-7}{3(n+1)+2} \\
& =\frac{-25}{(3 n+2)(3 n+5)}<0
\end{aligned}
\]

Therefore \(a_{n}<a_{n+1}\)
Hence the sequence is monotonic increasing.
5. Consider the sequence \(\left(\mathrm{a}_{\mathrm{n}}\right)\) where \(a_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots \cdot+\frac{1}{n!}\). Clearly \(\left(a_{n}\right)\) is a monotonic increasing sequence.
Note: A monotonic increasing sequence \(\left(a_{n}\right)\) is bounded below and \(\mathrm{q}_{1}\) is the g.l.b of the sequence.
A monotonic decreasing sequence \(\left(a_{n}\right)\) is bounded above and \(\mathrm{a}_{1}\) is \(l\). \(u\). b of the sequence.

\section*{Solved Problems:}

Show that if \(\left(a_{n}\right)\) is a monotonic sequence then \(\left(\frac{a_{1}+a_{2}+\cdots \ldots+a_{n}}{n}\right)\) is also a monotonic sequence.

Solution:
Let ( \(a_{n}\) ) be a monotonic increasing sequence.
Therefore \(a_{1} \leq a_{2} \leq a_{3} \leq \cdots \ldots \leq a_{n} \leq\)
Let \(b_{n}=\left(\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}\right)\)
Now, \(b_{n+1}-b_{n}=\frac{a_{1}+a_{2}+\ldots \ldots+a_{n+1}}{n+1}-\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}\)
\(\geq \frac{n a_{n+1}-\left(a_{1}+a_{2}+\cdots \ldots .+a_{n)}\right.}{n(n+1)}\)
\(=\frac{n a_{n+1}-\left(a_{n}+a_{n}+\cdots \ldots++a_{n)}\right.}{n(n+1)}\) by (1)
\(=\frac{n\left(a_{n+1}-a_{n)}\right.}{n(n+1)}\)
\(\geq 0\)
Therefore, \(b_{n+1} \geq b_{n}\).
Therefore ( \(b_{n}\) ) is monotonicincreasing.
The proof is similar if \(\left(a_{n}\right)\) is monotonic decreasing.

\section*{Convergent sequences}

Definition. A sequence ( \(a_{n}\) ) is said to converge to a number lif given \(\epsilon>0\) there exists a positive
integer \(m\) such that \(a_{n}-l<\epsilon\) for all \(n \geq m\). We say that is the limit of the sequence and we write
\(\lim _{n \rightarrow \infty} a_{n}=\operatorname{lor}\left(a_{n}\right) \rightarrow l\)
Note. \(1\left(a_{n}\right) \rightarrow l\) iff given \(\epsilon>0\) there exists a natural number \(m\) such that \(a_{n} \in(l-\epsilon, l+\epsilon\), for all \(\mathrm{n} \geq \mathrm{m}\) i.e, All but a finite number of terms of the sequence lie within the interval \((l-\epsilon, l+\epsilon)\).

\section*{Theorem. 2.1}

A sequence cannot converge to two different limits.
Proof. Let (an) be a convergent sequence.
If possible let \(l 1\) and \(l 2\) be two distinct limits of (an).
Let \(\epsilon>0\) be given.
Since (an) \(\rightarrow l 1\), there exists a natural number \(\mathrm{n}_{1}\)
Such that. \(\mid a_{n} . \ldots . l_{1} \| . \leqslant \frac{1}{2} \cdot \in\). .fox.all. \(n . \geq . n_{1}\)
Since \(\left(a_{n}\right) \rightarrow l 2\), there exists a natural number n 2

Let \(\mathrm{m}=\max \left\{\mathrm{n}_{1}, \mathrm{n}_{2}\right\}\)
Then \(\left|l_{1}-l_{2}\right|=\left|l_{1}-a_{m}+a_{m}-l_{2}\right|\)
\(\leq\left|a_{m}-l_{1}\right|+\left|a_{m}-l_{2}\right|\)
\(<\frac{1}{2} \in+\frac{1}{2} \in \quad\) by (1) and (2)
\(=E\)
\(\therefore l_{1}-l_{2}<\epsilon\) and this is true for every \(\epsilon>0\). Clearly this is possible only if \(l_{1}-l_{2}=0\).
Hence \(l_{1}=l_{2}\)

\section*{Examples}
1. \(\lim _{n \rightarrow \infty} \frac{1}{n}=0\)

Proof:
Let \(\varepsilon>0\) be given.
Then \(\left|\frac{1}{n}-o\right|=\frac{1}{n}<\epsilon\) if \(n>\frac{1}{E}\). Hence if we choose \(m\) to any natural number
such that \(\mathrm{m}>\frac{1}{e}\) then \(\left|\frac{1}{n}-o\right|<\epsilon\) for all \(n \geq m\).
\(\lim _{n \rightarrow \infty} \frac{1}{n}=0\)

Note. If \(\epsilon=1 / 100\), then \(m\) can be chosen to be any natural number greater than100.In this example the choice of \(m\) depends on the given \(\epsilon\) and \([1 / \epsilon]+1\) is the smallest value of \(m\) that satisfies the requirements of the definition.
2. The constant sequence \(1,1,1, \ldots \ldots\). converges to 1.

\section*{Proof.}

Let \(\epsilon>0\) be given
Let the given sequence be denoted by (an). Then \(a n=1\) for all \(n\).
\(\therefore\left|a_{n}-1\right|=|1-1|=0<\epsilon\) for all \(\mathrm{n} \in \mathrm{N}\).
\(\therefore\left|a_{n}-1\right|<\epsilon\) for all \(n \geq m\) where \(m\) can be chosen to be any natural number.
\(\therefore \operatorname{Lim} a_{n}=1\)
\(n \rightarrow \infty\)
Note. In this example, the choice of \(m\) does not depend on the given \(\epsilon\)
3. \(\lim _{n \rightarrow \infty} \frac{n+1}{n}=1\)

Proof. Let \(\epsilon>0\) be given.
Now, \(\left|\frac{n+1}{n}-1\right|=\left|1+\frac{1}{n}-1\right|=\left|\frac{1}{n}\right|\)
\(\therefore\) If we choose \(m\) to be any natural number greater than \(1 / \varepsilon\) we have
\(\left|\frac{n+1}{n}-1\right|<\in\) for all \(\mathrm{n} \geq \mathrm{m}\). Therefore, \(\lim _{n \rightarrow \infty} \frac{n+1}{n}=1\)
4. \(\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0\)

\section*{Proof.}

Let \(\epsilon>0\) begiven
Then \(\left|\frac{1}{2^{n}}-0\right|=\frac{1}{2^{n}}<\frac{1}{n} \quad\left(\right.\) since \(2^{n}>n\) for all \(n \varepsilon N\) )
\(\left|\frac{1}{2^{n}}-0\right|<\varepsilon\) for all \(n \geq m\) where \(m\) is any natural number greater than \(1 / \varepsilon\)
Therefore, \(\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0\)
5. The sequence \(\left((-1)^{n}\right)\) is not convergent

\section*{Proof.}

Suppose the sequence \(\left((-1)^{n}\right)\) converges to \(l\)
Then, given \(\epsilon>0\), there exists a natural number \(m\) such that
\(\left|(-1)^{n}-l\right|<\epsilon\) for all \(n>m\).
\(\therefore\left|(-1)^{\mathrm{m}}-(-1)^{\mathrm{m}+1}\right|=\left|(-1)^{\mathrm{m}}-l+l-(-1)^{\mathrm{m}+1}\right|\)
\(\leq\left|(-1)^{m}-l\right|+\left|(-1)^{m+1}-l\right|\)
\(<\varepsilon+\epsilon=2 \epsilon\)
\[
\begin{gathered}
\text { But }\left|(-1)^{m}-(-1)^{m+1}\right|=2 \\
\therefore 2<2 \epsilon
\end{gathered}
\]
i.e., \(1<\epsilon\) which is a contradiction since \(\epsilon>0\) is arbitrary.
\(\therefore\) The sequence \(\left((-1)^{n}\right)\) is not convergent.

\section*{Theorem:2.2}

Any convergent sequence is a bounded sequence.

\section*{Proof.}

Let \(\left(a_{n}\right)\) be a convergent sequence.
Let
\[
\lim _{n \rightarrow \infty} a_{n}=l
\]

Let \(\epsilon>0\) be given. Then there exists \(m \in N\) such that \(\left|a_{n}-l\right|<\epsilon\) for all \(n \geq m\)
\(\therefore\left|a_{n}\right|<|l|+\) efor all \(n \geq m\).
Now, let \(k=\max \left\{-\left|-a_{1}\right|-\_\left|-a_{2}\right|\right.\)

Then \(\left|\left(a_{n}\right)\right| \leq k\) for all \(n\).
\(\therefore\left(a_{n}\right)\) is a bounded sequence.
Note. The converse of the above theorem is not true. For example, the sequence \(\left((-1)^{n}\right)\) is a bounded sequence. However it is not a convergent sequence.

\section*{Divergent sequence}

Definition: A sequence \(\left(a_{n}\right)\) is said to diverge to \(\infty\) if given any real number \(k>0\), there exists \(\mathrm{m} \in \mathrm{N}\) such that \(a_{n}>k\) for all \(\mathrm{n} \geq \mathrm{m}\). In symbols we write (an) \(\rightarrow \infty\) or \(\lim _{n \rightarrow \infty} a_{n}=\infty\)

Note. \(\left(a_{n}\right) \rightarrow \infty\) if given any real number \(\mathrm{k}>0\) there exists \(\mathrm{m} \in \mathrm{N}\) such that \(a_{n} \epsilon(\mathrm{k}, \infty)\) for all n \(\geq \mathrm{m}\)

\section*{Examples}
1. (n) \(\rightarrow \infty\)

Proof: Let \(\mathrm{k}>0\) be any given real number.
Choose \(m\) to be any natural number such that \(m>k\)
Then \(\mathrm{n}>\mathrm{k}\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore(n) \rightarrow \infty\)
2. \(\left(n^{2}\right) \rightarrow \infty\)

Proof: Let \(\mathrm{k}>0\) be any given real number.
Choose \(m\) to be any natural number such that \(m>V k\)
Then \(\mathrm{n}^{2}>\mathrm{k}\) for all \(\mathrm{n}>\mathrm{m}\)
\(\therefore\left(\mathrm{n}^{2}\right) \rightarrow \infty\)
Definition. A sequence \(\left(a_{n}\right)\) is said to diverge to \(-\infty\) if given any real number \(\mathrm{k}<0\) there exists
\(\mathrm{m} \epsilon \mathrm{N}\) such that that \(a_{n}<\mathrm{k}\) for all \(\mathrm{n} \geq \mathrm{m}\). In symbols we write
\(\operatorname{Lim} \mathrm{a}_{\mathrm{n}}=-\infty\), or \(\left(a_{n}\right) \rightarrow-\infty\)
\(\mathrm{n} \rightarrow \infty\)
Note. \(\left(a_{n}\right) \rightarrow-\infty\) iff given any real number \(\mathrm{k}<0\), there exists \(\mathrm{m} \epsilon \mathrm{N}\) such that \(a_{n} \varepsilon(-\infty, k)\) for all \(n \geq m\)
A sequence \(\left(a_{n}\right)\) is said to be divergent if either \(\left(a_{n}\right) \rightarrow \infty\) or \(\left(a_{n}\right) \rightarrow-\infty\)
Theorem. 2.3
\(\left(a_{n}\right) \rightarrow-\infty\) iff \(\left(-a_{n}\right) \rightarrow-\infty\)
Proof.
Let \(\left(a_{n}\right) \rightarrow \infty\)
Let \(\mathrm{k}<0\) be any given real number. Since \(\left(a_{n}\right) \rightarrow \infty\) there exists \(\mathrm{m} \epsilon \mathrm{N}\) such that \(a_{n}>-k\) for all \(\mathrm{n} \geq \mathrm{m}\)
\(\therefore-a_{n}<k\) for all \(n \geq m\)
\(\therefore\left(-a_{n}\right) \Longrightarrow-\infty\).

Similarly we can prove that if \((-\mathrm{an}) \rightarrow-\infty\) then \((\mathrm{an}) \rightarrow \infty\).

\section*{Theorem. 2.4}

If \(\left(a_{n}\right) \rightarrow \infty\) and an \(\neq 0\) for all \(\mathrm{n} \in \mathrm{N}\) then \(\left(\frac{1}{a_{n}}\right) \rightarrow 0\).
Proof. Let \(\varepsilon>0\) be given.
Since \(\left(a_{n}\right) \rightarrow \infty\), there exists \(m \in \mathrm{~N}\) such that \(a_{n}>1 / \varepsilon\) for all \(n \geq m\)
\(\therefore \frac{1}{a_{n}}<\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\)
\(\left|\frac{1}{a_{n}}\right|<\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\)
Hence \(\left(\frac{1}{a_{n}}\right) \rightarrow 0\)
Note. The converse of the above theorem is not true. For example, consider the sequence (an) where
\(A_{n}=(-1)^{n} / n\). Clearly \(\left(a_{n}\right) \rightarrow 0\)
Now \(\quad\left(1 / a_{n}\right)=\left(n /(-1)^{n}\right)=-1,2,-3,4, \ldots . . . . .\). which neither converges nor diverges to
\(\infty\) or \(-\infty\)
Thus if a sequence (an) \(\rightarrow 0\), then the sequence \(\left(1 / a_{n}\right) \rightarrow \mathbf{0}\) need not converge or diverge.

\section*{Theorem:2.5}

If \(\left(a_{n}\right) \rightarrow 0\) and \(\left(a_{n}\right)>0\) for all \(\mathrm{n} \in \mathrm{N}\), then \(\left(\frac{1}{n-}\right) \rightarrow \infty\)
Proof.
Let \(\mathrm{k}>0\) be any given real number.
Since \((\mathrm{an}) \rightarrow 0\) there exists \(\mathrm{m} \in \mathrm{N}\) such that \(\left|a_{n}\right|<1 /\) kforall \(n \geq m\)
\(\therefore \mathrm{an}<1 / \mathrm{k}\) for all \(\mathrm{n} \geq \mathrm{m}(\) since \(\mathrm{an}>0)\)
Therefore \(1 / a_{n}>k\) for all \(n \geq m\)
Hence \(\left(1 / a_{n}\right) \rightarrow \infty\)

\section*{Theorem:2.6}

Any sequence ( \(a_{n}\) ) diverging to \(\infty\) is bounded below but not bounded above.
Proof.
Let \(\left(a_{n}\right) \rightarrow \infty\). Then for any given real number \(\mathrm{k}>0\) there exists \(\mathrm{m} \in \mathrm{N}\) such that an \(>\)
\(k\) for all \(n \geq m\).
\(\therefore \mathrm{k}\) is not an upper bound of the sequence (an)
\(\therefore\left(a_{n}\right)\) is not bounded above Now let \(l=\min \left\{a_{1}, a_{2}, \ldots . a m, k\right\}\).
From (1) we see that \(a n \geq l\) for all \(n\).
\(\therefore(\mathrm{an})\) is bounded below

\section*{Theorem:2.7}

Any sequence ( \(a_{n}\) ) diverging to \(-\infty\) is bounded above but not bounded below.
Proof is similar to that of the previous theorem
Note 1. The converse of the above theorem is not true. For example, the function
\(\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}\) defined by
\(\mathrm{f}(\mathrm{n})=\left\{\begin{array}{l}0 \text { if } n \text { is odd } \\ \frac{1}{-} n \text { if } n \text { is even }\end{array}\right.\)
Determines the sequence \(0,1,0,2,0,3\), \(\qquad\) which is bounded below and not bounded above. Also for any real number \(k>0\), we cannot find a natural number \(m\) such that \(a n>k\) for all \(\mathrm{n} \geq \mathrm{m}\).

Hence this sequence does not diverge to \(\infty\).
Similarly \(f: \mathbb{N} \rightarrow \mathbb{R}\) given by \(f(n)=\left\{\begin{array}{c}0 \text { if } n \text { is odd } \\ \frac{1}{2} n \text { if } n \text { is even }\end{array}\right.\)
Determines the sequence \(0,-1,0,-2,0, \ldots .\). which is bounded above and not bounded below. However this sequence does not diverge to \(-\infty\).

\section*{Oscillating sequence}

Definition: A sequence ( \(a_{n}\) ) which is neither convergent nor divergent to \(\infty\) or \(-\infty\) is said to be an
oscillating sequence. An oscillating sequence which is bounded is said to be finitely
oscillating. An oscillating sequence which is unbounded is said infinitely oscillating.

