GOVERNMENT ARTS AND SCIENCE COLLEGE – NAGERCOIL

(AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI)

DEPARTMENT OF MATHEMATICS

CLASS : II B.SC (MATHEMATICS)

SUBJECT: REAL ANALYSIS – I (SMMA31)

SEM: III

SEMESTER - III

CORE PAPER –V REAL ANALYSIS - I (90 Hours) (SMMA31)

L T P C 2 4 0 4

Objectives:

- -To lay a god foundation of classical analysis
- -To study the behaviour of sequences and series

Unit I Real number system:

The field of axioms, the order axioms, the rational numbers, the irrational numbers, upper bounds, maximum element, least upper bound (supremum). The completeness axiom, absolute values, the triangle inequality. Cauchy – schwartz's inequality.

- Unit II Sequences: Bounded sequences monotonic sequences convergent sequences divergent and oscillating sequences The algebra of limits. 17L
- Unit III Behaviour of monotonic sequences Cauchy's first limit theorem Cauchy's second limit theorem Cesaro's theorem subsequences Cauchy sequence Cauchy's general principle of convergence.

 19L
- Unit IV Series: Infinite series nth term test Comparison test Kummer's test D'Alemberls ratio test Raabe's test Gauss test Root test 23L
- Unit V Alternating series Leibnitz's test Tests for convergence of series of arbitrary terms Multiplication of series- Abel's Throrem-Mertens theorem-Power Series-Radius of convergence 20L

Text Books:

- Arumugam .S and Thengapandi Issac "sequences and series", New Gamma publishing House, Palayamkottai – 627 002.
- Tom M. Apostol Mathematical Analysis, II Edition, Narosa Publishing House, New Delhi (unit I)

Book for Reference:

Goldberg .R – Methods of Real Analysis, Oxford and IBH Publishing Co., New Delhi.

UNIT	CONTENT	PAGE
ı	REAL NUMBER SYSTEM	02
II	SEQUENCES	05
111	BEHAVIOUR OF MONOTONIC SEQUENCES	19
IV	SERIES	28
V	ALTERNATIVE SERIES	39

- ---

UNIT I

REAL NUMBER SYSTEM

Field Axioms

Axiom 1: x + y = y + x, xy = yx (Commutative law)

Axiom 2: x + (y + z) = (x+y)+z, x(yz) = (xy)z (Associative law)

Axiom 3: x(y+z) = xy + xz (Distributive law)

Axiom 4: Given any two real number x and y there exists a real number z such that

$$x + z = y(1)$$

$$z = y - x$$

$$x + (y - x) = y$$

$$(x-x) + y = y$$

$$x - x = 0$$

Therefore x is a negative of x.

Axiom 5: There exists at least one real number $x \ne 0$. If x and y are two real numbers with $x \ne 0$. There exists a real number z such that xz = y implies $z = \frac{y}{x}$.

$$x\left(\frac{y}{x}\right) = y$$

$$(\frac{x}{x})$$
 y = y

$$\Rightarrow (\frac{x}{x}) y = 1.y$$

$$\Rightarrow$$
 x $x^{-1} = 1 \frac{y}{x}$.

$$\Rightarrow x^{-1} = \frac{1}{x}, x \neq 0.$$

 $\frac{1}{x}$ is the inverse of x.

 x^{-1} is the reciprocal of x.

Order Axioms

The existence of a relation < which establishes an ordering among the real numbers and which satisfy the following axioms.

Axiom 6: Exactly one of the relations x = y, x < y, x > y holds.

Axiom 7: If x < y, then for all z, we have x + z < y + z.

Axiom 8: If x > 0 and y > 0 then xy > 0

Axiom 9: If x > y and y > z then x > z

Rational Numbers

Q = {
$$\frac{a}{b}$$
 / a and b are integers b \neq 0}

Example

- 1. If a and b are rational numbers, then $\frac{a+b}{2}$ is also a rational number.
- 2. Between any two rational numbers, there are infinitely many rational numbers.
- 3. The field axiom and order axioms are satisfied by Q.

Irrational Numbers

Real numbers which are not rational are called irrational numers

Theorem 1.1 : Given real numbers a and b such that $a \le b + \epsilon$ for all $\epsilon > 0$. Then $a \le b$.

Proof: We have to prove this theorem by contradiction method. Suppose a>b.

Given a, b
$$\in$$
 R, a \leq b $+\in$, for all \in >0. Take \in = $\frac{a-b}{2}$.

Then
$$b + \in = \frac{a-b}{2} + b$$
.

$$b + \epsilon = \frac{a - b + 2b}{2}$$

$$b + \epsilon < a$$
.

But given $b+\in \geq a$, which is a contradiction.

Therefore our assumption is wrong.

Thus $a \le b$.

Definition:

A subset A of R is said to be **bounded above** if there exists an element $\alpha \in R$ such that $a \leq \alpha$ for all $a \in A$.

 α is called an **upper bound** of A.

Definition:

A subset A of R is said to be <u>bounded below</u> if there exists an element $\beta \in R$ such that $a \ge \beta$ for all $a \in A$.

 β is called a **lower bound** of A.

Definition:

A is said to be **bounded** if it is both bounded above and bounded below.

Least Upper Bound and Greatest Lower Bound:

Definition:

Let A be a subset of R and $u \in R$. u is called <u>the least upper bound or supremum</u> of A if i) u is an upper bound of A.

ii) v < u then v is not an upper bound of A.

Definition:

Let A be a subset of R and $1 \epsilon R$. 1 is called the greatest lower bound or infimum of A if i) 1 is a lower bound of A.

if m < l then m is not a lower bound of A.

Examples:

- 1. Let $A = \{1, 3, 5, 6\}$. Then glb of A = 1 and lub of A = 6
- 2. Let A = (0,1). Then glb of A = 0 and lub of A = 1. In this case both glb and lub do not belong to A.

Bounded Functions:

Definition:

Let $f: A \to R$ be any function. Then the range of f is a subset of R. f is said to be **bounded function** if its range is a bounded subset of R.

Remark:

f is a bounded function iff there exists a real number m such that $|f(x)| \le m \text{ for all } x \in R$.

- 1. $f: [0,1] \rightarrow R$ given by f(x) = x + 2 is a bounded function where as $f: R \rightarrow R$ given by f(x) = x + 2 is not a bounded function.
- 2. $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$ is a bounded function. Since $|\sin x| \le 1$.

Absolute Value:

<u>Definition:</u> For any real number x we defined the $\frac{\text{modulus}}{\text{denoted by } |x| \text{ as follows } |x| =$ $\begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x \leq 0 \end{cases}.$

Clearly $|x| \ge 0$ for all $x \in R$.

Triangle inequality

For arbitrary real x and y we have $|x + y| \le |x| + |y|$

Proof:

We know that $-|x| \le x \le |x|$ \longrightarrow (1)

and
$$-|y| \le y \le |y|$$
 — (2)

$$(1)+(2) = -[|x|+|y|] \le x+y \le |x|+|y|.$$

By theorem, "If $a \ge 0$, then we have the inequality $|x| \le a$ iff $-a \le x \le a$ ".

Hence, $|x+y| \le |x| + |y|$.

Cauchy-schwarz inequality

Theorem:1.1 If a_1, \dots, a_n and b_1, \dots, b_n are real numbers, then

$$(\sum_{i=1}^{n} a_i b_i)^2 \leq \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2$$
(1)

Or, equivalently

$$|\sum_{i=1}^{n} a_i b_i| \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$
(2)

We will use mathematical induction as a method for the proof. First we observe that

$$(a_1b_2 - a_2b_1)^2 \ge 0$$

By expanding the square we get

$$(a_1b_2)^2 + (a_2b_1)^2 - 2a_1b_2a_2b_1 \ge 0$$

After rearranging it further and completing the square on the left-hand side, we get

$$a_1^2b_1^2 + 2a_1b_1a_2b_2 + a_2^2b_2^2 \le a_1^2b_1^2 + a_1^2b_2^2 + a_2^2b_1^2 + a_2^2b_2^2$$

By taking the square roots of both sides, we reach

$$|a_1b_1+a_2b_2| \le \sqrt{a_1^2+a_2^2}\sqrt{b_1^2+b_2^2}$$
(3)

which proves the inequality (2) for n = 2.

Assume that inequality (2) is true for any n terms. For n + 1, we have that

$$\sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2} = \sqrt{\sum_{i=1}^{n} a_i^2 + a_{n+1}^2} \sqrt{\sum_{i=1}^{n} b_i^2 + b_{n+1}^2} \dots (4)$$

By comparing the right-hand side of equation (4) with the right-hand side of inequality (3)

we know that

$$\sqrt{\sum_{i=1}^{n}a_{i}^{2}+a_{n+1}^{2}}\sqrt{\sum_{i=1}^{n}b_{i}^{2}+b_{n+1}^{2}}\geq\sqrt{\sum_{i=1}^{n}a_{i}^{2}}\sqrt{\sum_{i=1}^{n}b_{i}^{2}}+|a_{n+1}b_{n+1}|$$

Since we assume that inequality (2) is true for n terms, we have that

$$\sqrt{\sum_{i=1}^{n}a_{i}^{2}}\sqrt{\sum_{i=1}^{n}b_{i}^{2}}+|a_{n+1}b_{n+1}|\geq\sum_{i=1}^{n}a_{i}b_{i}+|a_{n+1}b_{n+1}|$$

$$\geq \sum_{i=1}^{n} a_i b_i$$

which proves the C-S inequality.

Theorem:1.2

Given real numbers a and b such that $a \leq b + \varepsilon$ for every $\varepsilon > 0$. Then $a \leq b$

Proof:

Given
$$a \leq b + \varepsilon$$
 for every $\varepsilon > 0$ (1)

Suppose b < a

Choose
$$\varepsilon = a - b/2$$

Now,
$$b + \varepsilon = b + a - b/2$$

$$= (2 b + a - b)/2$$

$$= (a + b)/2 < (a + a)/2$$

$$= 2a/2 = a$$

Therefore, $b+\varepsilon < a$, which is a contradiction to (1) Hence $a \le b$

Theorem: 1.3

If n is positive integer which is not a perfect square, then \sqrt{n} is irrational.

Proof

Let n contains no square factor > 1

Suppose \sqrt{n} is rational

Then $\sqrt{n} = a/b$, where a and b are integers having no factor in common.

implies
$$n = \frac{a^2}{b^2}$$

$$\Rightarrow b^2 n = a^2 \dots (1)$$

But b²n is a multiple of n, so a² is also a multiple of n

However if a^2 is a multiple of n, a itself must be a multiple of n. (since n has no square factor >1)

 \Rightarrow a = c n, where c is an integer

sub in (1)

$$b^2 n = c^2 n^2$$

$$b^2 = nc^2$$

Therefore b is a multiple of n, which is a contradiction to a and b have no factor in common.

Hence \sqrt{n} is irrational

If n has a square factor, then $n = m^2 k$, where k > 1 and k has no square factor > 1.

Then
$$\sqrt{n} = m \sqrt{k}$$

If \sqrt{n} is rational, then the numbers \sqrt{k} is also

rational. Which is a contradiction to k is no square

factor > 1. Hence n has no square factor.

Problem:

Prove that $\sqrt{2}$ is irrational.

Theorem : If $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots$, then e is irrational.

Proof: Let x = 1. Then $e^1 = 1 + 1 + \frac{1^2}{2!} + \frac{1^3}{3!} + \frac{1^4}{4!} + \dots$

and let x = -1. Then $e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots$

$$S_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$$
 then $S_{2k-1} = \sum_{k=0}^n \frac{(-1)^{2k-1}}{(2k-1)!}$

$$e^{-1} - S_{2k-1} = \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$$

$$0 < e^{-1} - S_{2k-1} < \frac{1}{(2k)!}$$

$$0 < e^{-1} - S_{2k-1} < \frac{1}{(2k-1)!2k}$$

 $0 < (2k-1)! (e^{-1} - S_{2k-1}) = \frac{1}{2k} \le \frac{1}{2}$ for any integer $k \ge 1$.

Since (2k-1)! Is an integer, $(2k-1)!(e^{-1}-S_{2k-1})$ is always an integer.

$$0 < (2k-1)! (e^{-1} - S_{2k-1}) = \frac{1}{2k} \le \frac{1}{2}$$

If e^{-1} is rational, (2k-1)! e^{-1} is an integer, which would lie between 0 and $\frac{1}{2}$.

Which is a contradiction.

Hence, e cannot be rational.

<u>UNIT - II</u> SEQUENCES

Definition. Let $f: \mathbb{N} \to \mathbb{R}$ be a function and let $f(n) = a_n$. Then a_1, a_2, \dots, a_n is called the sequences in \mathbb{R} determined by the function f and is denoted by (a_n) .

 a_n is called the n^{th} term of the sequence. The range of the function f which is a subset of \mathbb{R} , is called the range of the sequence

Examples.

- a) The function $f: \mathbb{N} \to \mathbb{R}$ given by f(n) = n determines the sequence 1, 2, 3, ..., ..., n,
- b) The function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = n^2$ determines the sequence 1, 4, 9, ...,..., n^2 ,...

Definition:

A sequence (a_n) is said to be **bounded above** if there exists a real number k such that $a_n \le k$ for all $n \in \mathbb{N}$. k is called an upper bound of the sequence (a_n) .

A sequence (a_n) is said to be **bounded below** if there exists a real number k such that $a_n \ge k$ for all n. k is called a **lower bound** of the sequence (a_n) .

A sequence (a_n) is said to be a **bounded sequence** if it is both bounded above and below.

Note.

A sequence (a_n) is bounded if there exists a real number k>0 such that $|a_n|< k$ for all n

Examples.

- 1. Consider the sequence 1, 1/2, 1/3,.... 1/n.... Here 1 is the l.u.b and 0 is the g.l.b. It is a bounded sequence.
- 2. The sequence 1, 2, 3,, n, is bounded below but not bounded above. 1 is the g. l.b of the sequence.
- 3. The sequence-1,-2,-3,...-n,...is bounded above but not bounded below.
- -1 is the l.u.b of the sequence.
- 4. 1, -1, 1, -1, ... is a bounded sequence. 1 is the l. u. b -1 is the g. l. b of the sequence
- 5. Any constant sequence is a bounded sequence. Here 1.u.b = g. I. b = the constant term of the sequence.

Monotonic sequence

Definition: A sequence (a_n) is said to be monotonic increasing if $a_n \le a_{n+1}$ for all n. (a_n) is said to be monotonic decreasing if $a_n \ge a_{n+1}$ for all n. (a_n) is said to be strictly monotonic decreasing if $a_n < a_{n+1}$ for all n. (a_n) is said to be monotonic if it is either monotonic increasing or monotonic decreasing.

Example.

- 1. 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, is a monotonic increasing sequence.
- 2. 1,2,3,4... is a strictly monotonic increasing sequence
- 3. The sequence (a_n) given by 1, -1, 1, -1, 1, ... is neither monotonic increasing nor monotonic decreasing. Hence (a_n) is not a monotonic sequence.
- 4. $\left(\frac{2n-7}{3n+2}\right)$ is a monotonic increasing sequence.

Proof:

$$\begin{aligned} a_n - a_{n+1} &= \frac{2n-7}{3n+2} - \frac{2(n+1)-7}{3(n+1)+2} \\ &= \frac{-25}{(3n+2)(3n+5)} < 0 \end{aligned}$$

Therefore $a_n < a_{n+1}$

Hence the sequence is monotonic increasing.

5. Consider the sequence (a_n) where $a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$. Clearly (a_n) is a monotonic increasing sequence.

Note: A monotonic increasing sequence (a_n) is bounded below and q_1 is the g.l.b of the sequence.

A monotonic decreasing sequence (a_n) is bounded above and a_1 is l. u. b of the sequence.

Solved Problems:

Show that if (a_n) is a monotonic sequence then $(\frac{a_1+a_2+\cdots +a_n}{n})$ is also a monotonic sequence.

Solution:

Let (a_n) be a monotonic increasing sequence.

Therefore
$$a_1 \le a_2 \le a_3 \le \cdots \le a_n \le \dots$$
 (1) Let $b_n = \binom{a_1 + a_2 + \cdots + a_n}{n}$

Now,
$$b_{n+1} - b_n = \frac{a_1 + a_2 + \dots + a_{n+1}}{n+1} - \frac{a_1 + a_2 + \dots + a_n}{n}$$

$$\geq \frac{na_{n+1} - (a_1 + a_2 + \dots + a_n)}{n(n+1)}$$

$$= \frac{na_{n+1} - (a_n + a_n + \dots + a_n)}{n(n+1)}$$
 by (1)

$$=\frac{n(a_{n+1}-a_n)}{n(n+1)}$$

Therefore, $b_{n+1} \ge b_n$.

Therefore (b_n) is monotonic increasing.

The proof is similar if (a_n) is monotonic decreasing.

Convergent sequences

Definition. A sequence (a_n) is said to converge to a number l if given $\epsilon > 0$ there exists a positive

integer m such that a_n - l $< \epsilon$ for all $n \ge m$. We say that is the limit of the sequence and we write

$$\lim_{n\to\infty} a_n = lor(a_n) \to l$$

Note.1 $(a_n) \rightarrow l$ iff given $\epsilon > 0$ there exists a natural number m such that $a_n \in (l-\epsilon, l+\epsilon, l)$ for all $n \ge m$ i.e, All but a finite number of terms of the sequence lie within the interval $(l-\epsilon, l+\epsilon)$.

Theorem. 2.1

A sequence cannot converge to two different limits.

Proof. Let (an) be a convergent sequence.

If possible let l_1 and l_2 be two distinct limits of (an).

Let ϵ > 0 be given.

Since (an) $\rightarrow l1$, there exists a natural number n_1

Such that
$$|a_n \dots l_1| \le \frac{1}{2} \in for all \ n \ge n_1$$
 (1)

Since $(a_n) \rightarrow l2$, there exists a natural number n2

Such that
$$|a_n - l_2| \le \frac{1}{2} \in for \ all \ n \ge n_2$$
 (2)

Let m = max
$$\{n_1, n_2\}$$

Then $|l_1 - l_2| = |l_1 - a_m + a_m - l_2|$
 $\leq |a_m - l_1| + |a_m - l_2|$
 $< \frac{1}{2} \in +\frac{1}{2} \in$ by (1) and (2)

 $l_1 - l_2 < \epsilon$ and this is true for every $\epsilon > 0$. Clearly this is possible only if $l_1 - l_2 = 0$.