\section*{Examples.}
1. Consider the sequence \(\left((-1)^{n}\right)\). Since this sequence is bounded it cannot to \(\infty\) or \(-\infty\) (by theorems). Also this sequence is not convergent. Hence (( -1 )) is a finitely oscillating sequence.
2. The function \(f: \mathbb{N} \rightarrow \mathbb{R}\) defined by
\(f(n)=\left\{\begin{array}{c}0 \text { if } n \text { is odd } \\ \frac{1}{2}(1-n) \text { if } n \text { is even }\end{array} \quad\right.\) determines the sequence \(0,1,-1,2,-2,3, \ldots .\). The range of this sequence is \(\mathbf{Z}\). Hence it cannot converge or diverge to \(\pm \infty\). This sequence is infinitely oscillating.

\section*{The Algebra of limits}

In this section we prove a few simple theorems for sequences which are very useful in calculating limits of sequences.

Theorem: 2.8
If \(\left(a_{n}\right) \rightarrow \mathrm{a}\) and \(\left(b_{n}\right) \rightarrow \mathrm{b}\) then \(\left(a_{n}+b_{n}\right) \rightarrow \mathrm{a}+\mathrm{b}\).

\section*{Proof:}

Let \(\epsilon>0\) be given.
Now \(\left|a_{n}+b_{n}-a-b\right|=\left|a_{n}-a+b_{n}-b\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|\)
Since \(\left(a_{n}\right) \rightarrow a\), there exist a natural number \(n_{1}\) such that \(\mid a_{n}\)-a \(\mid<1 / 2 \varepsilon\) for all \(n \frac{\mathrm{~m}_{1}}{1}\)
Since \(\left(b_{n}\right) \rightarrow b\), there exist a natural number \(n_{2}\) such that \(\left|b_{n}-b\right|<1 / 2 \varepsilon\) for all \(n \geq \rrbracket_{2}\)
Let \(\mathrm{m}=\max \left\{n_{1}, n_{2}\right\}\)

Then \(\left|a_{n}+b_{n}-a-b\right|<1 / 2 \epsilon+1 / 2 \epsilon=\epsilon\) for all \(\mathrm{n} \geq m\). (by (1),(2) and (3))
\(\therefore\left(a_{n}+b_{n}\right) \rightarrow a+b\).
Note. Similarly we can prove that \(\left(a_{n}-b_{n}\right) \rightarrow a-b\).

\section*{Theorem:2.9}

If \(\left(a_{n}\right) \rightarrow a\) and \(k \in \mathbf{R}\) then \(\left(k a_{n}\right) \rightarrow k\).

\section*{Proof:}

If \(\mathrm{k}=0,\left(k a_{n}\right)\) is the constant sequence \(0,0,0, \ldots\). And hence the result is trivial.
Now, let \(\mathrm{k} \neq 0\).
Then \(\left|\mathrm{k} \mathrm{a}_{\mathrm{n}}-k \mathrm{a}\right|=|k|\left|a_{n}-a\right|\)
Let \(\epsilon>0\) be given.
Since (a) \(\rightarrow a\), there exist \(m \in N\) such that
\(\left|a_{n}-a\right|<\varepsilon /|k|\) for all \(n \geq m\).
\(\therefore\left|k a_{n}-k a\right|<\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\) (by 1 and 2 ).
\(\therefore\left(k a_{n}\right) \rightarrow k a\).

\section*{Theorem: 2.10}

If \(\left(\mathrm{a}_{\mathrm{n}}\right) \rightarrow \mathrm{a}\) and \(\left(\mathrm{b}_{\mathrm{n}}\right) \rightarrow \mathrm{b}\) then \(\left(a_{n} b_{n}\right) \rightarrow \mathrm{ab}\).

\section*{Proof.}

Let \(\epsilon>0\) be given.
Now, \(\left|a_{n} b_{n}-a b\right|=\left|a_{n} b_{n}-a_{n} b+a_{n} b-a b\right|\)
\(\leq\left|a_{n} b_{n}-a_{n} b\right|+\left|a_{n} b-a b\right|\)
\(=\left|a_{n}\right|\left|b_{n}-b\right|+|\mathrm{b}|\left|a_{n}-\mathrm{a}\right|\)
Also, since \(\left(a_{n}\right) \rightarrow \mathrm{a},\left(a_{n}\right)\) is a bounded sequences.
\(\therefore\) There exist a real number \(\mathrm{k}>0\) such that \(\left|\mathrm{a}_{\mathrm{n}}\right| \leq \mathrm{k}\) for all n .
Using (1) and (2) we get
\(\left|a_{n} \mathrm{~b}_{n}-\mathrm{ab}\right| \leq \mathrm{k}\left|b_{n}-b\right|+|b| \quad\left|a_{n}-a\right|\)
Now since \(\left(a_{n}\right) \rightarrow a\), there exist a natural number \(n_{1}\) such that
\(\left|\mathrm{a}_{\mathrm{n}}-\mathrm{a}\right|>\varepsilon / 2|\mathrm{~b}|\) for all \(\mathrm{n} \geq n_{1}\) \(\qquad\)
Since \(\left(b_{n}\right) \rightarrow b\), there exist a natural number \(n_{2}\) such that
\(\left|a_{n}-\mathrm{a}\right|>\varepsilon / 2|\mathrm{~b}|\) for all \(\mathrm{n} \geq n_{2}\)
Let \(\mathrm{m}=\max \left\{n_{1}, n_{2}\right\}\).
Then \(\left|a_{n} b_{n}-a \mathrm{~b}\right|<\mathrm{k}(\varepsilon / 2 \mathrm{k})+|\mathrm{b}|(\varepsilon / 2|\mathrm{~b}|)=\varepsilon\) for all \(\mathrm{n} \geq m\) (by (3),(4)and(5))
Hence \(\left(\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}\right) \rightarrow a b\)

\section*{Theorem: 2.11}

If \(\left(a_{n}\right) \rightarrow a\) and \(a_{n} \neq 0\) forall \(n\) and \(a \neq 0\) then \(\left(\frac{1}{a_{n}}\right) \rightarrow \frac{1}{a}\)
Proof:
Let \(\epsilon>0\) be given.
We have \(\left|1 / a_{n}-1 / \mathrm{a}\right|=\left|\frac{a_{n}-a}{a_{n} a}\right|=\frac{1}{\left|a_{n}\right||a|}\left|a_{n}-a\right|\)
Now, \(\mathrm{a} \neq 0\). Hence \(|a|>0\)

Since \(\left(a_{n}\right) \rightarrow a\), there exists \(n_{1} \varepsilon N\) such that \(\left|a_{n}-a\right|<\frac{1}{2}|a|\) for all \(n \geq n_{1}\)
Hence \(\left|a_{n}\right|>\frac{1}{2}|a|\) for all \(n \geq n_{1}\)
Using (1) and (2) we get
\(\left|\frac{1}{a_{n}}-\frac{1}{a}\right|<\frac{2}{|a|^{2}}\left|a_{n}-a\right|\) for all \(n \geq n_{1} \ldots \ldots \ldots\)
Now since \(\left(\mathrm{a}_{\mathrm{n}}\right) \rightarrow a\), there exists \(\mathrm{n}_{2} \varepsilon \mathrm{~N}\) such that
\(\left|a_{n}-a\right|<\frac{1}{2}|a|^{2} \varepsilon\) for all \(n \geq n_{2}\)
Let \(\mathrm{m}=\max \left\{n_{1}, n_{2}\right\}\).
\(\left|\frac{1}{a_{n}}-\frac{1}{a}\right|<\frac{2}{|a|^{2}} \frac{1}{2}|a|^{2} \varepsilon=\) for all \(n \geq m\)
Therefore \(\left(1 / a_{n}\right) \rightarrow 1 / a\)

\section*{Corollary:}

Let \(\left(a_{n}\right) \rightarrow \mathrm{a}\) and \(\left(b_{n}\right) \rightarrow \mathrm{b}\) where \(b_{n} \neq 0\) for all n and \(\mathrm{b} \neq 0\).
Then \(\left(\frac{a_{n}}{b_{n}}\right) \rightarrow\left(\frac{a}{b}\right)\)
Proof:
\(\left(\frac{1}{b_{n}}\right) \rightarrow\left(\frac{1}{b}\right)\) (since If \(\left(a_{n}\right) \rightarrow a\) and \(a_{n} \neq 0\) forall \(n\) and \(a \neq 0\) then \(\left.\left(\frac{1}{a_{n}}\right) \rightarrow \frac{1}{a}\right)\)
\(\left(\frac{a_{n}}{b_{n}}\right) \rightarrow\left(\frac{a}{b}\right) \quad\) (since If \(\left(a_{n}\right) \rightarrow a\) and \(\left(b_{n}\right) \rightarrow b\) then \(\left.\left(a_{n} b_{n}\right) \rightarrow a b\right)\)

\section*{Theorem: 2.12}

If \(\left(a_{n}\right) \rightarrow\) a then \(\left(\left|a_{n}\right|\right) \rightarrow|a|\).

\section*{Proof:}

Let \(\epsilon>0\) be given
Now \(\left|\left|a_{n}\right|-|a|\right| \leq\left|a_{n}-a\right|\) \(\qquad\)
Since \(\left(a_{n}\right) \rightarrow\) a there exist \(m \in N\) such that \(\left|a_{n}-a\right|<\epsilon\) for all \(n \geq m\).
Hence from (1) we get \(\left|\left|a_{n}\right|-|a|\right|<\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\).
Hence \(\left(\left|a_{n}\right|\right) \rightarrow(a)\).

\section*{Theorem: 2.13}

If \(\left(a_{n}\right) \rightarrow\) a and \(a_{n} \geq 0\) for all \(n\) then \(a \geq 0\).
Proof.
Suppose \(a<0\). Then \(-a>0\).
Choose \(\epsilon\) such that \(0<\epsilon<-\) a so that \(a+\epsilon<0\).
Now, since \(\left(a_{n}\right) \rightarrow a\), there exist \(m \in \mathbf{N}\) such that \(\left|a_{n}-a\right|<\epsilon\) for all \(\mathrm{n} \leq \mathrm{m}\).
\(\therefore \mathrm{a}-\epsilon<a_{n}<\mathrm{a}+\epsilon\) for all \(\mathrm{n} \leq \mathrm{m}\).
Now, since \(a+\epsilon<0\), we have \(a_{n}<0\) for all \(\mathrm{n} \geq \mathrm{m}\) which is a contradiction since \(a_{n} \geq 0\).
\(\therefore \mathrm{a} \geq 0\).
Theorem: 2.14
If \(\left(a_{n}\right) \rightarrow \mathrm{a},\left(b_{n}\right) \rightarrow \mathrm{b}\) and \(a_{n} \leq b_{n}\) for all n , then \(\mathrm{a} \leq \mathrm{b}\).
Proof.
Since \(a_{n} \leq b_{n}\), we have \(b_{n}-a_{n} \geq 0\) for all \(n\).
Also \(\left(\mathrm{b}_{\mathrm{n}}-a_{n}\right) \rightarrow b-\mathrm{a} \quad\) (since If \(\left(a_{n}\right) \rightarrow \mathrm{a}\) and \(\left(b_{n}\right) \rightarrow \mathrm{b}\) then \(\left.\left(a_{n}+b_{n}\right) \rightarrow \mathrm{a}+\mathrm{b}\right)\)
\(\therefore b-a \geq 0\)
\(\therefore \mathrm{b} \geq \mathrm{a}\).

\section*{Theorem: 2.15}

If \(\left(a_{n}\right) \rightarrow l,\left(b_{n}\right) \rightarrow l\) and \(a_{n} \leq c_{n} \leq b_{n}\) for all n , then \(\left(c_{\mathrm{n}}\right) \rightarrow l\).
Proof.
Let \(\epsilon>0\) be given.
Since \(\left(a_{n}\right) \rightarrow l\), there exist \(n_{1} \in \mathbf{N}\) such that \(l-\epsilon<a_{n}<l+\epsilon\) for all \(\mathrm{n} \geq n_{1}\).
Similarly, there exist \(n_{2} \in \mathbf{N}\) such that \(l-\epsilon<b_{n}<l+\epsilon\) for all \(\mathrm{n} \geq n_{2}\).
Let \(\mathrm{m}=\max \left\{n_{1}, n_{2}\right\}\).
\(\therefore-\epsilon<a_{n} \leq c_{n} \leq b_{n}<l+\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore-\epsilon<c_{n}<l+\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore\left|c_{n}-l\right|<\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore\left(c_{n}\right) \rightarrow l\).

\section*{Theorem:2.16}

If \(\left(a_{n}\right) \rightarrow\) and \(a_{n} \geq 0\) for all \(n\) and \(a \neq 0\), then \(\left(\sqrt{\left.a_{n}\right)} \rightarrow \sqrt{a}\right.\).
Proof.
Since \(a_{n} \geq 0\) for all \(\mathrm{n}, \mathrm{a} \geq 0 \quad\) (since If \(\left(a_{n}\right) \rightarrow\) a and \(a_{n} \geq 0\) for all n then \(\mathrm{a} \geq 0\) )
Now, \(\left|\sqrt{a_{n}} \rightarrow \sqrt{a_{1}}\right|=\left|\frac{a_{n}-a}{\sqrt{a_{n}}+\sqrt{a}}\right|\)
Since \(\left(a_{n}\right) \rightarrow a \neq 0\), we obtain \(a_{n}>\frac{1}{2}\) a for all \(\mathrm{n} \geq n_{1}\)
\(\left.\sqrt{a_{n}}>\sqrt{\left(\frac{1}{2}\right.} a\right)\) for all \(\mathrm{n} \mathrm{n}_{1}\)
\(\left|\sqrt{a_{n}}-\sqrt{a}\right|<\frac{\sqrt{2}}{(\sqrt{2}+1) \sqrt{a}}\left|a_{n}-a\right|\) for all,\(n \geq n_{1}\).
Now, let \(\epsilon>0\) be given.
Since \(\left(\mathrm{a}_{\mathrm{n}}\right) \rightarrow a\), there exist \(n_{2} \in \mathbf{N}\) such that
\(\left|a_{n}-a\right|<\epsilon \sqrt{ } a(\sqrt{ } 2+1) / \sqrt{ } 2\) for all \(n \geq n_{2}\)
Let \(m=\max \left\{n_{1}, n_{2}\right\}\).
Then \(\left|\mathfrak{a}_{n}-a \sqrt{ }\right|<\varepsilon\) for all \(n \geq m\) (by 1 and 2 ).
\(\therefore\left(\sqrt{a_{n}}\right) \rightarrow \sqrt{a}\).

\section*{Theorem: 2.17}

If \(\left(a_{n}\right) \rightarrow \infty\) and \(\left(b_{n}\right) \rightarrow \infty\) then \(\left(a_{n}+b_{n}\right) \rightarrow \infty\).
Proof.
Let \(\mathrm{k}>0\) be any given real number.
Since \(\left(a_{n}\right) \rightarrow \infty\), there exists \(n_{1} \in \mathbf{N}\) such that \(a_{n}>\frac{1}{2} \mathrm{k}\) for āll \(\mathrm{n} \geq n_{1}\).
Similarly there exists \(n_{2} \in \mathbf{N}\) such that \(b_{n}>\frac{1}{2} \mathrm{k}\) for all \(\mathrm{n} \geq n_{2}\).
Let \(\mathrm{m}=\max \left\{n_{1}, n_{2}\right\}\).
Then \(a_{n}+b_{n}>\mathrm{k}\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore\left(a_{n}+b_{n}\right) \rightarrow \infty\).

\section*{Theorem: 2.18}

If \(\left(a_{n}\right) \rightarrow \infty\) and \(\left(b_{n}\right) \rightarrow \infty\) then \(\left(a_{n} b_{n}\right) \rightarrow \infty\).
Proof.
Let \(\mathrm{k}>0\) be any given real number.
Since \(\left(a_{n}\right) \rightarrow \infty\), there exist \(n_{1} \in \mathbf{N}\) such that \(a_{n}>\sqrt{k}\) for all \(\mathrm{n} \geq n_{1}\).
Similarly there exists \(n_{2} \in \mathbf{N}\) such that \(b_{n}>\sqrt{k}\) for all \(\mathrm{n} \geq n_{2}\).
Let \(\mathrm{m}=\max \left\{n_{1}, n_{2}\right\}\).
Then \(a_{n} b_{n}>\mathrm{k}\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore\left(a_{n} b_{n}\right) \rightarrow \infty\).

\section*{Theorem: 2.19}

Let \(\left(a_{n}\right) \rightarrow \infty\) then
(i)If \(c>0,\left(c a_{n}\right) \rightarrow \infty\)
(ii)If \(c<0,\left(\mathrm{c} a_{n}\right) \rightarrow-\infty\)

\section*{Proof.}
(i) Let \(\mathrm{c}>0\).