Hence $l_1 = l_2$

Examples

$$1. \lim_{n \to \infty} \frac{1}{n} = 0$$

Proof:

Let ε >0 be given.

Then $\left|\frac{1}{n}-o\right|=\frac{1}{n}<\in if\ n>\frac{1}{\epsilon}$. Hence if we choose m to any natural number

such that
$$m > \frac{1}{\epsilon}$$
 then $\left| \frac{1}{n} - o \right| < \epsilon$ for all $n \ge m$.

$$\lim_{n\to\infty}\frac{1}{n}=0$$

Note. If $\epsilon = 1/100$, then m can be chosen to be any natural number greater than 100. In this example the choice of m depends on the given ϵ and $[1/\epsilon] + 1$ is the smallest value of m that satisfies the requirements of the definition.

2. The constant sequence 1, 1, 1, converges to 1.

Proof.

Let ϵ > 0 be given

Let the given sequence be denoted by (a_n) . Then $a_n = 1$ for all n.

$$|a_n - 1| = |1 - 1| = 0 < \epsilon$$
 for all $n \in \mathbb{N}$.

 $|a_n-1| < \epsilon$ for all $n \ge m$ where m can be chosen to be any natural number.

$$\therefore Lim \ a_n = 1$$

$$n \rightarrow \infty$$

Note. In this example, the choice of m does not depend on the given ϵ

$$3. \lim_{n \to \infty} \frac{n+1}{n} = 1$$

Proof. Let ϵ > 0 be given.

Now,
$$\left| \frac{n+1}{n} - 1 \right| = \left| 1 + \frac{1}{n} - 1 \right| = \left| \frac{1}{n} \right|$$

∴ If we choose m to be any natural number greater than 1/ ϵ we have $\left|\frac{n+1}{n}-1\right| < \epsilon$ for all $n \ge \underline{m}$. Therefore, $\lim_{n \to \infty} \frac{n+1}{n} = 1$

$$4. \lim_{n \to \infty} \frac{1}{2^n} = 0$$

Proof

Let ϵ > 0 begiven

Then
$$\left| \frac{1}{2^n} - 0 \right| = \frac{1}{2^n} < \frac{1}{n}$$
 (since 2ⁿ>n for all n ϵ N)

 $\left|\frac{1}{2^n} - 0\right| < \epsilon$ for all $n \ge m$ where m is any natural number greater than $1/\epsilon$

Therefore,
$$\lim_{n\to\infty}\frac{1}{2^n}=0$$

5. The sequence $((-1)^n)$ is not convergent

Proof.

Suppose the sequence $((-1)^n)$ converges to l

Then, given ϵ > 0, there exists a natural number m such that

$$|(-1)^{m}-l| < \epsilon \text{ for all } n > m.$$

 $|(-1)^{m}-(-1)^{m+1}| = |(-1)^{m}-l+l-(-1)^{m+1}|$

$$\leq |(-1)^{m} - l| + |(-1)^{m+1} - l|$$

$$< \varepsilon + \epsilon = 2\epsilon$$

But
$$|(-1)^m - (-1)^{m+1}| = 2$$
.
 $\therefore 2 < 2 \epsilon$

i.e., $1 < \epsilon$ which is a contradiction since $\epsilon > 0$ is arbitrary.

 \therefore The sequence ((-1) ⁿ) is not convergent.

Theorem:2.2

Any convergent sequence is a bounded sequence.

Proof.

Let (a_n) be a convergent sequence.

Let
$$\lim_{n\to\infty} a_n = l$$

Let ϵ > 0 be given. Then there exists m ϵ N such that $\left|a_n-l\right|<\epsilon$ for all $n\geq m$

$$|a_n| < |l| + \epsilon \text{ for all } n \ge m.$$
Now let $k = max\{|a_n|, |a_n|, \dots, |a_n|, |l| + \epsilon\}$

Then $|(a_n)| \le k$ for all n.

 $\therefore (a_n)$ is a bounded sequence.

Note. The converse of the above theorem is not true. For example, the sequence $((-1)^n)$ is a bounded sequence. However it is not a convergent sequence.

Divergent sequence

Definition: A sequence (a_n) is said to diverge to ∞ if given any real number k > 0, there exists m \in N such that $a_n > k$ for all $n \ge m$. In symbols we write $(a_n) \to \infty$ or $\lim_{n \to \infty} a_n = \infty$

Note. $(a_n) \to \infty$ if given any real number k > 0 there exists m $\in \mathbb{N}$ such that $a_n \in (k, \infty)$ for all $n \ge m$

Examples

$$1.(n) \rightarrow \infty$$

Proof: Let k > 0 be any given real number.

Choose m to be any natural number such that m > k

Then n > k for all $n \ge m$.

$$\therefore$$
 (n) $\rightarrow \infty$

2.
$$(n^2) \rightarrow \infty$$

Proof: Let k > 0 be any given real number.

Choose m to be any natural number such that $m > \sqrt{k}$

Then $n^2 > k$ for all n > m

$$\therefore$$
 (n^2) $\rightarrow \infty$

Definition. A sequence (a_n) is said to diverge to $-\infty$ if given any real number k < 0 there exists

m \in N such that that $a_n < k$ for all $n \ge m$. In symbols we write $\lim a_n = -\infty$, or $(a_n) \to -\infty$

Note. $(a_n) \rightarrow -\infty$ iff given any real number k < 0, there exists m ϵ N such that $a_n \epsilon (-\infty, k)$ for all $n \geq m$

A sequence (a_n) is said to be **divergent** if either $(a_n) \to \infty$ or $(a_n) \to -\infty$

Theorem. 2.3

$$(a_n) \rightarrow -\infty$$
 iff $(-a_n) \rightarrow -\infty$

Proof.

Let
$$(a_n) \rightarrow \infty$$

Let k < 0 be any given real number. Since $(a_n) \to \infty$ there exists m ϵ N such that $a_n > -k$ for all $n \ge m$

$$\begin{array}{l} \therefore \ -a_n < k \ for \ all \ n \geq m \\ \therefore \ (-a_n) \xrightarrow{} \ -\infty. \end{array}$$

Similarly we can prove that if $(-a_n) \rightarrow -\infty$ then $(a_n) \rightarrow \infty$.

Theorem. 2.4

If $(a_n) \to \infty$ and an $\neq 0$ for all $n \in \mathbb{N}$ then $(\frac{1}{a_n}) \to 0$.

Proof. Let $\varepsilon > 0$ be given.

Since $(a_n) \to \infty$, there exists m $\in \mathbb{N}$ such that $a_n \ge 1/\varepsilon$ for all $n \ge m$

$$\frac{1}{a_n} < \epsilon$$
 for all $n \ge m$

$$\left|\frac{1}{a_n}\right| < \epsilon$$
 for all $n \ge m$

Hence
$$\left(\frac{1}{a_n}\right) \to 0$$

Note. The converse of the above theorem is not true. For example, consider the sequence (an) where

$$A_n = (-1)^n / n$$
. Clearly $(a_n) \rightarrow 0$

Now
$$(1/a_n) = (n/(-1)^n) = -1,2,-3,4,...$$
 which neither converges nor diverges to ∞ or $-\infty$

Thus if a sequence (an) \rightarrow 0, then the sequence (1/a_n) \rightarrow 0 need not converge or diverge.

Theorem:2.5

If
$$(a_n) \to 0$$
 and $(a_n) > 0$ for all $n \in \mathbb{N}$, then $(\frac{1}{n}) \to \infty$

Proof.

Let k > 0 be any given real number.

Since (an) \rightarrow 0 there exists m \in N such that $|a_n| < 1/k for all$ $n \ge m$

 \therefore an < 1/k for all n \ge m (since an > 0)

Therefore $1/a_n > k$ for all $n \ge m$

Hence $(1/a_n) \rightarrow \infty$

Theorem:2.6

Any sequence (a_n) diverging to ∞ is bounded below but not bounded above.

Proof.

Let $(a_n) \rightarrow \infty$. Then for any given real number k > 0 there exists $m \in \mathbb{N}$ such that $a_n > k$ for all $n \ge m$(1)

- ∴ k is not an upper bound of the sequence (an)
- (a_n) is not bounded above

Now let $l = \min \{ a_1, a_2,am, k \}$.

From (1) we see that an $\geq l$ for all n.

∴ (an) is bounded below

Theorem:2.7

Any sequence (a_n) diverging to $-\infty$ is bounded above but not bounded below.

Proof is similar to that of the previous theorem

Note 1. The converse of the above theorem is not true. For example, the function

 $f: \mathbb{N} \rightarrow \mathbb{R}$ defined by

$$f(n) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{1}{n} & \text{if } n \text{ is even} \end{cases}$$

Determines the sequence 0,1,0,2,0,3,.....which is bounded below and not bounded above. Also for any real number k > 0, we cannot find a natural number m such that an > kfor all n >m.

Hence this sequence does not diverge to
$$\infty$$
.
Similarly f: $\mathbb{N} \to \mathbb{R}$ given by $f(n) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{1}{2}n & \text{if } n \text{ is even} \end{cases}$

Determines the sequence 0, -1, 0, -2, 0, which is bounded above and not bounded below. However this sequence does not diverge to $-\infty$.

Oscillating sequence

Definition: A sequence (a_n) which is neither convergent nor divergent to ∞ or $-\infty$ is said to

oscillating sequence. An oscillating sequence which is bounded is said to be finitely oscillating. An oscillating sequence which is unbounded is said infinitely oscillating.

Examples.

- 1. Consider the sequence $((-1)^n)$. Since this sequence is bounded it cannot to ∞ or $-\infty$ (by theorems). Also this sequence is not convergent. Hence ((-1)) is a finitely oscillating sequence.
- 2. The function $f: \mathbb{N} \to \mathbb{R}$ defined by

$$f(n) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{1}{2}(1-n) & \text{if } n \text{ is even} \end{cases}$$
 determines the sequence $0, 1, -1, 2, -2, 3, \dots$ The

range of this sequence is **Z**. Hence it cannot converge or diverge to ±∞. This sequence is infinitely oscillating.

The Algebra of limits

In this section we prove a few simple theorems for sequences which are very useful in calculating limits of sequences.

Theorem: 2.8

If
$$(a_n) \rightarrow a$$
 and $(b_n) \rightarrow b$ then $(a_n + b_n) \rightarrow a + b$.

Proof:

Let ϵ > 0 be given.

Now
$$|a_n+b_n-a-b|=|a_n-a+b_n-b| \le |a_n-a|+|b_n-b|$$
.....(1)
Since $(a_n) \to a$, there exist a natural number n_1 such that $|a_n-a|<1/2$ ϵ for all $n \ge 1$(2)
Since $(b_n) \to b$, there exist a natural number n_2 such that $|b_n-b|<1/2$ ϵ for all $n \ge 1$(3)

Let m = $\max\{n_1, n_2\}$

Then
$$|a_n + b_n - a - b| < 1/2\epsilon + 1/2\epsilon = \epsilon$$
 for all n ≥m. (by (1),(2)and (3))
∴ $(a_n + b_n) \rightarrow a + b$.

Note. Similarly we can prove that $(a_n - b_n) \rightarrow a - b$.

Theorem:2.9

If $(a_n) \rightarrow a$ and $k \in \mathbb{R}$ then $(k a_n) \rightarrow k a$.

Proof:

If k = 0, (ka_n) is the constant sequence 0, 0, 0, And hence the result is trivial.

Now, let $k \neq 0$.

Then
$$|k| a_n - k a| = |k| |a_n - a| \dots (1)$$

Let ϵ > 0 be given.

Since (a) \rightarrow a, there exist m \in **N** such that

$$|a_n-a|<\varepsilon/|k|$$
 for all $n\geq m$(2)

$$|ka_n - ka| < \epsilon$$
 for all $n \ge m$ (by 1 and 2).

$$\therefore$$
 (ka_n) $\rightarrow k$ a.

Theorem: 2.10

If $(a_n) \rightarrow a$ and $(b_n) \rightarrow b$ then $(a_nb_n) \rightarrow ab$.

Proof.

Let ϵ > 0 be given.

Now,
$$|a_nb_n-ab|=|a_nb_n-a_nb+a_nb-ab|$$

$$\leq |a_nb_n - a_nb| + |a_nb - ab|$$

$$= |a_n| |b_n - b| + |b| |a_n - a| \dots (1)$$

Also, since $(a_n) \rightarrow a$, (a_n) is a bounded sequences.

 \therefore There exist a real number k > 0 such that $|a_n| \le k$ for all n.(2)

Using (1) and (2) we get

$$|a_nb_n-ab| \le k |b_n-b| + |b| |a_n-a| \dots (3)$$

Now since $(a_n) \rightarrow a$, there exist a natural number n_1 such that

$$|a_n-a|>\epsilon/2|b|$$
 for all $n \ge n_1$ (4)

Since $(b_n) \rightarrow b$, there exist a natural number n_2 such that

$$|a_n-a|>\varepsilon/2|b|$$
 for all $n \ge n_2$ (5)

Let m = $\max\{n_1, n_2\}$.

Then
$$|a_nb_n - ab| < k(\epsilon/2k) + |b|(\epsilon/2|b|) = \epsilon$$
 for all $n \ge m$ (by (3),(4)and(5))

Hence $(a_nb_n) \rightarrow ab$

Theorem: 2.11

If
$$(a_n) \to a$$
 and $a_n \neq 0$ for all n and $a \neq 0$ then $(\frac{1}{a_n}) \to \frac{1}{a}$

Proof:

Let ϵ > 0 be given.

Now,
$$a \neq 0$$
. Hence $|a| > 0$

Since $(a_n) o a$, there exists $n_1 \in \mathbb{N}$ such that $|a_n - a| < \frac{1}{2} |a|$ for all $n \ge n_1$

Hence
$$|a_n| > \frac{1}{2}|a|$$
 for all $n \ge n_1$ (2)

Using (1) and (2) we get

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| < \frac{2}{|a|^2} |a_n - a| \text{ for all } n \ge n_1 \dots \dots (3)$$

Now since $(a_n) \rightarrow a$, there exists $n_2 \in \mathbb{N}$ such that

$$|a_n - a| < \frac{1}{2} |a|^2 \varepsilon$$
 for all $n \ge n_2$ (4)

Let $m = \max \{n_1, n_2\}.$

$$\left|\frac{1}{a_n} - \frac{1}{a}\right| < \frac{2}{|a|^2} \frac{1}{2} |a|^2 \varepsilon = \varepsilon for \ all \ n \ge m$$

Therefore $(1/a_n) \rightarrow 1/a$

Corollary:

Let $(a_n) \rightarrow$ a and $(b_n) \rightarrow$ b where $b_n \ne 0$ for all n and b $\ne 0$.

Then
$$\left(\frac{a_n}{b_n}\right) \to \left(\frac{a}{b}\right)$$

Proof:

Theorem: 2.12

If $(a_n) \rightarrow a$ then $(|a_n|) \rightarrow |a|$.

Proof:

Let ϵ > 0 be given

Now
$$|a_n| - |a|| \le |a_n - a|$$
(1)

Since $(a_n) \rightarrow a$ there exist $m \in \mathbb{N}$ such that $|a_n - a| < \epsilon$ for all $n \ge m$.

Hence from (1) we get $||a_n| - |a|| < \epsilon$ for all $n \ge m$.

Hence $(|a_n|) \rightarrow (a)$.

Theorem: 2.13

If $(a_n) \rightarrow a$ and $a_n \ge 0$ for all n then $a \ge 0$.

Proof.

Suppose a < 0. Then -a > 0.

Choose ϵ such that $0 < \epsilon < -a$ so that $a + \epsilon < 0$.

Now, since $(a_n) \rightarrow a$, there exist $m \in \mathbb{N}$ such that $|a_n - a| < \epsilon$ for all $n \le m$.

∴ $a-\epsilon < a_n < a+\epsilon$ for all $n \le m$.

Now, since $a+\epsilon < 0$, we have $a_n < 0$ for all $n \ge m$ which is a contradiction since $a_n \ge 0$. $\therefore a \ge 0$.

Theorem: 2.14

If $(a_n) \rightarrow a$, $(b_n) \rightarrow b$ and $a_n \le b_n$ for all n, then $a \le b$.

Proof.

Since $a_n \le b_n$, we have $b_n - a_n \ge 0$ for all n.

Also $(b_n - a_n) \rightarrow b - a$ (since If $(a_n) \rightarrow a$ and $(b_n) \rightarrow b$ then $(a_n + b_n) \rightarrow a + b$) $\therefore b - a \ge 0$

∴ b ≥ a.

Theorem: 2.15

If $(a_n) \to l$, $(b_n) \to l$ and $a_n \le c_n \le b_n$ for all n, then $(c_n) \to l$.

Proof.

Let ϵ > 0 be given.

Since $(a_n) \to l$, there exist $n_1 \in \mathbb{N}$ such that $l - \epsilon < a_n < l + \epsilon$ for all $n \ge n_1$.

Similarly, there exist $n_2 \in \mathbb{N}$ such that $l - \epsilon < b_n < l + \epsilon$ for all $n \ge n_2$.

Let m = max $\{n_1, n_2\}$.

 \therefore – ϵ < a_n ≤ c_n ≤ b_n <l+ ϵ for all n ≥ m.

 \therefore – ϵ < c_n <l + ϵ for all n ≥ m.

 \therefore | c_n − l | < ϵ for all $n \ge m$.

 $: (c_n) \to l$.

Theorem:2.16

If $(a_n) \rightarrow a$ and $a_n \ge 0$ for all n and $a \ne 0$, then $(\sqrt{a_n}) \rightarrow \sqrt{a}$.

Proof.

Since $a_n \ge 0$ for all $n, a \ge 0$ (since If $(a_n) \to a$ and $a_n \ge 0$ for all $n \ge 0$)

Now,
$$|\sqrt{a_n} \to \sqrt{a}| = \left| \frac{a_n - a}{\sqrt{a_n} + \sqrt{a}} \right|$$

Since $(a_n) \rightarrow a \neq 0$, we obtain $a_n > \frac{1}{2}$ for all $n \geq n_1$

$$\sqrt{a_n} > \sqrt{(\frac{1}{2}a)}$$
 for all n n₁

$$\left|\sqrt{a_n}-\sqrt{a}\right|<\frac{\sqrt{2}}{(\sqrt{2}+1)\sqrt{a}}\left|a_n-a\right|$$
 for all $n\geq n_1$(1)

Now, let ϵ > 0 be given.