Let \(\mathrm{k}>0\) be any given real number.
Since \(\left(a_{n}\right) \rightarrow \infty\), there exist \(\mathrm{m} \in N\) such that \(a_{n}>\mathrm{k} / \mathrm{c}\) for \(\mathrm{aH} \mathrm{n} \geq \mathrm{m}\).
\(\therefore\) c \(a_{n}>\mathrm{k}\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore\left(c a_{n}\right) \rightarrow \infty\).
(ii) Let \(\mathrm{c}<0\).

Let \(\mathrm{k}<0\) be any given real number. Then \(\mathrm{k} / \mathrm{c}>0\).
\(\therefore\) There exists \(\mathrm{m} \in \mathbf{N}\) such that \(a_{n}>\mathrm{k} / \mathrm{c}\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore\) c \(a_{n}<\mathrm{k}\) for all \(\mathrm{n} \geq \mathrm{m}(\) since \(\mathrm{c}<0)\).
\(\therefore\left(c a_{n}\right) \rightarrow-\infty\).

Theorem: \(\mathbf{2 . 2 0}\)
If \(\left(a_{n}\right) \rightarrow \infty\) and \(\left(\mathrm{b}_{\mathrm{n}}\right)\) is bounded then \(\left(a_{n}+b_{n}\right) \rightarrow \infty\).
Proof.
Since \(\left(b_{n}\right)\) is bounded, there exists a real number \(\mathrm{m}<0\) such that \(b_{n}>\mathrm{m}\) for all n .

Now, let \(\mathrm{k}>0\) be any real number.
Since \(m<0, k-m>0\).
Since \(\left(a_{n}\right) \rightarrow \infty\), there exists \(n_{0} \in \mathbf{N}\) such that \(a_{n}>k-m\) for all \(n \geq n_{0}\)
\(\therefore a_{n}+b_{n}>\mathrm{k}-\mathrm{m}+\mathrm{m}=\mathrm{k}\) for all \(\mathrm{n} \geq n_{0}\) (by 1 and 2 ).
\(\therefore\left(a_{n}+b_{n}\right) \rightarrow \infty\).

\section*{Solved Problems.}
1. Show that \(\lim _{n \rightarrow \infty} \frac{3 n^{2}+2 n+5}{6 n^{2}+4 n+7}=\frac{1}{2}\)

\section*{Solution:}
\(\frac{3 n^{2}+2 n+5}{6 n^{2}+4 n+7}=\frac{3+\frac{2}{n}+\frac{5}{n^{2}}}{6+\frac{4}{n}+\frac{7}{n^{2}}}\)
Now, \(\lim _{n \rightarrow \infty}\left(3+\frac{2}{n}+\frac{5}{n^{2}}\right)=3+2 \lim _{n \rightarrow \infty} \frac{1}{n}+5 \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=3+0+0=3\)

Similarly,
\[
\lim _{n \rightarrow \infty}\left(6+\frac{4}{n}+\frac{7}{n^{2}}\right)=6
\]
\(\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3+\frac{2}{n}+\frac{5}{n^{2}}}{6+\frac{4}{n}+\frac{7}{n^{2}}}\)
\(=1 / 2\)
2. Show that \(\lim _{n \rightarrow \infty}\left(\frac{1^{2}+2^{2}+\cdots \ldots . n^{2}}{n^{3}}\right)=\frac{1}{3}\)

\section*{Solution:}

Weknowthat \(1^{2}+2^{2}+\cdots \ldots .+n^{2}=\frac{n(n+1)(2 n+1)}{6}\)
\[
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{1^{2}+2^{2}+\cdots \ldots \ldots n^{2}}{n^{3}}\right)=\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{6 n^{3}} \\
&=\lim _{n \rightarrow \infty} \frac{1}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right) \\
&=1 / 3
\end{aligned}
\]
3. Showthat \(\quad \lim _{n \rightarrow \infty} \frac{n}{\sqrt{\left(n^{2}+1\right)}}=1\)

\section*{Solution:}
\[
\lim _{n \rightarrow \infty} \frac{n}{\sqrt{\left(n^{2}+1\right)}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{\left(1+\frac{1}{n^{2}}\right)}}
\]
\[
\frac{1}{\lim _{n \rightarrow \infty} \frac{1}{\sqrt{\left(1+\frac{1}{n^{2}}\right)}}}
\]
\[
\frac{1}{\sqrt{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n^{2}}\right)}}
\]
\[
=
\]
\[
=
\]
\(=1\)
4. Show that if \(\left(a_{n}\right) \rightarrow 0\) and \(\left(b_{n}\right)\) is bounded, then \(\left(a_{n} b_{n}\right) \rightarrow 0\).

\section*{Solution.}

Since \(\left(b_{n}\right)\) is bounded, there exists \(k>0\) such that \(\left|b_{n}\right| \leq k\) for all \(n\).
\(\therefore\left|\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}\right| \leq \mathrm{k}\left|a_{n}\right|\).
Now, let \(\epsilon>0\) be given.
Since \(\left(a_{n}\right) \rightarrow 0\) there exists \(\mathrm{m} \in \mathbf{N}\) such that \(\left|a_{n}\right|<\varepsilon / \mathrm{k}\) for all nim
\(\therefore\left|a_{n} b_{n}\right|<\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore\left(a_{n} b_{n}\right) \rightarrow 0\).
5. Show that \(\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0\)

\section*{Solution:}
\(|\sin \mathrm{n}| \leq 1\) for all n .
\(\therefore(\sin n)\) is a bounded sequences
Also, \((1 / n) \rightarrow 0\)
\(\therefore\left(\frac{\sin n}{n}\right) \rightarrow 0 \quad\) (by problem 4).
6. Show that \(\lim \left(a^{1 / n}\right)=1\) where \(a>0\) is any real number.
\(n \rightarrow \infty\)

\section*{Solution.}

Case (i) Let \(\mathrm{a}=1\). Then \(a^{1 / n}=1\) for each n . Hence \(\left(a^{1 / n}\right) \rightarrow 1\)
Case (ii) Let \(\mathrm{a}>1\). Then \(a^{1 / n}>1\).
Let \(a^{1 / n}=1+h_{n} w h e r e h_{n}>0\).
Therefore \(a=\left(1+h_{n}\right)^{2}\)
\(=1+n h_{n}+\ldots \ldots .+h_{n}^{n}\)
\(>1+n h_{n}\)
Therefore, \(h_{n}<a-1 / n\)
Therefore, \(0<h_{n}<a-1 / n\)
Hence \(\lim _{n \rightarrow \infty} h_{n}=0\)
Therefore, \(\left(a^{1 / n}\right)=\left(1+h_{n}\right) \rightarrow 1\).

\section*{Case(iii)}

Let \(0<a<1\)
Then \(1 / a>1\)
Therefore, ( \(1 / \mathrm{a})^{1 / n} \rightarrow 1\) (By case (i))
\[
\begin{gathered}
\left(\frac{1}{a^{\frac{1}{n}}}\right) \rightarrow 1 \\
\left(a^{1 / n}\right)^{n} \rightarrow 1
\end{gathered}
\]
7. Show that \(\lim _{n \rightarrow \infty}(n)^{1 / n}=1\).

Solution.
Clearly \(n^{1 / n} \geq 1\) for all \(n\).
Let \(n^{1 / n}=1+h_{n}\) where \(h_{n} \geq 0\)
Then \(n=\left(1+h_{n}\right)^{n}\)
\(=1+n h_{n}+n C_{2} h_{n}^{2}+\) \(\qquad\)
\(=\frac{1}{2} n(n-1) h_{h}{ }^{2}\)
Therefore, \(\mathrm{h}_{\mathrm{n}}{ }^{2}<\frac{2}{(n-1)}\)
\(h_{n}<\sqrt{\frac{2}{n-1}}\)
Since \(\sqrt{\frac{2}{n-1}} \rightarrow 0\) andh \(_{n} \geq 0_{n}\left(h_{n}\right) \rightarrow 0\)
Hence \(\left(n^{1 / n}\right)=\left(1+h_{n}\right) \rightarrow 1\).
8. Give an example to show that if ( \(a_{n}\) ) is a sequence diverging to \(\infty\) and \(\left(b_{n}\right)\) is sequence diverging to \(-\infty\) then \(\left(a_{n}+b_{n}\right)\) need not be a divergent sequence.

\section*{Solution.}

Let \(\left(a_{n}\right)=(n)\) and \(\left(b_{n}\right)=(-n)\).
Clearly \(\left(a_{n}\right) \rightarrow 0\) and \(\left(b_{n}\right) \rightarrow-\infty\).

However \(\left(a_{n}+b_{n}\right)\) is the constant sequence \(0,0,0, \ldots\). Which converges to 0 .

\section*{UNIT - III}

\section*{BEHAVIOUR OF MONOTONIC SEQUENCES}

\section*{Theorem: 3.1}
i. A monotonic increasing sequence which is bounded above converges to its l.u.b.
ii. A monotonic increasing sequence which is bounded above diverges to \(\infty\).
iii. A monotonic decreasing sequence which is bounded below converges to its g.l.b.
iv. A monotonic decreasing sequence which is bounded below diverges to \(-\infty\).

\section*{Proof:}
(i) Let \(\left(\boldsymbol{\alpha}_{n}\right)\) be a monotonic increasing sequence which is bounded above.

Let k be the l.u.b of the sequence.
Then \(a_{n} \leq k\) for all \(n\).
Let \(\varepsilon>0\) be given
Therefore, \(k-\varepsilon<k\) and hence \(k-\varepsilon\) is not an upper bound of ( \(a_{n}\) )
Hence, there exists \(\mathrm{a}_{\mathrm{n}}\) such that \(a_{m}>k-\varepsilon\).
Now, since \(\left(a_{n}\right)\) is monotonic increasing \(\mathrm{a}_{\mathrm{n}} \geq \mathrm{a}_{\mathrm{m}}\) for all \(\mathrm{n}>\mathrm{m}\)
Hence \(a_{n}>k-\varepsilon\) for all \(n \geq m\).
Therefore \(k-\varepsilon<a_{n} \leq k\) for all \(n \geq m\).(by 1 and 2 )
Therefore \(\left|a_{n}-k\right|<\varepsilon\) for all \(n \geq m\).
Therefore \(\left(a_{n}\right) \rightarrow \mathrm{k}\).
(ii) Let \(\left(a_{n}\right)\) be a monotonic increasing sequence which is not bounded above.

Let \(\mathrm{k}>0\) be any real number.
since \(\left(a_{n}\right)\) is not bounded, there exists \(m \varepsilon N\) such that \(\mathrm{a}_{\mathrm{m}}>\mathrm{k}\).
Also \(\mathrm{a}_{\mathrm{n}} \geq \mathrm{a}_{\mathrm{m}}\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore a_{n}>k\) for all \(n \geq m\)
Hence, \(\left(\mathrm{a}_{\mathrm{n}}\right) \rightarrow \infty\)
Proof of (iii) is similar to that of (i)
Proof of (iv) is similar to that of (ii)

\section*{Note:}

The above theorem shows that a monotonic sequence either converges or diverges. Thus a Monotonic sequence cannot be an oscillating sequence.

\section*{Solved Problems:}
1. Let \(\mathrm{a}_{\mathrm{n}}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots \ldots+\frac{1}{n!}\). Show that \(\lim _{n \rightarrow \infty} a_{n}\) exists and lies between 2 and 3 .

\section*{Solution:}

Clearly ( \(a_{n}\) ) is a monotonic increasing sequence

Also, \(\mathrm{a}_{\mathrm{n}}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots \ldots+\frac{1}{n!}\).
\(\leq 1+1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots \ldots+\frac{1}{2^{n-1}}\)
\[
=1+\left(\frac{1-\frac{1}{2^{n}}}{1-\frac{1}{2}}\right)
\]
\[
=1+2\left(1-\frac{1}{2^{n}}\right)
\]
\[
=3-\frac{1}{2^{n-1}}<3
\]
\(\therefore a_{n}<3\)
\(\therefore\left(a_{n}\right)\) is bounded above
Therefore, \(\lim _{n \rightarrow \infty} a_{n}\) exi ts
Also \(2<\mathrm{a}_{\mathrm{n}}<3\) for all n .
\(\therefore 2<\lim _{n \rightarrow \infty} a_{n}<3\)
Hence the result.
1. Show that the sequence \(\left(1+\frac{1}{n}\right)^{n}\) converges.

\section*{Solution:}

Let \(\mathrm{a}_{\mathrm{n}}=\left(1+\frac{1}{n}\right)^{n}\)
By binomial theorem,
\(\mathrm{a}_{\mathrm{n}}=1+1+\left(\frac{n(n-1)}{2!}\right) \frac{1}{n^{2}}+\left(\frac{n(n-1)(n-2)}{3!}\right) \frac{1}{n^{9}}+\cdots \ldots \ldots+\frac{1}{n^{n}}\)
\(1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots \ldots \ldots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots \ldots\left(1-\frac{n-1}{n}\right)\)
\(<1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots \ldots+\frac{1}{n!}\)
<3 (by problem 1)
Therefore, \(\left(a_{n}\right)\) is bounded above.
Also,
\(a_{n+1}=1+1+\frac{1}{2!}\left(1-\frac{1}{n+1}\right)+\frac{1}{3!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)+\cdots \ldots \ldots+\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right) \ldots \ldots\left(1-\frac{n}{n+1}\right)\)
\(>1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots \ldots \ldots+\frac{1}{n!}\left(1-\frac{1}{n}\right) \ldots \ldots\left(1-\frac{n-1}{n}\right)\)
\(\therefore a_{n+1}>a_{n}\)
\(\therefore\left(a_{n}\right)\) is monotonic increasing.
\(\therefore\left(a_{n}\right)\) is a convergent sequence.

Theorem: 3.2 (Cauchy's First Limit Theorem)
If \(\left(a_{n}\right) \rightarrow l\) then \(\left(\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}\right) \rightarrow l\).
Proof:
Case (i).

Let \(\mathrm{l}=0\)
Let \(\mathrm{b}_{\mathrm{n}}=\frac{a_{1}+a_{2}+\cdots_{m}+a_{n}}{n}\)
Let \(\varepsilon>0\) be given.
Since \(\left(a_{n}\right) \rightarrow 0\) there exists \(m \in N\) such that \(\left|a_{n}\right|<(1 / 2) \varepsilon\) for all \(\mathrm{B} \geq . m\)
Now let \(n \geq m\)
Then \(\left|b_{n}\right|=\left|\frac{a_{1}+a_{2}+\cdots .+a_{m}+a_{m+1}+\cdots+a_{n}}{n}\right|\)
\(\leq \frac{\left|a_{1}\right|+\left|a_{2}\right|+\cdots \ldots+\left|a_{m}\right|}{n}+\frac{\left|a_{m+1}\right|+\cdots \ldots+\left|a_{n}\right|}{n}\)
\(=\frac{k}{n}+\frac{\| a_{m+1}\left|+\cdots .+\left|a_{n}\right|\right.}{n}\) where \(\mathrm{k}=\left|a_{1}\right|+\left|a_{2}\right|+\cdots \ldots+\left|a_{m}\right|\)
\(<\frac{k}{n}+\left(\frac{n-m}{n}\right) \frac{s}{2}(\) by (1))
\(<\frac{k}{n}+\frac{s}{2}\left(\right.\) Since \(\left.\frac{n-m}{n}<1\right)\)
Now since \((k / n) \rightarrow 0\), there exists \(n_{0} \in N\) such that \(k / n<(1 / 2) \varepsilon\) for all \(n \geq n_{0}\).
Let \(n_{1}=\max \left\{m, n_{0}\right\}\)
Then \(\left|b_{n}\right|<\varepsilon\) for all \(n \geq n_{1} \quad\) (using 2 and 3 )
Therefore \(\left(b_{n}\right) \rightarrow 0\)
Case (ii)
Let \(l \neq 0\)
Since \(\left(a_{n}\right) \rightarrow l_{p}\left(a_{n}-l\right) \rightarrow 0\)
\(\therefore\left(\frac{\left(a_{1}-l\right)+\left(a_{2}-l\right)+\cdots+\left(a_{n}-l\right)}{n}\right) \rightarrow 0 \quad\) (by case \(\left.(i)\right)\)
\(\therefore\left(\frac{a_{1}+a_{2}+\cdots \ldots+a_{n}-n l}{n}\right) \rightarrow 0\)
\(\therefore\left(\frac{a_{1}+a_{2}+\cdots \ldots+a_{n}}{n}-l\right) \rightarrow 0\)
\(\therefore\left(\frac{a_{1}+a_{2}+\cdots \ldots+a_{n}}{n}\right) \rightarrow l\)

\section*{Theorem: 3.3 (Cesaro's theorem)}

If \(\left(a_{n}\right) \rightarrow a\) and \(\left(b_{n}\right) \rightarrow b\) then \(\left(\frac{a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}}{n}\right) \rightarrow a b\)
Proof:
Let \(\mathrm{c}_{\mathrm{n}}=\frac{a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}}{n}\)
Now put \(a_{n}=a+r_{n}\) so that \(\left(r_{n}\right) \rightarrow 0\)
Then \(\mathrm{C}_{\mathrm{n}}=\frac{\left(a+r_{1} b_{n}+\cdots+\left(a+r_{n}\right) b_{1}\right.}{n}\)
\(=\frac{a\left(b_{1}+\cdots+b_{n}\right)}{n}+\frac{r_{1} b_{n}+\cdots+r_{n} b_{1}}{n}\)
Now, by Cauchy's first limit theorem, \(\left(\frac{b_{1}+\ldots,+b_{n}}{n}\right) \rightarrow l\)
\(\therefore\left(\frac{a\left(b_{1}+b_{2}+\cdots \ldots+b_{n}\right)}{n}\right) \rightarrow a b\)
Hence it is enough if we prove that \(\left(\frac{r_{1} b_{n}+\cdots,+r_{n} b_{1}}{n}\right) \rightarrow 0\)
Since, since \(\left(\mathrm{b}_{\mathrm{n}}\right) \rightarrow b,\left(\mathrm{~b}_{\mathrm{n}}\right)\) is a bounded sequence.
Therefore, there exists a real number \(k>0\) such that \(\left|b_{n}\right| \leq k\) for all \(n\).
\(\therefore\left|\frac{r_{1} b_{n}+\cdots \ldots+r_{n} b_{1}}{n}\right| \leq k\left|\frac{r_{1}+\cdots \ldots+r_{n}}{n}\right|\)
Since \(\left(r_{n}\right) \rightarrow 0,\left(\frac{r_{1} b_{n}+\cdots+r_{n} b_{1}}{n}\right) \rightarrow 0\)
\(\left(\frac{r_{1} b_{n}+\cdots+r_{n} b_{1}}{n}\right) \rightarrow 0\)
Hence the theorem.