Since $(a_n) \rightarrow a$, there exist $n_2 \in \mathbb{N}$ such that

$$|a_n-a|<\epsilon \sqrt{a} \ (\sqrt{2}+1)/\sqrt{2} \ \text{for all } n \geq n_2 \dots (2)$$

Let m = max $\{n_1, n_2\}$.

Then $|\sqrt{a_n} - a\sqrt{|} < \varepsilon$ for all $n \ge m$ (by 1 and 2).

$$(\sqrt{a_n}) \to \sqrt{a}$$

Theorem: 2.17

If
$$(a_n) \to \infty$$
 and $(b_n) \to \infty$ then $(a_n + b_n) \to \infty$.

Proof.

Let k > 0 be any given real number.

Since $(a_n) \to \infty$, there exists $n_1 \in \mathbb{N}$ such that $a_n > \frac{1}{2} k$ for $\overline{a} | \mathbb{N} | 1 = n_1$.

Similarly there exists $n_2 \in \mathbb{N}$ such that $b_n > \frac{1}{2} k$ for all $n \ge n_2$.

Let m = max $\{n_1, n_2\}$.

Then $a_n + b_n > k$ for all $n \ge m$.

$$\therefore (a_n + b_n) \rightarrow \infty$$
.

Theorem: 2.18

If
$$(a_n) \to \infty$$
 and $(b_n) \to \infty$ then $(a_n b_n) \to \infty$.

Proof.

Let k > 0 be any given real number.

Since $(a_n) \to \infty$, there exist $n_1 \in \mathbb{N}$ such that $a_n > \sqrt{k}$ for all $n \ge n_1$.

Similarly there exists $n_2 \in \mathbb{N}$ such that $b_n > \sqrt{k}$ for all $n \ge n_2$.

Let $m = \max\{n_1, n_2\}.$

Then $a_nb_n > k$ for all $n \ge m$.

$$\therefore (a_n b_n) \rightarrow \infty$$
.

Theorem: 2.19

Let
$$(a_n) \rightarrow \infty$$
 then

(i)If c >0, (c
$$a_n$$
) $\rightarrow \infty$

(ii)If c < 0 , (c
$$a_n$$
) \rightarrow $-\infty$

Proof.

(i) Let
$$c > 0$$
.

Let k > 0 be any given real number.

Since $(a_n) \to \infty$, there exist $m \in \mathbb{N}$ such that $a_n > k/c$ for all $n \ge m$.

∴ c
$$a_n$$
> k for all n ≥ m.

$$\therefore$$
 (c a_n) $\rightarrow \infty$.

(ii) Let
$$c < 0$$
.

Let k < 0 be any given real number. Then $\overline{k}/c > 0$.

- ∴ There exists $m \in \mathbb{N}$ such that $a_n > k/c$ for all $n \ge m$.
- ∴ c a_n < k for all n ≥ m (since c < 0).

$$\therefore$$
 (ca_n) \rightarrow -∞.

Theorem: 2.20

If $(a_n) \to \infty$ and (b_n) is bounded then $(a_n + b_n) \to \infty$.

Proof.

Since (b_n) is bounded, there exists a real number m < 0 such that b_n > m for all n.

.....(1)

Now, let k > 0 be any real number.

Since m < 0, k - m > 0.

Since $(a_n) \to \infty$, there exists $n_0 \in \mathbb{N}$ such that $a_n > k - m$ for all $n \ge n_0$ (2)

 $\therefore a_n + b_n > k - m + m = k$ for all $n \ge n_0$ (by 1 and 2).

 $\therefore (a_n + b_n) \rightarrow \infty$.

Solved Problems.

1. Show that $\lim_{n\to\infty} \frac{3n^2+2n+5}{6n^2+4n+7} = \frac{1}{2}$

Solution:

$$\frac{3n^2 + 2n + 5}{6n^2 + 4n + 7} = \frac{3 + \frac{2}{n} + \frac{5}{n^2}}{6 + \frac{4}{n} + \frac{7}{n^2}}$$

Now, $\lim_{n\to\infty} \left(3 + \frac{\frac{n}{2}}{n} + \frac{\frac{n}{5}}{n^2}\right) = 3 + 2\lim_{n\to\infty} \frac{1}{n} + 5\lim_{n\to\infty} \frac{1}{n^2} = 3 + 0 + 0 = 3$

Similarly,
$$\lim_{n\to\infty} \left(6 + \frac{4}{n} + \frac{7}{n^2}\right) = 6$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3 + \frac{2}{n} + \frac{5}{n^2}}{6 + \frac{4}{n} + \frac{7}{n^2}}$$
= 3/6

2. Show that
$$\lim_{n\to\infty} \left(\frac{1^2+2^2+\cdots n^2}{n^2}\right) = \frac{1}{3}$$

Solution:

Weknowthat
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\lim_{n \to \infty} (\frac{1^2 + 2^2 + \dots + n^2}{n^3}) = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3}$$

$$= \lim_{n \to \infty} \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right)$$

3. Showthat
$$\lim_{n\to\infty}\frac{n}{\sqrt{(n^2+1)}}=1$$

Solution:

$$\lim_{n \to \infty} \frac{n}{\sqrt{(n^2 + 1)}} = \lim_{n \to \infty} \frac{1}{\sqrt{(1 + \frac{1}{n^2})}}$$

$$\frac{1}{\lim_{n \to \infty} \frac{1}{\sqrt{(1 + \frac{1}{n^2})}}}$$

$$\frac{1}{\sqrt{\lim_{n \to \infty} (1 + \frac{1}{n^2})}}$$

= 1

4. Show that if $(a_n) \to 0$ and (b_n) is bounded, then $(a_nb_n) \to 0$. **Solution.**

Since (b_n) is bounded, there exists k > 0 such that $|b_n| \le k$ for all n.

 $|a_nb_n| \le k |a_n|$.

Now, let ϵ > 0 be given.

Since $(a_n) \to 0$ there exists $m \in \mathbb{N}$ such that $|a_n| < \varepsilon/k$ for all $n \ge n$

- \therefore | a_nb_n | < ϵ for all n ≥ m.
- ∴ $(a_n b_n) \rightarrow 0$.
- **5.** Show that $\lim_{n\to\infty} \frac{\sin n}{n} = 0$

Solution:

 $|\sin n| \le 1$ for all n.

 \therefore (sinn) is a bounded sequences

Also, $(1/n) \rightarrow 0$

$$\therefore \left(\frac{\sin n}{n}\right) \to 0 \quad \text{(by problem 4)}.$$

6. Show that $\lim(a^{1/n}) = 1$ where a > 0 is any real number. $n \rightarrow \infty$

Solution.

Case (i) Let a = 1 . Then $a^{1/n}$ =1 for each n . Hence $(a^{1/n}) \rightarrow 1$

Case (ii) Let a > 1. Then $a^{1/n}$ >1.

Let $a^{1/n}$ =1+h_nwhereh_n> 0.

Therefore $a = (1 + h_n)^2$

=1+ nh_n +.....+ h_n^n

> 1+ nh_n

Therefore, h_n< a-1/n

Therefore, 0<h_n< a-1/n

Hence $\lim_{n\to\infty} h_n = 0$

Therefore, $(a^{1/n})=(1+h_n)\rightarrow 1$.

Case(iii)

Let 0<a <1

Then 1/a >1

Therefore, $(1/a)^{1/n} \rightarrow 1$ (By case (i))

$$(\frac{1}{a^{\frac{1}{n}}}) \to 1$$

$$(a^{1/n}) \xrightarrow{n} 1$$

7. Show that $\lim_{n \to \infty} (n)^{1/n} = 1$.

Clearly $n^{1/n} \ge 1$ for all n. Let $n^{1/n} = 1 + h_n$ where $h_n \ge 0$ Then $n = (1+h_n)^n$ $= 1 + nh_n + nc_2 h_n^2 + \dots + h_n^n$ $= \frac{1}{2} n(n-1)h_n^2$ Therefore, $h_n^2 < \frac{2}{(n-1)}$

$$\begin{split} &h_n < \sqrt{\frac{2}{n-1}}\\ &\text{Since } \sqrt{\frac{2}{n-1}} \to 0 \text{ and } h_n \ge 0 \text{,(h_n)} \to 0\\ &\text{Hence } (n^{1/n}) \text{=} (1\text{+}h_n) \to 1. \end{split}$$

8. Give an example to show that if (a_n) is a sequence diverging to ∞ and (b_n) is sequence diverging to $-\infty$ then $(a_n + b_n)$ need not be a divergent sequence.

Solution.

Let $(a_n) = (n)$ and $(b_n) = (-n)$.

Clearly $(a_n) \rightarrow 0$ and $(b_n) \rightarrow -\infty$.

However $(a_n + b_n)$ is the constant sequence 0 , 0 , 0 ,.... Which converges to 0.

<u>UNIT - III</u>

BEHAVIOUR OF MONOTONIC SEQUENCES

Theorem: 3.1

- i. A monotonic increasing sequence which is bounded above converges to its l.u.b.
- $\ddot{\mathbb{R}}$ A monotonic increasing sequence which is bounded above diverges to ∞ .
- ii. A monotonic decreasing sequence which is bounded below converges to its g.l.b.
- iv. A monotonic decreasing sequence which is bounded below diverges to -∞.

Proof:

(i) Let (a_n) be a monotonic increasing sequence which is bounded above.

Let k be the l.u.b of the sequence.

Then $a_n \le k$ for all n.

Let ε>0 be given

Therefore, $k-\varepsilon < k$ and hence $k-\varepsilon$ is not an upper bound of (a_n)

Hence, there exists a_n such that $a_m > k - \varepsilon$.

Now, since (a_n) is monotonic increasing $a_n \ge a_m$ for all n > m

Hence $a_n > k-\varepsilon$ for all n > m.....(2)

Therefore $k - \varepsilon < a_n \le k$ for all $n \ge m$.(by 1 and 2)

Therefore $|a_n - k| < \varepsilon$ for all n > m.

Therefore $(a_n) \rightarrow k$.

(ii) Let (a_n) be a monotonic increasing sequence which is not bounded above.

Let k > 0 be any real number.

since (a_n) is not bounded, there exists m ε N such that $a_m > k$.

Also $a_n \ge a_m$ for all $n \ge m$.

$$\therefore \, a_n > k \, for \, all \, n \geq m$$

$$Hence_{,(a_n)} \rightarrow \infty$$

Proof of (iii) is similar to that of (i)

Proof of (iv) is similar to that of (ii)

Note:

The above theorem shows that a monotonic sequence either converges or diverges. Thus a Monotonic sequence cannot be an oscillating sequence.

Solved Problems:

1. Let
$$a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$$
. Show that $\lim_{n \to \infty} a_n$ exists and lies between 2 and 3.

Solution:

Clearly (a_n) is a monotonic increasing sequence

Also,
$$a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$$
.

$$\leq 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{n-1}}.$$

$$= 1 + \left(\frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}\right)$$

$$= 1 + 2\left(1 - \frac{1}{2^n}\right)$$

$$= 3 - \frac{1}{2^{n-1}} < 3$$

$$\therefore a_n < 3$$

 $\therefore (a_n)$ is bounded above

 $Therefore, \lim_{n\to\infty} a_n$ exi ts

Also $2 < a_n < 3$ for all n.

$$\therefore 2 < \lim_{n \to \infty} a_n < 3$$

Hence the result.

1. Show that the sequence $(1 + \frac{1}{n})^n$ converges.

Solution:

Let
$$a_n = (1 + \frac{1}{n})^n$$

By binomial theorem,

$$\begin{split} & \mathsf{a_n} = 1 + 1 + \left(\frac{n(n-1)}{2!}\right) \frac{1}{n^2} + \left(\frac{n(n-1)(n-2)}{3!}\right) \frac{1}{n^3} + \cdots \dots + \frac{1}{n^n} \\ & 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \cdots \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \dots \left(1 - \frac{n-1}{n}\right) \\ & < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots \dots + \frac{1}{n!} \end{split}$$

< 3 (by problem 1)

Therefore, (a_n) is bounded above.

Also

$$a_{n+1} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \dots + \left(1 - \frac{n}{n+1} \right) \\ > 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \dots + \left(1 - \frac{n-1}{n} \right)$$

- ∴ a_{n+1}>a_n
- \therefore (a_n) is monotonic increasing.
- \therefore (a_n) is a convergent sequence.

Theorem: 3.2 (Cauchy's First Limit Theorem)

If
$$(a_n) \to l$$
 then $\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \to l$.

Proof:

Case (i).

Let
$$b_n = \frac{a_1 + a_2 + \cdots + a_n}{n}$$

Let ε >0 be given.

Since $(a_n) \to 0$ there exists m $\in \mathbb{N}$ such that $|a_n| < (1/2) \varepsilon$ for all $n \ge m$(1)

Now let $n \ge m$

Then
$$|b_n| = \left| \frac{a_1 + a_2 + \dots + a_m + a_{m+1} + \dots + a_n}{n} \right|$$

$$\leq \frac{|a_1| + |a_2| + \dots + |a_m|}{n} + \frac{|a_{m+1}| + \dots + |a_n|}{n}$$

$$= \frac{k}{n} + \frac{|a_{m+1}| + \dots + |a_n|}{n} \text{ where } k = |a_1| + |a_2| + \dots + |a_m|$$

$$< \frac{k}{n} + (\frac{n-m}{n}) \frac{\varepsilon}{2} \text{ (by (1))}$$

$$< \frac{k}{n} + \frac{\varepsilon}{2} \text{ (Since } \frac{n-m}{n} < 1) \dots \dots (2)$$

Now since $(k/n) \rightarrow 0$, there exists $n_0 \in \mathbb{N}$ such that $k/n < (1/2)\epsilon$ for all $n \ge n_0$(3)

Let $n_1 = \max\{m, n_0\}$

Then $|b_n| < \epsilon$ for all $n \ge n_1$ (using 2 and 3)

Therefore $(b_n) \rightarrow 0$

Case (ii)

Let l≠ 0

Since $(a_n) \rightarrow l$, $(a_n - l) \rightarrow 0$

$$\therefore \left(\frac{a_1 + a_2 + \dots + a_n}{n} - l\right) \to 0$$

$$\therefore \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \to l$$

Theorem: 3.3 (Cesaro's theorem)

If
$$(a_n) \to a$$
 and $(b_n) \to b$ then $(\frac{a_1b_n+a_2b_{n-1}+\cdots +a_nb_1}{n}) \to ab$

Proof:

Let
$$c_n = \frac{a_1b_n + a_2b_{n-1} + \cdots + a_nb_1}{n}$$

Now put
$$a_n = a + r_n$$
 so that $(r_n) \rightarrow 0$

Then
$$c_n = \frac{(a+r_1)b_n + \cdots + (a+r_n)b_1}{n}$$

$$=\frac{a(b_1+\cdots+b_n)}{n}+\frac{r_1b_n+\cdots+r_nb_1}{n}$$

Now, by Cauchy's first limit theorem, $\binom{b_1+\cdots+b_n}{n} \to l$

$$\therefore \left(\frac{a(b_1+b_2+\cdots..+b_n)}{n} \right) \to ab$$

Hence it is enough if we prove that $(\frac{r_1b_n+\cdots+r_nb_1}{n}) \to 0$

Since, since $(b_n) \rightarrow b$, (b_n) is a bounded sequence.

Therefore, there exists a real number k>0 such that $|b_n| \le k$ for all n.

$$\begin{split} & \left| \frac{r_1 b_n + \cdots + r_n b_1}{n} \right| \leq k \left| \frac{r_1 + \cdots + r_n}{n} \right| \\ & \text{Since } (\mathbf{r_n}) \to 0, \left(\frac{r_1 b_n + \cdots + r_n b_1}{n} \right) \to 0 \\ & \left(\frac{r_1 b_n + \cdots + r_n b_1}{n} \right) \to 0 \end{split}$$

Hence the theorem.

Theorem: 3.4 (Cauchy's Second Limit Theorem)

Let (a_n) be a sequence of positive terms. Then $\lim_{n\to\infty} a_n^{\frac{1}{n}} = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ provided the limit on the right hand side exists, whether finite or infinite.

Proof:

Case(i)
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_{-}}=1$$
, finite.
Let $\epsilon>0$ be any given real number.

Then there exists m \in N such that $l-\frac{1}{2}\varepsilon<\frac{a_{n+1}}{c}< l+\frac{1}{2}\varepsilon$ for all $n\geq m$

Now choose $n \ge m$

Then
$$l-\frac{1}{2}\varepsilon<\frac{a_{m+1}}{a_m}< l+\frac{1}{2}\varepsilon$$

$$l-\frac{1}{2}\varepsilon<\frac{a_{m+2}}{a_{m+1}}< l+\frac{1}{2}\varepsilon$$

$$l - \frac{1}{2}\varepsilon < \frac{a_n}{a_{n-1}} < l + \frac{1}{2}\varepsilon$$

Multiplying these inequalities, we obtain

$$\begin{split} & \left(l - \frac{1}{2}\varepsilon\right)^{n-m} < \frac{a_n}{a_m} < \left(l + \frac{1}{2}\varepsilon\right)^{n-m} \\ & \therefore \ a_m \frac{\left(l - \frac{1}{2}\varepsilon\right)^n}{\left(l - \frac{1}{2}\varepsilon\right)^m} < a_n < a_m < a_m \frac{\left(l + \frac{1}{2}\varepsilon\right)^n}{\left(l + \frac{1}{2}\varepsilon\right)^m} \end{split}$$

$$\therefore \, k_1 \left(l - \frac{1}{2} \, \varepsilon \right)^n < a_n < k_2 \left(l + \frac{1}{2} \, \varepsilon \right)^n \text{, Where k}_1 \text{, k}_2 \, \text{are some constants}$$

Now,
$$(k_1^{\frac{1}{n}}(l-\frac{1}{2}\varepsilon)) \rightarrow l-\frac{1}{2}\varepsilon$$
 (Since $(k_1^{\frac{1}{n}}) \rightarrow l$)

$$\text{ ... There exists } n_1 \in \mathbb{N} \text{ such that } (l - \frac{1}{2}\varepsilon) - \frac{1}{2}\varepsilon < k_1^{\frac{1}{n}}(l - \frac{1}{2}\varepsilon) < (l - \frac{1}{2}\varepsilon) + \frac{1}{2}\varepsilon \\ \text{ for all } n \geq n_1 \dots (2)$$

Similarly, there exists
$$n_2 \in \mathbb{N}$$
 such that $(l + \frac{1}{2}\varepsilon) - \frac{1}{2}\varepsilon < k_2^{\frac{1}{n}}(l + \frac{1}{2}\varepsilon) < (l + \frac{1}{2}\varepsilon) + \frac{1}{2}\varepsilon$

for all
$$n \ge n_2 \dots (3)$$

Let $n_0 = \max \{m, n_1, n_2\}$

$$\text{Then } l-\varepsilon < k_1^{\frac{1}{n}}(l-\frac{1}{2}\varepsilon) < a_n^{\frac{1}{n}} < k_2^{\frac{1}{n}}(l+\frac{1}{2}\varepsilon) < l+\varepsilon for \ all \ n \geq n_0 \quad (by \ 1,2 \ and \ 3)$$

$$\therefore l-\varepsilon < a_n^{\frac{1}{n}} < l+\varepsilon \ for \ all \ n \geq n_0$$

Hence
$$(a_n^{\frac{1}{n}}) \to l$$
.