\section*{Theorem: 3.4 (Cauchy's Second Limit Theorem)}

Let \(\left(a_{n}\right)\) be a sequence of positive terms. Then \(\lim _{n \rightarrow \infty} a_{n} \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}\) provided the limit on the right hand side exists, whether finite or infinite.
Proof:
Case(i) \(\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{-}}=1\), finite.
Let \(\varepsilon>0\) be any given real number.
Then there exists \(m \in N\) such that \(l-\frac{1}{2} \varepsilon<\frac{a_{n+1}}{m_{-}}<l+\frac{1}{2} \varepsilon\) for all \(n \geq m\)
Now choose \(n \geq m\)
Then \(l-\frac{1}{2} \varepsilon<\frac{a_{m+1}}{a_{m}}<l+\frac{1}{2} \varepsilon\)
\(l-\frac{1}{2} \varepsilon<\frac{a_{m+2}}{a_{m+1}}<l+\frac{1}{2} \varepsilon\)
\(\qquad\)
\(l-\frac{1}{2} \varepsilon<\frac{a_{n}}{a_{n-1}}<l+\frac{1}{2} \varepsilon\)
Multiplying these inequalities, we obtain
\[
\begin{align*}
& \left(l-\frac{1}{2} \varepsilon\right)^{n-m}<\frac{a_{n}}{a_{m}}<\left(l+\frac{1}{2} \varepsilon\right)^{n-m} \\
& \therefore a_{m} \frac{\left(l-\frac{1}{2} \varepsilon\right)^{n}}{\left(l-\frac{1}{2} \varepsilon\right)^{m}}<a_{n}<a_{m}<a_{m} \frac{\left(l+\frac{1}{2} \varepsilon\right)^{n}}{\left(l+\frac{1}{2} \varepsilon\right)^{m}} \\
& \therefore k_{1}\left(l-\frac{1}{2} \varepsilon\right)^{n}<a_{n}<k_{2}\left(l+\frac{1}{2} \varepsilon\right)^{n}, \text { Where } \mathrm{k}_{1}, \mathrm{k}_{2} \text { are some constants } \\
& \therefore k_{1}^{\frac{1}{n}}\left(l-\frac{1}{2} \varepsilon\right)<a_{n}^{\frac{1}{n}}<k_{2}^{\frac{1}{n}}\left(l+\frac{1}{2} \varepsilon\right) \ldots \ldots . . .(1) \tag{1}
\end{align*}
\]

Now, \(\left(k_{1}^{\frac{1}{n}}\left(l-\frac{1}{2} \varepsilon\right)\right) \rightarrow l-\frac{1}{2} \varepsilon \quad\left(\right.\) Since \(\left.\left(k_{1}^{\frac{1}{n}}\right) \rightarrow l\right)\)
\(\therefore\) There exists \(\mathrm{n}_{1} \in \mathrm{~N}\) such that \(\left(l-\frac{1}{2} \varepsilon\right)-\frac{1}{2} \varepsilon<k_{1^{2}}^{\frac{1}{n}}\left(l-\frac{1}{2} \varepsilon\right)<\left(l-\frac{1}{2} \varepsilon\right)+\frac{1}{2} \varepsilon\) for all \(n \geq n_{1}\)
Similarly, there exists \(\mathrm{n}_{2} \in \mathrm{~N}\) such that \(\left(l+\frac{1}{2} \varepsilon\right)-\frac{1}{2} \varepsilon<{k_{2}}^{\frac{1}{n}}\left(l+\frac{1}{2} \varepsilon\right)<\left(l+\frac{1}{2} \varepsilon\right)+\frac{1}{2} \varepsilon\)
for all \(n \geq n_{2}\)
Let \(\mathrm{n}_{0}=\max \left\{\mathrm{m}, \mathrm{n}_{1}, \mathrm{n}_{2}\right\}\).
Then \(l-\varepsilon<k_{1}^{\frac{1}{n}}\left(l-\frac{1}{2} \varepsilon\right)<a_{n^{\frac{1}{n}}}<k_{2} \frac{1}{n}\left(l+\frac{1}{2} \varepsilon\right)<l+\varepsilon\) for all \(n \geq n_{0} \quad\) (by 1,2 and 3 )
\(\therefore l-\varepsilon<a_{n}^{\frac{1}{n}}<l+\varepsilon\) for all \(n \geq n_{0}\)
Hence \(\left(a_{n}^{\frac{1}{n}}\right) \rightarrow l\).
Case (ii):
\(\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\infty\)
Then
\[
\lim _{n \rightarrow \infty}\left(\frac{1}{a_{n+1}}\right) /\left(\frac{1}{a_{n}}\right)=0
\]

Therefore, By case (i), \(\left(\frac{1}{a_{n}}\right)^{\frac{1}{n}} \rightarrow 0\)
Hence \(\left(a_{n}{ }^{\frac{1}{n}}\right) \rightarrow \infty\)

Theorem: 3.5
Let \(\left(a_{n}\right)\) be any sequence and \(\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=l\). If \(l>1\), then \(\left(a_{n}\right) \rightarrow 0\).

Theorem: 3.6
Let \(\left(a_{n}\right)\) be any sequence of positive terms and \(\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{a_{n+1}}\right)=l\). If \(l<1\), then \(\left(a_{n}\right) \rightarrow \infty\).
Problems:
1. Show that \(\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=0\)

\section*{Solution:}

Let \(a_{n}=1 / n\)
We know that \(\left(a_{n}\right) \rightarrow 0\). Hence by Cauchy's first limit theorem we get
\[
\left(\frac{a_{1}+a_{2}+\cdots . .+a_{n}}{n}\right) \rightarrow 0
\]
2. Show that \(\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0\)

\section*{Solution:}

Let \(\mathrm{a}_{\mathrm{n}}=\frac{n!}{n^{n}}\)
\(\therefore\left|\frac{a_{n}}{a_{n+1}}\right|=\frac{n!}{n^{n}} \frac{(n+1)^{n+1}}{(n+1)!}\)
\[
\begin{aligned}
& \qquad \quad\left(\frac{n+1}{n}\right)^{n} \\
& \quad=\left(1+\frac{1}{n}\right)^{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& \quad=\mathrm{e}>1
\end{aligned}
\]

\section*{Subsequence}

Definition. Let ( \(a_{n}\) ) be a sequence. Let ( \(a_{n_{k}}\) ) be a strictly increasing sequence of natural numbers. Then ( \(a_{n_{k}}\) ) is called a subsequence of \(\left(a_{n}\right)\).

Note. The terms of a subsequences occur in the same order in which they occur in the original sequence.

\section*{Examples.}
1. ( \(a_{2 n}\) ) is a subsequence of any sequence \(\left(a_{n}\right)\). Note that in this example the interval between any two terms of the subsequence is the same, (i.e.,) \(n_{1}=2, n_{2}=4, n_{3}=6, \ldots n_{k}=2 \mathrm{k}\).
2. \(\left(a_{n 2}\right)\) is a subsequence of any sequence \(\left(a_{n}\right)\). Hence \(a_{n 1}=a_{1}, a_{n 2}=a_{4}, a_{n 3}=a_{9} \ldots\). . Here the interval
between two successive terms of the subsequence goes on increasing as \(k\) becomes large.
Thus the interval between various terms of a subsequence need not be regular.
3 . Any sequence ( \(a_{n}\) ) is a subsequence of itself.

\section*{Theorem: 3.7}

If a sequence \(\left(a_{n}\right)\) converges to \(I\), then every subsequence \(\left(a_{n k}\right)\) of \(\left(a_{n}\right)\) also converges to \(I\).
Proof.
Let \(\epsilon>0\) be given.
Since ( \(\mathrm{a}_{\mathrm{n}}\) ) \(\rightarrow l\) there exists \(\mathrm{m} \in \boldsymbol{N}\) such that
\(\left|a_{n}-| |<\epsilon\right.\) for all \(n \geq m\).
Now choose \(n_{k 0} \geq \mathrm{m}\).
Then \(\mathrm{k} \geq k_{0} \Rightarrow n_{k} \geq n_{k 0}\left(\because\left(n_{k}\right)\right.\) is monotonic increasing)
\(\Rightarrow n_{k} \geq \mathrm{m}\).
\(\Rightarrow\left|a_{n k}-l\right|<\epsilon(\) by 1\()\)
Thus \(\left|a_{n k}-l\right|<\epsilon\) for all \(\mathrm{k} \geq k_{0}\).
\(\therefore\left(a_{n k}\right) \rightarrow l\).
Note 1. If a subsequence of a sequence converges, then the original sequence need not converge.

\section*{Theorem :3.8}

If the subsequences ( \(a_{2 n-1}\) ) and ( \(a_{2 n}\) ) of a sequence \(\left(a_{n}\right)\) converge to the same limit \(l\)
then \(\left(a_{n}\right)\) also converges to \(l\).

\section*{Proof.}

Let \(\epsilon>0\) be given. Since \(\left(a_{2 n-1}\right) \rightarrow l\) there exists \(n_{1} \in N\) such that \(\left|a_{2 n-1}-l\right|<\epsilon\) for all \(2 n-1\)
\(\geq n_{1}\).
Similarly there exists \(n_{2} \in N\) such that \(\left|a_{2 n}-l\right|<\epsilon\) for all \(2 n \geq n_{2}\).
Let \(\mathrm{m}=\max \left\{n_{1}, n_{2}\right\}\).
Clearly \(\left|a_{n}-l\right|<\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore\left(a_{n}\right) \rightarrow l\).

Note. The above result is true even if we have \(l \rightarrow \infty\) or \(-\infty\).

Definition. Let \(\left(a_{n}\right)\) be a sequence. A natural number \(m\) is called a peak point of the sequence ( \(a_{n}\) )
if \(a_{n}<a_{\mathrm{m}}\) for all \(\mathrm{n}>\mathrm{m}\).

\section*{Example.}
1. For the sequence \((1 / n)\), every natural number is a peak point and hence the sequence has infinite number of peak point. In general for a strictly monotonic decreasing sequence every natural number is a peak point.
2. Consider the sequence \(1,1 / 2,1 / 3,-1,-1, \ldots\). . Here \(1,2,3\) are the peak points of the sequence.
3. The sequence \(1,2,3, \ldots .\). has no peak point. In general a monotonic increasing sequence has no Peak point.

\section*{Theorem :3.9}

Every sequence ( \(a_{n}\) ) has no monotonic subsequence.
Proof.
Case (i)
( \(a_{n}\) ) has infinite number of peak points. Let the peak points be
\(n_{1}<n_{2}<\ldots .<n_{k}<\ldots \ldots\)
Then \(a_{n 1}>a_{n 2}>\ldots .>a_{n k}>\ldots\).
\(\therefore\left(a_{n_{k}}\right)\) is a monotonic decreasing subsequence of \(\left(a_{n}\right)\).
Case (ii)
\(\left(a_{n}\right)\) has only a finite number of peak points or no peak points.
Choose a natural number \(n_{1}\) such that there is no peak point greater than or equal to \(n_{1}\).
Since \(n_{1}\) is not a peak point of \(\left(a_{n}\right)\), there exists \(n_{2}>n_{1}\) such that \(a_{n 2} \geq a_{n 1}\).
Again since \(n_{2}\) is not a peak point, there exist \(n_{3}>n_{2}\) such that \(a_{n 3} \geq a_{n 2}\).
Repeating this process we get a monotonic increasing subsequence ( \(a_{n_{R}}\) ) of ( \(a_{n}\) ).

Every bounded sequences has a convergent subsequences.

\section*{Proof.}

Let ( \(a_{n}\) ) be a bounded sequence. Let ( \(a_{n_{k}}\) ) be monotonic subsequence of \(\left(a_{n}\right)\).
since \(\left(a_{n}\right)\) is bounded, ( \(a_{n_{k}}\) ) is also bounded.
\(\therefore\left(a_{n_{k}}\right)\) is a bounded monotonic sequence and hence converges.
\(\therefore\left(a_{n_{k}}\right)\) is a convergent subsequence of \(\left(a_{n}\right)\).

\section*{Cauchy sequences.}

Definition. A sequence ( \(a_{n}\) ) is said to be a Cauchy sequence if given \(\epsilon>0\), there exists \(n_{0} \in N\) such that
\(\mid a_{n}-a_{m \mid}<\epsilon\) for all \(\mathrm{n}, \mathrm{m} \geq n_{0}\).
Note. In the above definition the condition \(\left|a_{n}-a_{m}\right|<\epsilon\) for all \(\mathrm{n}, \mathrm{m} \geq n_{0}\) can be written in the
following equivalent form, namely, \(\left|a_{n+p}-a_{n}\right|<\epsilon\) for all \(\mathrm{n} \geq n_{0}\) and for all positive integers p .

\section*{Examples}
1. The sequence \((1 / n)\) is a Cauchy sequence.

Proof.
\(\operatorname{Let}\left(a_{n}\right)=(1 / n)\).
Let \(\epsilon>0\) be given.
Now, \(\left|a_{n}-a_{m}\right|=|1 / \mathrm{n}-1 / \mathrm{m}|\)
\(\therefore\) If we choose \(n_{0}\) to be any positive integer greater than \(1 / \varepsilon\), we get
\(\left|a_{n}-a_{m}\right| \leq\) Efor all \(\mathrm{n}, \mathrm{m} \geq n_{0}\).
\(\therefore(1 / n)\) is a Cauchy sequence.
2. The sequence \(\left((-1)^{n}\right)\) is not a Cauchy sequence.

Proof.
Let \(\left(a_{n}\right)=\left((-1)^{n}\right)\).
\(\therefore\left|a_{n}-a_{n+1}\right|=2\).
\(\therefore\) If \(\boldsymbol{\epsilon}<2\), we cannot find \(n_{0}\) such that \(\left|a_{n}-a_{n+1}\right|<\epsilon\) for all \(\mathrm{n} \geq n_{0}\).
\(\therefore\left((-1)^{\mathrm{n}}\right)\) is not a Cauchy sequence.
3. ( n ) is not a Cauchy sequence.

Proof.
Let \(\left(a_{n}\right)=(n)\).
\(\therefore\left|a_{n}-a_{m}\right| \geq 1\) if \(\mathrm{n} \neq \mathrm{m}\).
\(\therefore\) If we choose \(\boldsymbol{\epsilon}<1\), we cannot find \(n_{0}\) such that \(\left|a_{n}-a_{m}\right|<\epsilon\) for all \(\mathrm{n}, \mathrm{m} \geq n_{0}\).
\(\therefore(\mathrm{n})\) is not a Cauchy sequence.