Case (ii):

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\infty$$

$$\lim_{n\to\infty} \left(\frac{1}{a_{n+1}}\right)/\left(\frac{1}{a_n}\right) = 0$$

Therefore, By case (i), $(\frac{1}{a_n})^{\frac{1}{n}} \to 0$

Hence
$$(a_n^{\frac{1}{n}}) \to \infty$$

Theorem: 3.5

Let
$$(a_n)$$
 be any sequence and $\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=l$. If $l>1$, then $(a_n)\to 0$.

Theorem: 3.6

Let
$$(a_n)$$
 be any sequence of positive terms and $\lim_{n\to\infty}\left(\frac{a_n}{a_{n+1}}\right)=l$. If $l<1$, then $(a_n)\to\infty$.

Problems:

1. Show that
$$\lim_{n\to\infty} \frac{1}{n} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) = 0$$

Solution:

Let $a_n = 1/n$

We know that $(a_n) \to 0$. Hence by Cauchy's first limit theorem we get $\left(\frac{a_1+a_2+\dots+a_n}{n}\right) \to 0$

$$\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \to 0$$

2. Show that
$$\lim_{n\to\infty}\frac{n!}{n^n}=0$$

Solution:

Let
$$a_n = \frac{n!}{n!}$$

$$\therefore \left| \frac{a_n}{a_{n+1}} \right| = \frac{n!}{n^n} \frac{(n+1)^{n+1}}{(n+1)!}$$

$$= \left(\frac{n+1}{n}\right)^n$$

$$= \left(1 + \frac{1}{n}\right)^n$$

$$\lim_{n \to \infty} \left|\frac{a_n}{a_{n+1}}\right| = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

$$= e > 1$$
Hence $(a_n) \to 0$

Subsequence

Definition. Let (a_n) be a sequence. Let (a_{n_k}) be a strictly increasing sequence of natural numbers. Then (a_{n_k}) is called a subsequence of (a_n) .

Note. The terms of a subsequences occur in the same order in which they occur in the original sequence.

Examples.

- **1.** (a_{2n}) is a subsequence of any sequence (a_n). Note that in this example the interval between any two terms of the subsequence is the same, (i.e.,) n_1 =2, n_2 =4, n_3 =6,... n_k = 2k.
- **2.** (a_{n2}) is a subsequence of any sequence (a_n) . Hence $a_{n1} = a_1$, $a_{n2} = a_4$, $a_{n3} = a_9$ Here the interval

between two successive terms of the subsequence goes on increasing as k becomes large. Thus the interval between various terms of a subsequence need not be regular.

3. Any sequence (a_n) is a subsequence of itself.

Theorem: 3.7

If a sequence (a_n) converges to I, then every subsequence (a_{nk}) of (a_n) also converges to I.

Proof.

```
Let \epsilon> 0 be given.
```

Since $(a_n) \rightarrow l$ there exists $m \in \mathbb{N}$ such that

$$|a_n - I| < \epsilon$$
 for all $n \ge m$(1)

Now choose $n_{k0} \ge m$.

Then $k \ge k_0 \Rightarrow n_k \ge n_{k0}$ (: (n_k) is monotonic increasing)

 $\Rightarrow n_k \ge m$.

$$\Rightarrow |a_{nk} - l| < \epsilon \text{ (by 1)}$$

Thus $|a_{nk}-l|<\epsilon$ for all $k \ge k_0$.

$$: (a_{nk}) \rightarrow l$$
.

Note 1. If a subsequence of a sequence converges, then the original sequence need not converge.

Theorem:3.8

If the subsequences (a_{2n-1}) and (a_{2n}) of a sequence (a_n) converge to the same limit l

then (a_n) also converges to l.

Proof.

Let $\epsilon > 0$ be given. Since $(a_{2n-1}) \to l$ there exists $n_1 \in \mathbb{N}$ such that $|a_{2n-1} - l| < \epsilon$ for all 2n - 1 $\geq n_1$.

Similarly there exists $n_2 \in \mathbb{N}$ such that $|a_{2n} - l| < \epsilon$ for all $2n \ge n_2$.

```
Let m = \max\{n_1, n_2\}.
Clearly |a_n - l| < \epsilon for all n \ge m.
\therefore (a_n) \rightarrow l.
```

Note. The above result is true even if we have $l \rightarrow \infty$ or $-\infty$.

Definition. Let (a_n) be a sequence. A natural number m is called a **peak point** of the sequence (a_n)

if $a_n < a_m$ for all n > m.

Example.

- 1. For the sequence (1/n), every natural number is a peak point and hence the sequence has infinite number of peak point. In general for a strictly monotonic decreasing sequence every natural number is a peak point.
- 2. Consider the sequence 1, ½,1/3, -1, -1,.... Here 1, 2, 3 are the peak points of the
- 3. The sequence 1, 2, 3, has no peak point. In general a monotonic increasing sequence has no Peak point.

Theorem: 3.9

Every sequence (a_n) has no monotonic subsequence.

Proof.

(a_n) has infinite number of peak points. Let the peak points be

 $n_1 < n_2 < \dots < n_k < \dots$

Then $a_{n1} > a_{n2} > \dots > a_{nk} > \dots$

 $\therefore (a_{n_k})$ is a monotonic decreasing subsequence of (a_n) .

Case (ii)

(a_n) has only a finite number of peak points or no peak points.

Choose a natural number n_1 such that there is no peak point greater than or equal to n_1 .

Since n_1 is not a peak point of (a_n) , there exists $n_2 > n_1$ such that $a_{n_2} \ge a_{n_1}$.

Again since n_2 is not a peak point, there exist $n_3 > n_2$ such that $a_{n_3} \ge a_{n_2}$.

Repeating this process we get a monotonic increasing subsequence (a_{n_k}) of (a_n) .

Theorem: 3.10

Every bounded sequences has a convergent subsequences.

Proof.

Let (a_n) be a bounded sequence. Let (a_{n_k}) be monotonic subsequence of (a_n) . since (a_n) is bounded, (a_{n_k}) is also bounded.

- \therefore (a_{n_k}) is a bounded monotonic sequence and hence converges.
- \therefore (a_{n_k}) is a convergent subsequence of (a_n).

Cauchy sequences.

Definition. A sequence (a_n) is said to be a **Cauchy sequence** if given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

 $|a_n - a_m| < \epsilon$ for all n, $m \ge n_0$.

Note. In the above definition the condition $|a_n - a_m| < \epsilon$ for all n , $m \ge n_0$ can be written in the

following equivalent form, namely , $|a_{n+p} - a_n| < \epsilon$ for all $n \ge n_0$ and for all positive integers p.

Examples

1. The sequence (1/n) is a Cauchy sequence.

Proof.

Let $(a_n) = (1/n)$.

Let ϵ >0 be given.

Now,
$$|a_n - a_m| = |1/n - 1/m|$$

: If we choose n_0 to be any positive integer greater than $1/\epsilon$, we get

 $|a_n - a_m| \leq \text{Efor all } n, m \geq n_0.$

- \therefore (1/n) is a Cauchy sequence.
- 2. The sequence $((-1)^n)$ is not a Cauchy sequence.

Proof.

Let $(a_n) = ((-1)^n)$.

$$\therefore |a_n - a_{n+1}| = 2.$$

:If ϵ <2, we cannot find n_0 such that $|a_n - a_{n+1}| < \epsilon$ for all $n \ge n_0$.

- \therefore ((-1)ⁿ) is not a Cauchy sequence.
- 3. (n) is not a Cauchy sequence.

Proof.

Let $(a_n) = (n)$.

- $|a_n a_m| \ge 1$ if $n \ne m$.
- ∴ If we choose ϵ < 1, we cannot find n_0 such that $|a_n a_m| < \epsilon$ for all n, m ≥ n_0 .
- ∴ (n) is not a Cauchy sequence.

Theorem:3.11

Any convergent sequence is a Cauchy sequence.

Proof.

Let $(a_n) \to l$. Then given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n| < (1/2)\epsilon$ for all $n \ge n_0$

Theorem .3.12

Any Cauchy sequence is a bounded sequence.

Proof.

Let (a_n) be a Cauchy sequence.