\section*{Theorem :3.11}

Any convergent sequence is a Cauchy sequence.

\section*{Proof.}

Let \(\left(a_{n}\right) \rightarrow l\). Then given \(\epsilon>0\), there exists \(n_{0} \in N\) such that \(\left|a_{n}-I\right|<(1 / 2) \varepsilon\) for all \(n \geq n_{0}\)
\(\therefore\left|a_{n}-a_{m}\right|=\left|a_{n}-l+l-a_{m}\right|\)
\(\leq\left|a_{n}-l\right|+\left|l-a_{m}\right|\)
\(<(1 / 2) \varepsilon+(1 / 2)=\varepsilon \quad\) for all \(\mathrm{n}, \mathrm{m} \geq n_{0}\).
\(\therefore\left(\mathrm{a}_{\mathrm{n}}\right)\) is a Cauchy sequence.

\section*{Theorem .3.12}

Any Cauchy sequence is a bounded sequence .

\section*{Proof.}

Let ( \(a_{n}\) ) be a Cauchy sequence.
Let \(\epsilon>0\) be given. Then there exists \(n_{0} \in N\) such that \(\left|a_{n}-a_{m}\right|<\epsilon\) for all \(\mathrm{n}, \mathrm{m} \geq n_{0}\).
\(\therefore\left|a_{n}\right|<\left|a_{n 0}\right|+\varepsilon\) for \(n \geq n_{0}\).
Now, let \(k=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots .\left|a_{n 0}\right|+\varepsilon\right\}\).
Then \(\mid a_{n \mid} \leq k\) for all \(n\).
\(\therefore\left(a_{n}\right)\) is a bounded sequence.

\section*{Theorem. 3.13}

Let \(\left(a_{n}\right)\) be a Cauchy sequence. If \(\left(a_{n}\right)\) has a subsequence ( \(\left.a_{n_{k}}\right)\) converging to, , then ( \(a_{n}\) ) \(\rightarrow l\).

\section*{Proof.}

Let \(\epsilon>0\) be given. Then there exists \(n_{0} \in N\) such that
\(\left|a_{n}-a_{m}\right|<(1 / 2) \epsilon\) for all \(\mathrm{n}, \mathrm{m} \geq n_{0} \ldots .\). (1)
Also since ( \(a_{n_{k}}\) ) \(\rightarrow l\), there exists \(k_{0} \in N\) such that \(\left|a_{n_{k}}-l\right|<\frac{1}{2} \varepsilon\) for all \(k \geq k_{0}\)
Choose \(n_{k}\) such that \(n_{k}>n_{k 0}\) and \(n_{0}\)
Then \(\left|a_{n}-l\right|=\left|a_{n}-a_{n k}+a_{n k}-l\right|\)
\(\leq\left|a_{n}-a_{n k}\right|+\left|a_{n k}-l\right|\)
\(=(1 / 2) \epsilon+(1 / 2) \varepsilon\)
\(=\varepsilon\) for all \(\mathrm{n} \geq n_{\mathrm{k}}\).
Hence \(\left(\mathrm{a}_{\mathrm{n}}\right) \rightarrow l\).

\section*{Theorem : 3.14 (Cauchy's General Principle of Convergence}

\section*{Sequence)}

A sequence ( \(a_{n}\) ) in \(\mathbf{R}\) is convergent iff it is a Cauchy
sequence.

\section*{Proof.}
we have proved that any convergent sequence is a Cauchy sequence.
Conversely, let ( \(a_{n}\) )be a Cauchy sequence in \(\mathbf{R}\).
\(\therefore\left(a_{n}\right)\) is a bounded sequence (Any Cauchy sequence is a bounded sequence)
\(\therefore\) There exist a subsequence ( \(a_{n_{k}}\) ) of ( \(\mathrm{a}_{\mathrm{n}}\) ) such that ( \(a_{n_{k}}\) ) \(\rightarrow l\)
\(\therefore\left(\mathrm{a}_{\mathrm{n}}\right) \rightarrow l(\) by previous theorem \()\).

\section*{UNIT - IV \\ SERIES}

\section*{Infinite series}

Definition. Let \(\left(a_{n}\right)=a_{1}, a_{2}, \ldots . . a_{n}, \ldots .\). be a sequence of real numbers. Then the formal expression \(a_{1}+a_{2}+\ldots . .+a_{n}+\ldots .\). is called an infinite series of real numbers and is denoted by \(\sum_{1}^{\infty} a_{n}\) o乏. \(a_{n}\)
Let \(s_{1}=a_{1} ; s_{2}=a_{1}+a_{2} ; s_{3}=a_{1}+a_{2}+a_{3} ; \ldots . s_{n}=a_{1}+a_{2}+\cdots+a_{n}\).
Then ( \(\mathrm{s}_{\mathrm{n}}\) ) is called the sequence of partial sums of the given series \(\sum a_{n}\).
The series \(\sum a_{n}\) is said to converge, diverge or oscillate according as the sequence of partial sums ( \(s_{n}\) ) converges, diverges or oscillates.
If \(\left(s_{n}\right) \rightarrow s\), we say that the series \(\sum a_{n}\) converges to the sum s .
We note that the behavior of a series does not change if a finite number of terms are added or altered.

\section*{Examples.}

Consider the series \(1+1+1+1\)...... Here \(s_{n}=\mathrm{n}\). Clearly the sequence \(\left(s_{\mathrm{n}}\right)\) diverges to \(\infty\).
Hence the given series diverges to \(\infty\).
2. Consider the geometric series \(1+r+r^{2}+\ldots . . .+r^{n}+\ldots\).

Here, \(\quad s_{n}=1+r+r^{2}+\ldots \ldots+r^{n-1}=\frac{1-r^{n}}{1-r}\).
Case (i) \(0<r<1\). Then \(\left(r^{n}\right) \rightarrow 0\)
Therefore, \(\left(s_{n}\right) \rightarrow \frac{1}{1-r}:\) The given series converges to the sum \(1 /(1-r)\)
Case (ii) \(r>1\).
Then \(S_{n}=\frac{r^{n}-1}{r-1}\)
Also \(\left(r^{n}\right) \rightarrow \infty\) when \(r>1\)
Hence the series diverges to \(\infty\)
Case (iii) \(\mathrm{r}=1\).
Then the series becomes \(1+1+\ldots\).
\(\left(s_{n}\right)=(n)\). which diverges to \(\infty\).
Case (iv) \(r=-1\).
Then the series becomes \(1-1+1-1+\ldots\).
\(\therefore s_{n}=\left\{\begin{array}{l}0 \text { if } n \text { is even } \\ 1 \text { if } n \text { is odd }\end{array}\right.\)
\(\therefore\left(\mathrm{s}_{\mathrm{n}}\right)\) oscillates finitely.
Hence the given series oscillates finitely.
Case (v) : \(\mathrm{r}<-1\).
\(\therefore\left(r^{n}\right)\) oscillates infinitely
\(\therefore\left(\mathrm{s}_{n}\right)\) oscillates infinitely.
Hence the given series oscillates infinitely.
Note 1. Let \(\sum a_{n}\) be a series of positive terms. Then \(\left(s_{n}\right)\) is a monotonic increasing sequence. Hence ( \(s_{n}\) ) converges or diverges to \(\infty\) according as ( \(s_{n}\) ) is bounded or unbounded. Hence the series \(\sum a_{n}\) converges or diverges to \(\infty\). Thus a series of positive terms cannot oscillate.

Note 2. Let \(\sum a_{n}\) be a convergent series of positive terms converging to the sum s . Then s is the I. U. b. of \(\left(s_{n}\right)\). Hence \(s_{n} \leq \mathrm{s}\) for all n .
Also given \(\epsilon>0\) there exists \(\mathrm{m} \in \mathbf{N}\) such that \(\mathrm{s}-\epsilon<s_{n}\) for all \(\mathrm{n} \geq \mathrm{m}\).
Hence \(s-\epsilon<S_{n} \leq s\) for all \(\mathrm{n} \leq \mathrm{m}\).

\section*{Theorem : 4.1}

Let \(\sum a_{n}\) be a convergent series converging to the sum s .
Then \(\lim _{n \rightarrow \infty} a_{n}=0\)

\section*{Proof.}
\(\lim _{n \rightarrow \infty} a_{n}=\lim \left(s_{n}-s_{n-1}\right)\) \(n \rightarrow \infty\)
\(=\lim s_{n}-\lim s_{n-1}\) \(n \rightarrow \infty \quad n \rightarrow \infty\)
\(=s-s=0\).

\section*{Theorem. 4.2}

Let \(\sum a_{n}\) converge to a and \(\sum b_{n}\) converge to b . Then \(\sum\left(a_{n} \pm b_{n}\right)\) converges to a \(\pm b\) and \(\sum k a_{n}\) converges to ka.

Proof.
Let \(s_{n}=a_{1}+a_{2}+\ldots . .+a_{n}\) and \(t_{n}=b_{1}+b_{2}+\ldots . .+b_{n}\). Then \(\left(s_{n}\right) \rightarrow a\) and \(\left(\mathrm{t}_{\mathrm{n}}\right) \rightarrow b\).
\(\therefore\left(s_{n} \pm t_{n}\right) \rightarrow a \pm \mathrm{b}\)
Also \(\left(S_{n} \pm t_{n}\right)\) is the sequence of partial sums of \(\sum\left(a_{n} \pm b_{n}\right)\)
\(\therefore \sum\left(a_{n} \pm b_{n}\right)\) converges to \(a \pm \mathrm{b}\).
Similarly \(k a_{n}\) converges to ka.

\section*{Theorem 4.3 (Cauchy's general principle of convergence in Series)}

The series \(\sum a_{n}\) is convergent iff given \(\epsilon>0\) there exists \(n_{0} \in \mathbf{N}\) such that \(\left|a_{n+1}+a_{n+2}+\cdots+a_{n+p}\right|<\epsilon\) for all \(\mathrm{n} \geq n_{0}\) and for all positive integers p .

Proof.

Let \(\sum a_{n}\) be a convergent series. Let \(s_{n}=a_{1}+\ldots . .+a_{n}\).
\(\therefore\left(s_{n}\right)\) is a convergent sequence.
\(\therefore\left(s_{n}\right)\) is a Cauchy sequence
\(\therefore\) There exists \(n_{0} \in \mathbf{N}\) such that \(\left|s_{n+p}-s_{n}\right|<\epsilon\) for all \(\mathrm{n} \geq n_{0}\) and for all \(p \in \mathbf{N}\).
\(\therefore\left|a_{n+1}+a_{n+2}+\cdots+a_{n+p}\right|<\epsilon\) for all \(\mathrm{n} \geq n_{0}\) and for all \(p \in \mathbf{N}\).
Conversely if \(\left|a_{n+1}+a_{n+2}+\cdots+a_{n+p}\right|<\epsilon\) for all \(\mathrm{n} \geq n_{0}\) and for all \(p \in \mathbf{N}\) then \(\left(s_{\mathrm{n}}\right)\) is a Cauchy sequence in \(\mathbf{R}\) and hence ( \(s_{n}\) ) is convergent.
\(\therefore\) The given series converge.

\section*{Solved Problems.}
1. Apply Cauchy's general principle of convergence to show that the series \(\sum \frac{1}{n}\) not convergent.
Solution. Let \(S_{n}=1+\frac{1}{2}+\cdots \ldots+\frac{1}{n}\)
Suppose the series \(\sum \frac{1}{n}\) is convergent.
\(\therefore\) By Cauchy's general principle of convergence, given \(\epsilon>0\) there exists \(m \in \mathbf{N}\) such that
\(\left|S_{n+p}-S_{n}\right|<\epsilon\) for all \(\mathrm{n} \geq m\) and for all \(p \in \mathbf{N}\).
\(\left|\left(1+\frac{1}{2}+\cdots+\frac{1}{-n+p}\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)\right|<\varepsilon\) for all \(n \geq m\) and for all \(p \in \mathbf{N}\).
\(\left|\frac{1}{n+1}+\frac{1}{n+2}+\cdots .+\frac{1}{n+p}\right|<\epsilon\) for all \(n \geq m\) and for all \(p \in \mathbf{N}\).
In particular if we take \(\mathrm{n}=m\) and \(\mathrm{p}=m\) we obtain
\(\frac{1}{m+1}+\frac{1}{m+2}+\cdots+\frac{1}{-m+m}>\frac{1}{2 m}+\cdots .+\frac{1}{2 m}=\frac{1}{2}\)
\(-\therefore \frac{1}{2}<\epsilon\) which is a contradiction since \(\epsilon>0\) is arbitrary.
\(\therefore\) The given series is not convergent.

\section*{Comparison test}

Theorem 4.4 (Comparison test)
i). Let \(\Sigma_{C_{n}}\) be a convergent series of positive terms. Let \(\Sigma_{a_{n}}\) be another series of positive terms. If there exists \(m \in \mathbf{N}\) such that \(a_{n} \leq c_{n}\) for all \(\mathrm{n} \geq \mathrm{m}\), then \(\Sigma_{a_{n}}\) is also convergent.
ii). Let \(\Sigma d_{\mathrm{n}}\) be a divergent series of positive terms. Let \(\Sigma \mathrm{a}_{\mathrm{n}}\) be another series of positive terms. If there exists \(m \in \mathbf{N}\) such that \(a_{n} \leq d_{n}\) for all \(n \geq m\), then \(\tilde{\Xi}_{n}\) is also divergent.

\section*{Proof:}
(i) Since the convergence or divergence of a series is not altered by the removal of a finite number
of terms we may assume without loss of generality that \(a_{n} \leq c_{n}\) for all \(n\).
Let \(s_{n}=c_{1}+c_{2}+\ldots . .+c_{n}\) and \(t_{n}=a_{1}+a_{2}+\ldots . .+a_{n}\).

Since \(a_{n} \leq c_{n}\) we have \(t_{n} \leq s_{n}\).
Now, Since \(\mathbb{E}_{n}\) is convergent, ( \(s_{n}\) ) is a convergent sequence.
\(\therefore\left(s_{n}\right)\) is a bounded sequence.
\(\therefore\) There exists a real positive number k such that \(s_{n} \leq \mathrm{k}\) for all n .
\(\therefore t_{n} \leq \mathrm{k}\) for all n
Hence \(\left(t_{n}\right)\) is bounded above.
Also \(\left(t_{n}\right)\) is a monotonic increasing sequence.
\(\therefore\left(t_{n}\right)\) converges
\(\therefore \Sigma a_{n}\) converges.
(ii)Let \({ }^{\Sigma} d_{n}\) diverge and \(a_{n} \geq d_{n}\) for all n .
\(\therefore t_{n} \geq S_{n}\).
Now, \(\left(s_{n}\right)\) is diverges to \(\infty\).
\(\therefore\left(s_{n}\right)\) is not bounded above.
\(\therefore\left(t_{n}\right)\) is not bounded above.
Further \(\left(t_{n}\right)\) is monotonic increasing and hence \(\left(t_{n}\right)\) diverges to \(\infty\).
\(\therefore \sum_{n}\) diverges to \(\infty\).

\section*{Theorem :4.5}
(i) If \(\Sigma_{C_{n}}\) converges and if \(\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{v_{n}}\right)\) exists and is finite then \(\bar{\varepsilon}\) also converges.
(ii)If \(\Sigma \frac{a_{n}}{c_{n}} d_{n}\) diverges and if \(\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{d_{n}}\right)\) exists and is greater than zero then \(\Sigma a_{n}\) diverges.

Proof
(i). Let \(\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{n_{-}}\right)=k\)

Let \(\varepsilon>0\) be given. Then there exists \(n \in \mathbf{N}\) such that \(\frac{a_{n}}{c_{n}}<k+\epsilon\) for all \(n \geq n_{1}\).
\(\therefore a_{n}<(\mathrm{k}+\epsilon) c_{n}\) for all \(\mathrm{n} \geq n_{1}\).
Also since \({ }^{\Sigma} C_{n}\) is a convergent series, \({ }^{\Sigma}(k+\epsilon) C_{n}\) is also convergent series.
\(\therefore\) By comparison test \({ }^{\Sigma} a_{n}\) is convergent.
(ii)Let \(\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{v_{n}}\right)=k>0\)

Choose \(\epsilon=\frac{1}{2} k\). Then there exists \(n_{1} \in \mathbf{N}\) such that \(\mathrm{k}-\frac{1}{2} k<\frac{a_{n}}{d_{n}}<\mathrm{k}+\frac{1}{2} k\) for all \(\mathrm{n} \geq n_{1}\).
\(\therefore \frac{a_{n}}{d_{n}}>\frac{1}{2} k\) for all \(\mathrm{n} \geq n_{1}\)
\(\therefore a_{n}>\frac{1}{2} k d_{n}\) for all \(\mathrm{n} \geq n_{1}\)
Since \(d_{n}\) is a divergent series, \(\Sigma \frac{1}{2} k_{\mathrm{d}_{n}}\) is also divergent series.
\(\therefore\) By comparison test, \(\Sigma a_{n}\) diverges.

\section*{Theorem: 4.6}
i) Let \(\Sigma c_{\mathrm{n}}\) be a convergent series of positive terms. Let \(\Sigma_{\mathrm{a}}\) be another series of positive terms. If there exists \(m \in \mathbf{N}\) such that \(\frac{a_{n+1}}{a_{n}} \leq \frac{c_{n+1}}{v_{n}}\) for all \(n \geq m\), then \(\Sigma a_{n}\) is convergent.
ii) Let \({ }^{\Sigma} d_{n}\) be a divergent series of positive terms. Let \(\widetilde{A_{n}}\) be another series of positive terms. If there exists \(m \in \mathbf{N}\) such that
\(\frac{a_{n+1}}{a_{n}} \geq \frac{d_{n+1}}{d_{n}}\) for all \(\mathrm{n} \geq \mathrm{m}\), then \(\Sigma a_{n}\) is divergent.
Proof.(i)
\(\frac{a_{n+1}}{a_{n}} \leq \frac{a_{n}}{c_{n}}\)
\(\therefore\left(\frac{a_{n}}{c_{n}}\right)\) is a monotonic decreasing sequence.
\(\therefore \frac{a_{n}}{c_{n}} \leq \mathrm{k}\) for all n where \(\mathrm{k}=\frac{a_{1}}{a_{1}}: a_{n} \leq k c_{n}\) for all \(n \in \mathrm{~N}\).
Now, \(\Sigma_{C_{n}}\) is convergent. Hence \(\Sigma_{k C_{n}}\) is also a convergent series of positive terms. \(\therefore \bar{E}_{\mathrm{n}}\) is also convergent
(ii)Proof is similar to that of (i).

\section*{Theorem .:4.7}

The harmonic series \(\sum \frac{1}{n^{p}}\) converges if \(p>1\) and if \(p \leq 1\).

\section*{Proof.}

Case (i) Let \(\mathrm{p}=1\).
Then the series becomes \(\Sigma(1 / n)\) which diverges.
Case (ii) Let \(\mathrm{p}<1\).
Then \(n^{p}<n\) for all \(n\).
\(\therefore \frac{1}{n^{p}}>\frac{1}{n}\) for all \(n\)
\(\therefore\) By comparison test \(\sum \frac{1}{n^{p}}\) diverges.
Case (iii) Let \(\mathrm{p}>1\).
Let \(\mathrm{s}_{\mathrm{n}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots \cdot+\frac{1}{n^{p}}\)
ThenS \(2^{n+1}-1=1+\frac{1}{2^{p}}+\cdots \cdot+\frac{1}{\left(2^{n+1}-1\right)^{p}}\)
\(=1+\left(\frac{1}{2^{p}}+\frac{1}{3^{p}}\right)+\left(\frac{1}{4^{p}}+\frac{1}{5^{p}}+\frac{1}{6^{p}}+\frac{1}{7^{p}}\right)+\cdots \cdot+\left(\frac{1}{\left(2^{n}\right)^{p}}+\frac{1}{\left(2^{n+1}\right)^{p}}+\ldots .+\frac{1}{\left(2^{n+1}-1\right)^{p}}\right)\)
\(<1+2\left(\frac{1}{2^{p}}\right)+4\left(\frac{1}{4^{p}}\right)+\cdots \cdot+2^{n}\left(\frac{1}{\left(2^{n}\right)^{p}}\right)\)
\(=1+\frac{1}{2^{p-1}}+\frac{1}{2^{2 p-2}}+\frac{1}{2^{(p-1) n}}\)
\(\therefore s_{2^{n+1}-1}<1+\frac{1}{2^{p-1}}+\left(\frac{1}{2^{p-1}}\right)^{2}+\cdots . .+\left(\frac{1}{2^{p-1}}\right)^{n}\)
Now, since \(p>1, p-1>0\)
Hence
\(\frac{1}{2^{p-1}}<1\)

Therefore \(1+\frac{1}{2^{p-1}}+\left(\frac{1}{2^{p-1}}\right)^{2}+\cdots \ldots+\left(\frac{1}{2^{p-1}}\right)^{n}<\frac{1}{1-\frac{1}{2^{p-1}}}=k\) (say)
\(\therefore s_{2^{n+1}-1}<k\)
Now let \(n\) be any positive integer. Choose \(m \in N\) such that \(n \leq 2^{m+1}-1\). Since \(\left(s_{n}\right)\) is a monotonic increasing sequence , \(s_{n} \leq S_{2} m+1-1\).

Hence \(s_{n}<\mathrm{k}\) for all n .
Thus \(\left(s_{n}\right)\) is a monotonic increasing sequence and is bounded above.
\(\therefore\left(s_{n}\right)\) is convergent.
\(\therefore \sum \frac{1}{n^{p}}\) is convergent.

\section*{Solved problems.}
1. Discuss the convergence of the series \(\sum \frac{1}{\sqrt{\left(n^{3}+1\right)}}\)

\section*{Solution.}
\(\frac{1}{\sqrt{\left(\mathrm{n}^{3}+1\right)}}<\frac{1}{n^{\frac{3}{2}}}\)
Also \(\sum \frac{1}{n^{\frac{8}{2}}}\) is convergent
\(\therefore\) By comparison test, \(\sum \frac{1}{\sqrt{\left(n^{3}+1\right)}}\) is convergent.
2. Discuss the convergence of the series \(\sum_{3}^{\infty}(\log \log n)^{-\log n}\).

\section*{Solution.}

Let \(a_{n}=(\log \log n)^{-\log n}\)
\(\therefore a_{n}=n^{-\theta n}\) where \(\theta_{n}=\log (\log \log n)\).
Since \(\lim _{n \rightarrow \infty} \log \log \log n=\infty\), there exists \(m \in \mathbf{N}\) such that \(\theta n \geq 2\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore n^{-\theta} \leq n^{-2}\) for all \(n \geq m\).
\(\therefore a_{n} \leq n^{-2}\) for all \(\mathrm{n} \geq \mathrm{m}\).
Also \(\Sigma n^{-2}\) is convergent.
\(\therefore\) By comparison test the given series is convergent.
Show that \(\sum \frac{1}{4 n^{2}-1}=\frac{1}{2}\)

\section*{Solution.}

Let \(a_{n}=\frac{1}{4 n^{2}-1}\)
Clearly \(a_{n}<\frac{1}{n^{2}} \quad\) Also \(\sum \frac{1}{n^{2}}\) is convergent
\(\therefore\) by comparison test, the given series converges
Now, \(\mathrm{a}_{\mathrm{n}}=\frac{1}{4 n^{2}-1}=\frac{1}{2}\left[\frac{1}{2 n-1}-\frac{1}{2 n+1}\right]\) (by partial fraction)
\(\therefore S_{n}=a_{1}+a_{2}+\ldots .+a_{n}\)
\(=\frac{1}{2}\left[\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots \cdot+\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)\right]\)
\(=\frac{1}{2}\left[\left(1-\frac{1}{2 n+1}\right)\right]\)
\(\therefore \lim _{n \rightarrow \infty} s_{n}=\frac{1}{2}\)
Hence \(\sum \frac{1}{4 n^{2}-1}=\frac{1}{2}\)

\section*{Theorem 4.8 (Kummer's test)}

Let \(\Sigma a_{n}\) be a given series of positive terms and \(\sum \frac{1}{d_{n}}\) be a series of a positive terms diverging to \(\infty\). Then
(i) \(\sum a_{n}\) converges if \(\lim _{n \rightarrow \infty}\left(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}\right)>0\) and
(ii) \(\sum a_{n}\) diverges if \(\lim _{n \rightarrow \infty}\left(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}\right)<0\).

Proof.
(i) Let \(\lim _{n \rightarrow \infty}\left(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}\right)=l>0\).

We distinguish two cases.
Case (i) \(l\) is finite.
Then given \(\epsilon>0\), there exists \(m \in \mathbf{N}\) such that
\(l-\epsilon<d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}<l+\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\)
\(\therefore d_{n} a_{n}-d_{n+1} a_{n+1}>(l-\epsilon) a_{n+1}\) for all \(\mathrm{n} \geq \mathrm{m}\).

Taking \(\epsilon=(1 / 2) l\), we get \(\underline{d}_{n} a_{n}-d_{n+1} a_{n+1}>(1 / 2) l a_{n+1}\) for all \(n \geq m\).
Now, let \(n \geq m\)
\(\therefore d_{\mathrm{m}} a_{\mathrm{m}}-d_{\mathrm{m}+1} a_{\mathrm{m}+1}>(1 / 2) l a_{\mathrm{m}+1}\)
\(d_{m+1} a_{m+1}-d_{m+2} a_{m+2}>(1 / 2) \quad l a_{m+2}\)
...... ....
...................................................................
\(d_{n-1} a_{n-1}-d_{n} a_{n}>(1 / 2) l a_{n}\)
Adding, we get
\(d_{m} a_{m}-d_{n} a_{n}>(1 / 2) l\left(a_{m+1}+\ldots .+a_{n}\right)\)
\(d_{m} a_{m}-d_{n} a_{n}>(1 / 2) l\left(s_{n}-s_{m}\right) \quad\) where \(s_{n}=a_{1}+a_{2}+\ldots .+a_{n}\)
\(d_{m} a_{m}>(1 / 2) l\left(s_{n}-s_{m}\right)\)
\(s_{n}<\frac{2 d_{m} a_{m}+l s_{m}}{l}\) which is independent of \(n\)
\(\therefore\) The sequence \(\left(s_{n}\right)\) of partial sums is bounded.
\(\therefore a_{n}\) is convergent.
Case (ii) \(l=\infty\).
Then given real number \(\mathrm{k}>0\) there exists a positive integer m such that \(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}>k\) for all \(n \geq m\).
\(\therefore d_{n} a_{n}-d_{n+1} a_{n+1}>k a_{n+1}\) for all \(\mathrm{n} \geq \mathrm{m}\).
Now, let \(n \geq m\). Writing the above inequality for \(m, m+1, \ldots .,(n-1)\) and adding we get
\(d_{m} a_{m}-d_{n} a_{n}>k\left(a_{m+1}+\cdots+a_{n}\right)\)
\(=\mathrm{k}\left(s_{n}-s_{m}\right)\).
\(\therefore d_{m} a_{m}>k\left(s_{n}-s_{m}\right)\).
\(\therefore \mathrm{S}_{\mathrm{n}}<\frac{d_{m} a_{m}}{k}+s_{m}\)
\(\therefore\) The sequence \(\left(s_{n}\right)\) is bounded and hence \(\sum a_{n}\) is convergent.
(ii) \(\lim _{n \rightarrow \infty}\left(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}\right)=l<0\)

Suppose \(l\) is finite.

Choose \(\epsilon>0\) such that \(l+\epsilon<0\). Then there exists \(m \in \mathbf{N}\) such that
\(l+\epsilon<d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}<l+\epsilon<0\) for all \(\mathrm{n} \geq \mathrm{m}\).
\(\therefore d_{n} a_{n}<d_{n+1} a_{n+1}\) for all \(\mathrm{n} \geq \mathrm{m}\).
Now let \(\mathrm{n} \geq \mathrm{m}\)
\(\therefore d_{m} a_{m}<d_{m+1} a_{m+1}\)
\(d_{n-1} a_{n-1}<d_{n} a_{n}\)
\(\therefore \quad d_{m} a_{m}<d_{n} a_{n}\).
\(\therefore \quad a_{n}>\frac{d_{m} a_{m}}{d_{n}}\) Also by hypothesis \(\sum \frac{1}{d_{n}}\) is divergent
Hence \(\sum_{n=1}^{\infty} \frac{d_{m} a_{m}}{d_{n}}\) is divergent.
\(\therefore\) By comparison test \(\Sigma a_{n}\) is divergent.
The proof is similar if \(l=-\infty\).

\section*{Corollary 1.(D' Alembert's ratio test)}

Let \(\sum a_{n}\) be a series of positive terms. Then \(\Sigma a_{n}\) converges if \(\lim _{\boldsymbol{n} \rightarrow \infty} \xrightarrow[a_{n+1}]{a_{n}}>1\) and diverges
\(\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}<1\).
Proof.
The series \(1+1+1+\ldots\). is divergent
\(\therefore\) We can put \(d_{n}=1\) in Kummer's test.
Then \(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}=\frac{a_{n}}{a_{n+1}}-1\)
Hence \(\Sigma a_{n}\) converges iflim \({ }_{n \rightarrow \infty}\left(\frac{a_{n}}{a_{n+1}}-1\right)>0\)
Therefore \(\sum a_{n}\) converges iflim \({ }_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1\)
Similarly \(\sum a_{n}\) diverges if \(\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}<1\).

\section*{Corollary 2. (Raabe's test)}

Let \(\Sigma a_{n}\) be a series of positive terms. Then \(\Sigma a_{n}\) converges if \(\lim _{n \rightarrow \infty} n\left(\frac{a_{n}}{a_{n+1}}-1\right)>1\) and diverges if \(\lim _{n \rightarrow \infty} n\left(\frac{a_{n}}{a_{n+1}}-1\right)<1\).
Proof. The series \(\sum_{n}^{1}\) is divergent.
\(\therefore\) We can put \(d_{n}=n\) in Kummer's test.
Then \(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}=n \frac{a_{n}}{a_{n+1}}-(n+1)\)
\[
=\mathrm{n}\left(\frac{a_{n}}{a_{n+1}}-1\right)-1
\]
\(\therefore \Sigma a_{n}\) converges if \(\lim _{n \rightarrow \infty} n\left(\frac{a_{n}}{a_{n+1}}-1\right)>1\) and diverges if \(\lim _{n \rightarrow \infty} n\left(\frac{a_{n}}{a_{n+1}}-1\right)<1\)

\section*{Theorem: 4.9 (Gauss's test)}

Let \(\Sigma a_{n}\) be a series of positive terms such that \(\frac{a_{n}}{a_{n+1}}=1+\frac{\beta}{n}+\frac{r_{n}}{n^{p}}\) where \(p>1\) and \(\left(r_{n}\right)\) is a bounded
sequence. Then the series \(\sum a_{n}\) converges if \(\beta>1\) and diverges if \(\beta \leq 1\).
Proof:
\(\frac{a_{n}}{a_{n+1}}=1+\frac{\beta}{n}+\frac{r_{n}}{n^{p}}, \mathrm{p}>1\)
\(\mathrm{n}\left(\frac{a_{n}}{a_{n+1}}-1\right)=n\left(\frac{\beta}{n}+\frac{r_{n}}{n^{p}}\right)=\beta+\frac{r_{n}}{n^{p-1}}\)
Now, since \(p>1, \lim _{n \rightarrow \infty} \frac{1}{n^{p-1}}=0\)
Also \(\left(r_{n}\right)\) is a bounded sequence.
Hence \(\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{p-1}}=0\)
\(\therefore \lim _{n \rightarrow \infty} \mathrm{n}\left(\frac{a_{n}}{a_{n+1}}-1\right)=\beta\)
\(\therefore\) By Raabes's test \(\Sigma a_{n}\) converges if \(\beta>1\) and \(\Sigma a_{n}\) diverges if \(\beta<1\).
If \(\beta=1\), Raabes's test fails. In this case we apply Kummer's test by taking \(d_{n}=n \log n\)
Now, \(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}=n \log n\left(1+\frac{1}{n}+\frac{r_{n}}{n^{p}}\right)-(n+1) \log (n+1)\)
\[
\begin{aligned}
& =-(\mathrm{n}+1) \log \left(1+\frac{1}{n}\right)+\frac{r_{n} \log n}{n^{p-1}} \\
& =-\log \left(1+\frac{1}{n}\right)^{n+1}+\frac{r_{n} \log n}{n^{p-1}}
\end{aligned}
\]

Now, by hypothesis \(\left(r_{n}\right)\) is abounded sequence and \(\left(\frac{\log n}{n^{p-1}}\right) \rightarrow 0\)
\(\therefore\left(\frac{r_{n} \log n}{n^{p-1}}\right) \rightarrow 0\)
\(\lim _{n \rightarrow \infty}\left(d_{n} \frac{a_{n}}{a_{n+1}}-d_{n+1}\right)=-\log e=-1<0\)
Hence by Kummer's test \(\sum a_{n}\) diverges

\section*{Solved problems.}
1. Test the convergence of the series \(\frac{1}{3}+\frac{1.2}{3.5}+\frac{1.2 .3}{3.5 .7}+\cdots \ldots\)

\section*{Solution:}

Let \(\mathrm{a}_{\mathrm{n}}=\frac{1.2 .3 \ldots n}{3.5 .7 \ldots(2 n+1)}\)
\(\frac{a_{n}}{a_{n+1}}=\frac{2 n+3}{n+1}=\frac{2+\frac{\pi}{n}}{1+\frac{1}{n}}\)
\(\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=2>1\)
Therefore by D' Alembert's ratio test \(\Sigma a_{n}\) is convergent.

\section*{Theorem 4.10 (Cauchy's root test)}

Let \(\sum a_{n}\) be a series of positive terms. Then \(\sum a_{n}\) is convergent if \(\lim _{n \rightarrow \infty} a_{n}^{1 / n}<1\) and divergent if \(\lim _{n \rightarrow \infty} a_{n}^{1 / n}>1\).

Proof.
Case(i) let \(\lim _{n \rightarrow \infty} a_{n}{ }^{\bar{n}}=l<1\).
Choose \(\epsilon>0\) such that \(l+\epsilon<1\).
Then there exists \(m \in N\) such that \(a_{n}{ }^{1 / \mathrm{n}}<l+\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\)
\(\therefore a_{n<}<(l+\epsilon)^{n}\) for all \(\mathrm{n} \geq \mathrm{m}\).
Now since \(l+\epsilon<1, \Sigma(l+\epsilon)^{n}\) is convergent.
\(\therefore\) By comparison test \(\sum a_{n}\) is convergent.

Case (ii) Let \(\lim _{n \rightarrow \infty} a_{n}^{1 / n}=l>1\).
Choose \(\epsilon>0\) such that \(l-\epsilon>1\).
Then there exists \(\mathrm{m} \in \mathbf{N}\) such that \(a_{n}^{1 / n}>l-\epsilon\) for all \(\mathrm{n} \geq \mathrm{m}\)
\(\therefore \mathrm{a}_{\mathrm{n}}>(l-\epsilon)\) for all \(\mathrm{n} \geq \mathrm{m}\).
Now, since \(l-\epsilon>1, \Sigma(l-\epsilon)^{n}\) is divergent
\(\therefore\) By comparison test, \(\Sigma a_{n}\) is divergent.

\section*{Problems:}
1. Test the convergence of \(\sum \frac{1}{(\log n)^{n}}\)

\section*{Solution:}

Let \(\mathrm{a}_{\mathrm{n}}=\frac{1}{(\log n)^{n}}\)
\(\sqrt[n]{a_{n}}=\frac{1}{\log n}\)
\(\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=0<1\)
\(\therefore\) by Cauchy's root test \(\sum \frac{1}{(\log n)^{n}}\) converges.
2. Prove that the series \(\sum e^{-\sqrt{n}} x^{n}\) converges if \(0<\mathrm{x}<1\) and diverges if \(\mathrm{x}>1\).

\section*{Solution:}

Let \(\mathrm{a}_{\mathrm{n}}=e^{-\sqrt{n}} x^{n}\)
\(a_{n}^{1 / n}=\left(e^{-\sqrt{n}} x^{n}\right)^{1 / n}\)
\(\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\mathrm{x}\)

Hence by Cauchy's root test the given series converges if \(0<x<1\) and diverges if \(x>1\).

\section*{UNIT - V}

\section*{ALTERNATIVE SERIES}

Definition: A series whose terms are alternatively positive and negative is called an alternating series.
Thus an alternating series is of the form
\(a_{1}-a_{2}+a_{3}-a_{4}+\ldots . . . . . . . . . . . .=\Sigma(-1)^{n+1} a_{n}\) where \(a_{n}>0\) for all \(n\).

\section*{For example}
i) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\) \(\qquad\) \(=\Sigma(-1)^{n+1}\left(\frac{1}{n}\right)\) is an alternating series.
ii) \(2-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\ldots \ldots . . . . . . . .=\sum(-1)^{n+1}\left(\frac{n+1}{n}\right)\) is an alternating series.

We now prove a test for convergence of an alternating series.

\section*{Theorem :5.1( Leibnitz's test )}

Let \(\sum(-1)^{n+1} a_{n}\) be an alternating series whose terms an satisfy the following conditions i) \(\left(a_{n}\right)\) is a monotonic decreasing sequence.
ii) \(\lim _{n \rightarrow \infty} a_{n}=0\).

Then the given alternating series converges.

\section*{Proof:}

Let \(\left(s_{n}\right)\) denote the sequence of partial sums of the given series.
Then \(s_{2 n}=a_{1}-a_{2}+a_{3}-a_{4}+\) \(\qquad\) \(+a_{2 n-1}-a_{2 n}\)
\(s_{2 n+2}=s_{2 n}+a_{2 n+1}-a_{2 n+2}\)
Therefore, \(s_{2 n+2}-s_{2 n}=\left(a_{2 n+1}-a_{2 n+2}\right) \geq 0\) (by (i)).
Therefore, \(s_{2 n+2} \geq s_{2 n}\).
Therefore, \(\left(s_{2 n}\right)\) is a monotonic increasing sequence.
Also, \(s_{2 n}=a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\) \(\qquad\) \(-\left(a_{2 n-2}-a_{2 n-1}\right)-a_{2 n}\)
\(\leq a_{1}\) (by (i)).
Therefore, \(\left(s_{2 n}\right)\) is bounded above.
Therefore, \(\left(s_{2 n}\right)\) is a convergent sequence.
Let \(\left(s_{2 n}\right) \rightarrow s\).
Now, \(s_{2 n+1}=s_{2 n}+a_{2 n+1}\).
Therefore, \(\lim _{n \rightarrow \infty} \mathrm{~s}_{2 n+1}=\lim _{n \rightarrow \infty} \mathrm{~s}_{2 n}+\lim _{n \rightarrow \infty} \mathrm{a}_{2 n+1}=\mathrm{s}+0=\mathrm{s}(\) by \((\mathrm{i}))\)
Therefore, \(\left(s_{2 n+1}\right) \rightarrow \mathrm{s}\).
Thus the subsequences ( \(s_{2 n}\) ) and ( \(s_{2 n+1}\) ) converges to the same limits.
Therefore, \(\left(\mathrm{s}_{\mathrm{n}}\right) \rightarrow \mathrm{s}\) ( by theorem 3.29).
Therefore, The given series converges.
Problem : 1 Show that the series \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\) \(\qquad\) converges.
Solution : The given series is \(\sum(-1)^{n+1} a_{n}\) where \(a_{n}=\frac{1}{n}\). Clearly \(a_{n}>a_{n+1}\) for all \(n\) and hence \(\left(a_{n}\right)\) is monotonic decreasing.
Also \(\lim _{n \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0\).
\(\therefore\) By Leibnitz's test the given series converges.

Problem : 2 Show that the series \(\sum \frac{(-1)^{n+1}}{\log (n+1)}\) converges.
Solution : Let \(a_{n}=\frac{1}{\log (n+1)}\).
Clearly \(\left(a_{n}\right) \rightarrow 0\) as \(n \rightarrow \infty\).
Also \(\frac{1}{\log n}>\frac{1}{\log (n+1)}\) for all \(n \geq 2\).
\(\therefore\) By Leibnitz's test the given series converges.

\section*{Absolute convergence}

Definition : A series \(\sum a_{n}\) is said to be absolutely convergent if the series \(\sum\left|a_{n}\right|\) is convergent.
Example : The series \(\sum \frac{(-1)^{n}}{n^{2}}\) is absolutely convergent, for \(\sum\left|\frac{(-1)^{n}}{n^{2}}\right|=\sum \frac{1}{n^{2}}\) which is convergent.

\section*{Theorem: 5.2}

Any absolutely convergent series is convergent.

\section*{Proof :}

Let \(\sum a_{n} b e\) absolutely convergent.
\(\therefore \quad \sum \mid a_{n} \|\) is convergent.
Let \(s_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\) \(\qquad\) \(+a_{n}\) and \(t_{n}=\left|a_{1}\right|+\left|a_{2}\right|+\) \(\qquad\) \(+\left|a_{n}\right|\)
By hypothesis \(\left(t_{n}\right)\) is convergent and hence is a Cauchy sequence
Hence given \(\varepsilon>0\), there exist \(\mathrm{n}_{1} \in \mathrm{~N}\) such that \(\left|t_{n}-t_{m}\right|<\varepsilon\) for all \(n, m>n_{1}\) \(\qquad\)
(1)

Now let \(\mathrm{m}>\mathrm{n}\).
Then \(\left|s_{n}-s_{m}\right|=\left|a_{n+1}+a_{n+2}+\ldots \ldots \ldots \ldots \ldots .+a_{m}\right|\)
\(\leq\left|a_{n+1}\right|+\left|a_{n+2}\right|+\) \(\qquad\) \(+\left|a_{m}\right|\)
\(=\left|t_{n}-t_{m}\right|<\varepsilon\) for all \(n, m>n_{1}\) (by (i)).
\(\therefore\left(s_{n}\right)\) is a Cauchy sequence in \(R\) and hence is convergent
\(\therefore \sum a_{n}\) is a convergent series.

Definition : A series \(\sum a_{n}\) is said to be conditionally convergent if it is convergent but not absolutely convergent.
Example : The series \(\sum \frac{(-1)^{n}}{n^{2}}\) is conditionally convergent.

\section*{Theorem: 5.3}

In a absolutely convergent series, the series formed by its positive terms alone is convergent and the series formed by its negative terms alone is convergent and conversely.

\section*{Proof:}

Let \(\sum a_{n}\) be the given absolutely convergent series.
We define \(\mathrm{p}_{\mathrm{n}}=\left\{\begin{array}{l}a_{n} \text { if } a_{n}>0 \\ 0 \text { if } a_{n} \leq 0\end{array}\right.\) and \(_{\mathrm{n}}=\left\{\begin{array}{c}0 \text { if } a_{n} \geq 0 \\ -a_{n} \text { if } a_{n}<0\end{array}\right.\)
(i.e) \(p_{n}\) is a positive terms of the given series and \(q_{n}\) is the modulus of a negative term.
\(\sum p_{n}\) is the series formed with the positive terms of the given series and \(q_{n}\) is the series formed with the moduli of the negative terms of the given series.
Clearly \(\mathrm{p}_{\mathrm{n}} \leq\left|a_{n}\right|\) land \(\mathrm{q}_{\mathrm{n}} \leq|a \mathrm{n}|\) for all n .
Since the given series is absolutely convergent, \(\Sigma\left|a_{n}\right|\) is a convergent series of positive terms Hence by comparison test \(\sum p_{n}\) and \(\sum q_{n}\) are convergent.
Conversely \(\sum p_{n}\) and \(\Sigma q_{n}\) are converge to \(p\) and \(q\) respectively. We claim that \(\sum a_{n}\) is
absolutely convergent.
We have \(\left|a_{n}\right|=p_{n}+q_{n}\)
\(\therefore \sum\left|a_{n}\right|=\sum\left(p_{n}+q_{n}\right)\)
\(=\sum p_{\mathrm{n}}+\sum \mathrm{q}_{\mathrm{n}}\)
\(=p+q\).
\(\therefore \sum a_{n}\) is absolutely convergent

\section*{Theorem: 5.4}

If \(\sum a_{n}\) is an absolutely convergent series and \(\left(b_{n}\right)\) is a bounded sequence, then the series \(\Sigma\) \(a_{n} b_{n}\) is an absolutely convergent series.

\section*{Proof:}
since \(\left(\mathrm{b}_{\mathrm{n}}\right)\) is a bounded series, there exist a real number \(\mathrm{k}>\mathrm{o}\) such that \(\quad\left|b_{n}\right| \leq \mathrm{k}\) for all n .
\(\left|a_{n} b_{n}\right|=\left|a_{n}\right|\left|b_{n}\right|\)
\(\leq \mathrm{k}\left|a_{n}\right|\) for all n .
Since \(\sum a_{n}\) is absolutely convergent \(\sum \mid a_{n} \|\) is convergent.
\(\therefore \sum \mathrm{k}\left|a_{n}\right|\) is convergent.
\(\therefore\) By comparison test, \(\Sigma\left|a_{n} b_{n}\right|\) is convergent.
\(\therefore \quad \sum a_{n} b_{n}\) is an absolutely convergent.
Problem 1 : Test the convergence of \(\sum \frac{(-1)^{n_{\text {sinn }}}}{n^{8}}\)
Solution: We have \(\left|\frac{(-1)^{n} \sin n \alpha}{n^{8}}\right| \leq \frac{1}{n^{8}} \quad(\) since, \(|\sin \theta| \leq 1)\)
\(\therefore\) By comparison test the series is a absolutely convergent.

\section*{Tests For Convergence of Series Of Arbitrary Terms}

Theorem: 5.5
Let \(\left(a_{n}\right)\) be a bounded sequence and \(\left(b_{n}\right)\) be a monotonic decreasing bounded sequence. Then the series \(\sum a_{n}\left(b_{n}-b_{n+1}\right)\) is absolutely convergent.

\section*{Proof:}

Since \(\left(a_{n}\right)\) and \(\left(b_{n}\right)\) are bounded sequences there exists a real number \(\mathrm{k}>0\) such that \(\left|\mathrm{a}_{\mathrm{n}}\right| \leq\) k and
\(\left|\mathrm{b}_{\mathrm{n}}\right| \leq k\) for all n .
Let \(s_{n}\) denote the partial sum of the series \(\sum\left|a_{n}\left(b_{n}-b_{n+1}\right)\right|\)
\(\therefore s_{n}=\sum_{r=1}^{n} \mid a_{r}\left(b_{r}-b_{r+1}\right)\)
\(=\sum_{r=1}^{n}\left|a_{r}\right|\left(b_{r}-b_{r+1}\right)\)
\(\leq \mathrm{k} \sum_{r=1}^{n}\left(b_{r}-b_{r+1}\right)\)
\(=\mathrm{k}\left(b_{1}-b_{n+1}\right)\)
\(\leq k\left(\left|b_{1}\right|+\left|b_{n+1}\right|\right)\)
\(\leq k(k+k)=2 k^{2}\)
\(\therefore\left(s_{n}\right)\) is a bounded sequence.
\(\therefore \sum\left|a_{n}\left(b_{n}-b_{n+1}\right)\right|\) is convergent.
Hence \(\sum a_{n}\left(b_{n}-b_{n+1}\right)\) is absolutely convergent.

\section*{Theorem: 5.6 (Dirichlet's test)}

Let \(\Sigma a_{n}\) be a series whose sequence of partial sums \(\left(s_{n}\right)\) is bounded. Let \(\left(b_{n}\right)\) be a monotonic decreasing sequence converging to 0 . Then the series \(\sum a_{n} b_{n}\) converges.

\section*{Proof:}

Let \(t_{n}\) denote the partial sum of the series \(\sum a_{n} b_{n}\)
\(\therefore t_{n}=\sum_{r=1}^{n} a_{r} b_{r}\)
\(=s 1 \mathrm{~b} 1+\sum_{r=2}^{n}\left(s_{r}-s_{r-1}\right) b_{r} \quad\) (Since \(\left.s_{r}-s_{r-1}=\mathrm{a}_{\mathrm{r}}\right)\)
\(=\sum_{r=1}^{n-1}\left(b_{r}-b_{r+1}\right) s_{r}+s_{n} b_{n}\)
Since \(\left(s_{n}\right)\) is bounded and \(\left(b_{n}\right)\) is a monotonic decreasing bounded sequence \(\sum_{r=1}^{n-1}\left(b_{r}-b_{r+1}\right) s_{r}\)
is a convergent sequence.
Also since \(\left(s_{n}\right)\) is bounded and \(\left(b_{n}\right) \rightarrow 0,\left(s_{n} b_{n}\right) \rightarrow 0\)
From (1) it follows that \(\left(t_{n}\right)\) is convergent.
Hence \(\sum a_{n} b_{n}\) converges.

\section*{Theorem:5.7 (Abel's test)}

Let \(\Sigma a_{n}\) be a convergent series. Let \(\left(b_{n}\right)\) be a bounded monotonic sequence. Then \(\Sigma a_{n} b_{n}\) is convergent.

\section*{Proof:}

Since ( \(b_{n}\) ) be a bounded monotonic sequence, \(\left(b_{n}\right) \rightarrow b(\) say \()\)
Let \(c_{n}=\left\{\begin{array}{l}b-b_{n} \text { if }\left(b_{n}\right) \text { is monotonic increasing } \\ b_{n}-b \text { if }\left(b_{n}\right) \text { is monotonic decreasing }\end{array}\right.\)
\(\therefore a_{n} c_{n}=\left\{\begin{array}{l}a_{n} b-a_{n} b_{n} \text { if }\left(b_{n}\right) \text { is monotonic increasing } \\ a_{n} b_{n}-a_{n} \text { bif }\left(b_{n}\right) \text { is monotonic decreasing }\end{array}\right.\)
\(\therefore a_{n} b_{n}=\left\{\begin{array}{l}b a_{n}-a_{n} c_{n} \text { if }\left(b_{n}\right) \text { is monotonic increasing } \\ b a_{n}+a_{n} c_{n} \text { if }\left(b_{n}\right) \text { is monotonic decreasing }\end{array}\right.\).
Clearly \(\left(c_{n}\right)\) is a monotonic decreasing sequence converging to 0 . Also since \(\Sigma a_{n}\) is a convergent series its sequence of partial sums is bounded.
\(\therefore\) by Dirichlet's test \(\Sigma a_{n} c_{n}\) is convergent.

Also \(\Sigma a_{n}\) is convergent.
\(\Sigma b a_{n}\) is convergent.
Hence by (1) \(\Sigma a_{n} b_{n}\) is convergent.

\section*{Problems:}
1. Show that convergence of \(\sum a_{n}\) implies the convergence of \(\sum \frac{a_{n}}{n}\)

\section*{Solution:}

Let \(\sum a_{n}\) be convergent
The sequence \((1 / n)\) is a bounded monotonic sequence.
Hence by Abel's test \(\sum \frac{a_{n}}{n}\) is convergent.2. Prove that \(\sum_{n=2}^{\infty} \frac{\sin n}{\log n}\) is convergent.

\section*{Solution:}

Let \(a_{n}=\sin n\) and \(b_{n}=1 / \log n\).
Clearly \(\left(b_{n}\right)\) is a monotonic decreasing sequence converging to 0 .
\(s_{n}=\sin 2+\sin 3+\ldots \ldots .+\sin (n+1)\)
\(=\frac{1}{2} \operatorname{cosec} \frac{1}{2}\left[\cos \left(\frac{3}{2}\right)-\cos \left(\frac{2 n+1}{2}\right)\right]\)
\(\therefore\left|s_{n}\right| \leq \operatorname{cosec}\left(\frac{1}{2}\right)\)
\(\left(s_{n}\right)\) is a bounded sequence.
Hence by Dirichlet's test \(\sum_{n=2}^{\infty} \frac{\sin n}{\log n}\) is convergent

\section*{Exercise:}
1. Show that the series \(\sum \frac{\sin n \theta}{n}\) converges for all values of \(\theta\) and \(\sum \frac{\cos n \theta}{n}\) converges if \(\theta\) is not a multiple of \(2 \pi\).

\section*{MULTIPLICATION OF SERIES}

Definition : Let \(\sum a_{n}\) and \(\sum b_{n}\) be two series.
Let \(\mathrm{c}_{1}=\mathrm{a}_{1} \mathrm{~b}_{1}\)
\(c_{2}=a_{1} b_{2}+a_{2} b_{1}\)
\(c_{3}=a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}\)
\(\qquad\)
\(c_{n}=a_{1} b n+a_{2} b_{n-1}+a_{3} b_{n-2}+\) \(\qquad\) \(+a_{n} b_{1}\)

Then the series \(\sum c_{n}\) is called the Cauchy product of \(\sum a_{n}\) and \(\Sigma b_{n}\).

\section*{Example :}

Consider the series \(\sum \frac{(-1)^{n-1}}{(\sqrt{n})}\)

We take the Cauchy product of the series with itself.

Let \(a_{n}=\frac{(-1)^{n 1}}{(\sqrt{n})}=b_{n}\).
Then \(c_{n}=a_{1} b n+a_{2} b_{n-1}+a_{3} b_{n-2}+\) \(\qquad\) \(+a_{n} b_{1}\).
\(=(-1)^{n-1}\left[\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{2} \sqrt{n-1}}+\frac{1}{\sqrt{3} \sqrt{n-2}}+\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .+\frac{1}{\sqrt{n}}\right]\)
\(\therefore\left|c_{n}\right| \geq\left[\frac{1}{\sqrt{n} \sqrt{n}}+\frac{1}{\sqrt{n} \sqrt{n}}+\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+\frac{1}{\sqrt{n} \sqrt{n}}\right]\)
\(=\mathrm{n} \frac{1}{n}=1\).
\(\therefore\left|c_{n}\right| \geq 1\) for all \(\mathrm{n} \in \mathrm{N}\).
\(\therefore\) The Cauchy product \(\sum c_{n}\) is divergent.
However the given series \(\sum \frac{(-1)^{n-1}}{(\sqrt{n})}\) converges (by Leibnitz's test ).
Thus the Cauchy product of two convergent series need not converges.

\section*{Theorem: 5.8 (Abel's theorem).}

If \(\sum a_{n}\) and \(\sum b_{n}\) converge to \(a\) and \(b\) respectively and if the Cauchy product \(\quad \sum c_{n}\) converges to c , then \(\mathrm{c}=\mathrm{ab}\).

\section*{Proof:}

Let \(A_{n}=a_{1}+a_{2}+\) \(+a_{n}\).
\(\mathrm{B}_{\mathrm{n}}=\mathrm{b}_{1}+\mathrm{b}_{2}+\) \(\qquad\) \(+b_{n}\).
\(C_{n}=C_{1}+C_{2}+\) \(+C_{n}\).
\(\therefore C_{n}=a_{1} b_{1}+\left(a_{1} b_{2}+a_{2} b_{1}\right)+\) \(\qquad\) \(+\left(a_{1} b_{n}+a_{2} b_{n-1}+\right.\). \(\qquad\) \(\left.+a_{n} b_{1}\right)\)
\(=a_{1}\left(b_{1}+b_{2}+\ldots \ldots \ldots \ldots+b_{n}\right)+a_{2}\left(b_{1}+b_{2}+\ldots \ldots \ldots \ldots . . b_{n-1}\right)+\ldots\) \(\qquad\)
\(=a_{1} B_{n}+a_{2} B_{n-1}+\) .\(+a_{n} B_{1}\)
From (1) \(\mathrm{C}_{1}=\mathrm{a}_{1} \mathrm{~B}_{1}\)
\(C_{2}=a_{1} B_{1}+a_{2} B_{1}\)
.......................
\(C_{n}=a_{1} B_{n}+a_{2} B_{n-1}+\) \(\qquad\) \(+a_{n} B_{1}\)
\(\therefore \mathrm{C}_{1}+\mathrm{C}_{2}+\) \(+C_{n}\)
\(=a_{1} B_{1}+\left(a_{1} B_{1}+a_{2} B_{1}\right)+\) \(\qquad\) \(+\left(a_{1} B_{1}+a_{2} B_{2}+\right.\) \(\qquad\) \(\left.+a_{n} B_{n}\right)\)
\(=B_{1}\left(a_{1}+a_{2}+\ldots \ldots \ldots \ldots . .+a_{n}\right)+B_{2}\left(a_{1}+a_{2}+\ldots \ldots \ldots . . . . .+a_{n-1}\right)+\ldots \ldots \ldots . \ldots . .+B_{n} a_{1}\)
\(=A_{n} B_{1}+A_{n-1} B_{2}+\) \(+\mathrm{A}_{1} \mathrm{~B}_{\mathrm{n}}\).
By hypothesis \(\sum a_{n}\) converges to \(a\) and \(\sum b_{n}\) converges to \(b\).
\(\therefore\left(A_{n}\right) \rightarrow a\) and \(\left(B_{n}\right) \rightarrow b\).

Hence by Cesaro's theorem,
\(\left(\frac{\mathrm{A}_{1} \mathrm{~B}_{\mathrm{n}}+A_{2} B_{n-1}+\cdots \cdots m m m e m+A_{n} B_{1}}{n}\right) \rightarrow\) ab.

Also by hypothesis \(\sum \mathrm{c}_{\mathrm{n}}\) converges to c
\(\therefore(\mathrm{Cn}) \rightarrow \mathrm{c}\).
Hence by Cauchy's first limit theorem,
\(\left(\frac{\mathrm{C}_{1}+c_{2}+\cdots \ldots m m m m m e m}{n}\right) \rightarrow \mathrm{c}\)
\(\therefore \quad c=a b\).

\section*{Theorem 5.9 (Marten's Theorem)}

If the series \(\sum a_{n}\) and \(\sum b_{n}\) converge to the sums \(a\) and \(b\) respectively and if one of the series, say, \(\Sigma a_{n}\) is absolutely convergent, then the Cauchy product \(\sum C_{n}\) converges to the sum ab.

\section*{Proof:}

Let \(A_{n}=a_{1}+a_{2}+\ldots \ldots . . . . . . .+a_{n}\).
\(B_{n}=b_{1}+b_{2}+\ldots \ldots . . . . . . .+b_{n}\).
\(\mathrm{C}_{\mathrm{n}}=\mathrm{c}_{1}+\mathrm{c}_{2}+\ldots\) \(+c_{n}\).
\(\overline{A_{n}}=\left|a_{1}\right|+\) \(+\left|a_{n}\right|\)
and \(\sum\left|a_{n}\right|=\bar{a}\), so that \(\left(\overline{A_{n}}\right) \rightarrow \bar{a}\).
Now, let \(B_{n}=b+r_{n}\).
Since, \(\left(B_{n}\right) \rightarrow b,\left(r_{n}\right) \rightarrow 0\) as \(n \rightarrow \infty\).

Now, \(C_{n}=a_{1} B_{n}+a_{2} B_{n-1}+\) \(\qquad\) \(+a_{n} B_{1}\)
\(=a_{1}\left(b+r_{n}\right)+a_{2}\left(b+r_{n-1}\right)+\) \(+a_{n}\left(b+r_{1}\right)\)
\(=\left(a_{1}+\ldots \ldots . . . . .+a_{n}\right) b+\left(a_{1} r_{n}+\right.\) \(+a_{n} r_{1}\) )
\(=A_{n} b+\left(a_{1} r_{n}+\right.\) \(\qquad\) \(\left.+a_{n} r_{1}\right)\)
\(=A_{n} b+R_{n} \quad\) where \(R_{n}=a_{1} r_{n}+\) \(\qquad\) \(+a_{n} r_{1}\).

Since, \(\left(A_{n}\right) \rightarrow a,\left(A_{n} b\right) \rightarrow a b\).
\(\therefore\) To prove that \(\left(C_{n}\right) \rightarrow a b\), it is enough if we prove that \(\left(R_{n}\right) \rightarrow 0\)
Let \(\varepsilon>0\) be given. Since \(\left(r_{n}\right) \rightarrow 0\), there exist \(n_{1} \in N\) such that \(\left|r_{n}\right|<\varepsilon\) for all \(n \geq n_{1}\). (1) Also since the sequence \(\left(r_{n}\right)\) is convergent, it is a bounded sequences and hence there exists \(\mathrm{k} \geq 0\) such that \(\left|r_{n}\right|<k\) for all n .
(2)

Further since \(\left(\overline{A_{n}}\right) \rightarrow \bar{a},\left(\overline{A_{n}}\right)\) is a Cauchy sequence.
\(\therefore\) There exists \(\mathrm{n}_{2} \in \mathrm{~N}\) such that \(\left|\overline{A_{n}}-\overline{A_{m}}\right|<\varepsilon\) for all \(\mathrm{n}, \mathrm{m} \geq \mathrm{n}_{2}\).
Let \(p=\max \left\{n_{1}, n_{2}\right\}\),
Let \(\mathrm{n} \geq 2 \mathrm{p}\).

Then \(R_{n}=a_{1} r_{n}+a_{2} r_{n-1}+\). \(\qquad\) \(+a_{p} r_{n-p+1}+a_{p+1} r_{n-p}+\ldots \ldots .+a_{n} r_{1}\).
\(\therefore\left|R_{n}\right| \leq\left\{\left|a_{1}\right|\left|r_{n}\right|+\left|a_{2}\right|\left|r_{n-1}\right|+\right.\) \(\qquad\) \(\left.+\left|a_{p}\right|\left|r_{n-p+1}\right|\right\}+\) \(\left\{\left|a_{p+1}\right|\left|r_{n-p}\right|+\right.\) \(\qquad\) .\(\left.+\left|a_{n} \| r_{1}\right|\right\}\)
Now \(\mathrm{n} \geq 2 \mathrm{p} \quad=>\mathrm{n}, \mathrm{n}-1, \ldots \ldots . . .,(\mathrm{n}-\mathrm{p}-1) \geq p \geq \mathrm{n}_{1}\).
\(\therefore\left|a_{1}\right|\left|r_{n}\right|+\left|a_{2}\right|\left|r_{n-1}\right|+\ldots \ldots \ldots . . . . . . . .+\left|a_{p}\right|\left|r_{n-p+1}\right|\)
\(<\left(\left|a_{1}\right|+\left|a_{2}\right|+\ldots \ldots . . . . . . . . . . . .+\left|a_{p}\right|\right) \varepsilon \quad\) (by 1).
\(=\overline{A_{p}} \varepsilon\)
\(<\bar{a} \varepsilon \quad\left(\right.\) since \(\left(\overline{A_{p}}\right)\) is a monotonic increasing sequence converging to \(\left.\bar{a}\right)\)
\(\qquad\)
Also, \(\left|a_{p+1}\right|\left|r_{n-p}\right|+\) \(\qquad\) \(+\left|a_{n}\right|\left|r_{1}\right|\)
(by 2 )
\(\leq\left(\overline{A_{n}}-\overline{A_{p}}\right) \mathrm{k}\)
\(<\varepsilon k\) (by 3)
\(\therefore\) Using (5) and (6) in (4) we get
\(\left|R_{n}\right|<(\bar{a}+k) \varepsilon\) for all \(\mathrm{n} \geq 2 \mathrm{p}\).
\(\therefore\left(R_{n}\right) \rightarrow 0\).
\(\therefore\left(c_{n}\right)\) converges to \(a b\).
\(\therefore \sum C_{n}\) converges to a \(b\).

\section*{Power Series}

\section*{Definition:}

A series of the form \(a_{0}+a_{1} x+a_{2} x^{2}+\cdots . .+a_{n} x^{n}+\cdots . .=\sum_{n=0}^{\infty} a_{n} x^{n}\) is called a power series in x . The
number \(a_{n}\) are called the coefficients of the power series.
Example:
Consider the geometric series \(\sum_{n=0}^{\infty} x^{n}\).Here \(a_{n}=1\) for all n . This series converges absolutely if \(|x|<1\),
diverges if \(x \geq 1\), oscillates finitely if \(x=-1\) and oscillates infinitely if \(x<-1\)

\section*{Theorem: 5.10}

Let \(\sum a_{n} x^{n}\) be the given power series. Let \(\alpha=\lim \sup \left|a_{n}\right|^{\frac{1}{n}}\) and let \(R=\frac{1}{\alpha}\). Then \(\sum a_{n} x^{n}\) converges absolutely if \(|x|<R\). If \(|x|>R\) the series is not convergent.
Proof:
Let \(c_{n}=a_{n} x^{n}\)
\(\therefore\left|c_{n}\right|^{\frac{1}{n}}=\left|c_{n}\right|^{\frac{1}{n}}|x|\)
\(\therefore \lim \sup \left|c_{n}\right|^{\frac{1}{n}}=|x| \lim \sup \left|a_{n}\right|^{\frac{1}{n}}\)
\(=|x| \frac{1}{R}\)
Hence By Cauchy's root test the series converges if \(\frac{|x|}{R}<1\).
i.e) if \(|x|<R\)

Now suppose \(|x|>R\). Choose a real number \(\mu\) such that \(|x|>\mu>R\).
\(\therefore \frac{1}{\mu}<\frac{1}{R}=\lim \sup \left|a_{n}\right|^{\frac{1}{n}}\)
Hence by definition of upper limit, for infinite number of values of \(n\) we have
\(\left|a_{n}\right|^{\frac{1}{n}}>\frac{1}{\mu}>\frac{1}{|x|}\)
\(\therefore\left|a_{n} x^{n}\right|>1\) for finite number of values of \(n\).
Hence the series cannot converge.

\section*{Definition:}

The number \(R=\frac{1}{\operatorname{limsupl} a_{n} \|^{\frac{1}{n}}}\) given in the above theorem is called the radius of convergence of the power series \(\Sigma a_{n} x^{n}\)

\section*{Example:}
1. For the geometric series \(\sum x^{n}\), the radius of convergence \(\mathrm{R}=1\)
2. Consider the exponential series \(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots \cdot+\frac{x^{n}}{n!}+\cdots\)

Here \(a_{n}=\frac{1}{n!}\)
\(\left|\frac{a_{n}}{a_{n+1}}\right|=n+1\)
\(\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\infty\).
\(\therefore R=\infty\).
Hence the series converges for all values of \(x\).```