Let $\epsilon > 0$ be given. Then there exists $n_0 \in \mathbb{N}$ such that $|a_n - a_m| < \epsilon$ for all n, $m \ge n_0$.

∴
$$|a_n| < |a_{n_0}| + \varepsilon$$
 for $n \ge n_0$.

Now, let
$$k = \max\{ |a_1|, |a_2|, ..., |a_{n0}| + \epsilon \}$$
.

Then $|a_n| \le k$ for all n.

 \therefore (a_n) is a bounded sequence.

Theorem . 3.13

Let (a_n) be a Cauchy sequence. If (a_n) has a subsequence (a_{n_k}) converging to a_n , then a_n , then a_n , then a_n

Proof.

Let ϵ > 0 be given. Then there exists $n_0 \in \mathbb{N}$ such that

$$|a_n - a_m| < (1/2) \epsilon$$
 for all n, m $\geq n_0....(1)$

Also since $(a_{n_k}) \rightarrow l$, there exists $k_0 \in \mathbb{N}$ such that $|a_{n_k} - l| < \frac{1}{2} \varepsilon$ for all $k \geq k_0$ (2)

Choose n_k such that $n_k > n_{k0}$ and n_0

Then
$$|a_n - l| = |a_n - a_{nk} + a_{nk} - l|$$

 $\leq |a_n - a_{nk}| + |a_{nk} - l|$
 $= (1/2) \epsilon + (1/2) \epsilon$
 $= \epsilon$ for all $n \geq n_k$.

Hence (a_n) $\rightarrow l$.

Theorem: 3.14 (Cauchy's General Principle of Convergence

Sequence)

A sequence (a_n) in **R** is convergent iff it is a Cauchy sequence.

Proof.

we have proved that any convergent sequence is a Cauchy sequence.

Conversely, let (a_n) be a Cauchy sequence in \mathbf{R} .

- \therefore (a_n) is a bounded sequence (Any Cauchy sequence is a bounded sequence)
- \therefore There exist a subsequence (a_{n_k}) of (a_n) such that $(a_{n_k}) \rightarrow l$
- \therefore (a_n) $\rightarrow l$ (by previous theorem).

UNIT - IV SERIES

Infinite series

Definition. Let $(a_n) = a_1, a_2, \dots, a_n, \dots$ be a sequence of real numbers. Then the formal expression $a_1 + a_2 + \dots + a_n + \dots$ is called an infinite series of real numbers and is denoted by $\sum_{n=1}^{\infty} a_n$ or $\sum_{n=1}^{\infty} a_n$

Let
$$s_1 = a_1$$
; $s_2 = a_1 + a_2$; $s_3 = a_1 + a_2 + a_3$;... $s_n = a_1 + a_2 + \cdots + a_n$.

Then (s_n) is called the sequence of partial sums of the given series $\sum a_n$.

The series $\sum a_n$ is said to converge, diverge or oscillate according as the sequence of partial sums (s_n) converges, diverges or oscillates.

If $(s_n) \rightarrow s$, we say that the series $\sum a_n$ converges to the sum s.

We note that the behavior of a series does not change if a finite number of terms are added or altered.

Examples.

Consider the series $1 + 1 + 1 + 1 + \dots$ Here s_n = n. Clearly the sequence (s_n) diverges to ∞ . Hence the given series diverges to ∞ .

2. Consider the geometric series $1 + r + r^2 + \dots + r^n + \dots$

Here,
$$s_n = 1 + r + r^2 + \dots + r^{n-1} = \frac{1-r^n}{1-r}$$
.

Case (i)
$$0 < r < 1$$
. Then(r^n) $\to 0$

Therefore, $(s_n) \rightarrow \frac{1}{1-r}$. The given series converges to the sum 1/(1-r)

Case (ii) r > 1.

Then
$$s_n = \frac{r^n - 1}{r - 1}$$

Also
$$(r^n) \rightarrow \infty$$
 when $r > 1$

Hence the series diverges to ∞

Case (iii)
$$r = 1$$
.

Then the series becomes 1 + 1 +

 $(s_n) = (n)$. which diverges to ∞ .

Case (iv)
$$r = -1$$
.

Then the series becomes 1-1+1-1+...

$$\therefore s_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$$

 \therefore (s_n) oscillates finitely.

Hence the given series oscillates finitely.

Case (v) :
$$r < -1$$
.

- ∴ (rⁿ) oscillates infinitely
- \therefore (s_n) oscillates infinitely.

Hence the given series oscillates infinitely.

Note 1. Let $\sum a_n$ be a series of positive terms. Then (s_n) is a monotonic increasing sequence. Hence (s_n) converges or diverges to ∞ according as (s_n) is bounded or unbounded. Hence the series $\sum a_n$ converges or diverges to ∞ . Thus a series of positive terms cannot oscillate.

Note 2. Let $\sum a_n$ be a convergent series of positive terms converging to the sum s. Then s

is the I. u. b. of (s_n) . Hence $s_n \le s$ for all n.

Also given $\epsilon > 0$ there exists m $\in \mathbb{N}$ such that s - $\epsilon < s_n$ for all $n \ge m$.

Hence s - $\epsilon < s_n \le$ s for all n \le m.

Theorem: 4.1

Let $\sum a_n$ be a convergent series converging to the sum s .

Then $\lim_{n\to\infty}a_n=0$

Proof.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1})$$

$$= \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1}$$

$$= s - s = 0.$$

Theorem . 4.2

Let $\sum a_n$ converge to a and $\sum b_n$ converge to b . Then $\sum (a_n \pm b_n)$ converges to a $\pm b$ and $\sum ka_n$ converges to ka.

Proof.

Let
$$s_n = a_1 + a_2 + \dots + a_n$$
 and $t_n = b_1 + b_2 + \dots + b_n$. Then $(s_n) \to a$ and $(t_n) \to b$. $\therefore (s_n \pm t_n) \to a \pm b$
Also $(s_n \pm t_n)$ is the sequence of partial sums of $\sum (a_n \pm b_n)$

 $..\sum (a_n \pm b_n)$ converges to $a \pm b$. Similarly ka_n converges to ka.

Theorem 4.3 (Cauchy's general principle of convergence in Series)

The series $\sum a_n$ is convergent iff given $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $|a_{n+1} + a_{n+2} + \cdots + a_{n+p}| < \epsilon$ for all $n \ge n_0$ and for all positive integers p.

Proof.

Let $\sum a_n$ be a convergent series. Let $s_n = a_1 + \dots + a_n$.

- \therefore (s_n) is a convergent sequence.
- : (s_n) is a Cauchy sequence
- ∴ There exists $n_0 \in \mathbb{N}$ such that $|s_{n+p} s_n| < \epsilon$ for all $n \ge n_0$ and for all $p \in \mathbb{N}$.
- ∴ $|a_{n+1} + a_{n+2} + \cdots + a_{n+p}| < \epsilon$ for all $n \ge n_0$ and for all $p \in \mathbb{N}$.

Conversely if $|a_{n+1} + a_{n+2} + \cdots + a_{n+p}| < \epsilon$ for all $n \ge n_0$ and for all $p \in \mathbb{N}$ then (s_n) is a Cauchy sequence in \mathbb{R} and hence (s_n) is convergent.

∴ The given series converge.

Solved Problems.

1. Apply Cauchy's general principle of convergence to show that the series $\sum_{n=1}^{\infty}$ not convergent.

Solution. Let
$$s_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$$

Suppose the series $\sum_{n=1}^{\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{$

∴ By Cauchy's general principle of convergence, given ϵ > 0 there exists m∈**N** such that

 $|s_{n+p} - s_n| < \epsilon$ for all $n \ge m$ and for all $p \in \mathbb{N}$.

$$\left| (1+\frac{1}{2}+\cdots+\frac{1}{n+p}) - (1+\frac{1}{2}+\cdots+\frac{1}{n}) \right| < \varepsilon \text{ for all } n \geq m \text{ and for all } p \in \mathbf{N}.$$

$$\left| \frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+p} \right| < \varepsilon \text{ for all } n \geq m \text{ and for all } p \in \underline{\mathbf{N}}.$$
 In particular if we take $\mathbf{n} = m$ and $\mathbf{p} = m$ we obtain
$$\frac{1}{m+1}+\frac{1}{m+2}+\cdots+\frac{1}{m+m} > \frac{1}{2m}+\cdots+\frac{1}{2m} = \frac{1}{2}$$

m+1 m+2 — m+m 2m 2m 2 \cdots $\frac{1}{2} < \epsilon$ which is a contradiction since $\epsilon > 0$ is arbitrary.

∴ The given series is not convergent.

Comparison test

Theorem 4.4 (Comparison test)

i). Let Σc_n be a convergent series of positive terms. Let Σa_n be another series of positive terms. If there exists $m \in \mathbb{N}$ such that $a_n \le c_n$ for all $n \ge m$, then Σa_n is also convergent.

ii). Let Σd_n be a divergent series of positive terms. Let Σa_n be another series of positive terms. If there exists $m \in \mathbb{N}$ such that $a_n \leq d_n$ for all $n \geq m$, then \overline{A}_n is also divergent.

Proof:

(i) Since the convergence or divergence of a series is not altered by the removal of a finite number

of terms we may assume without loss of generality that $a_n \le c_n$ for all n.

Let
$$s_n = c_1 + c_2 + \dots + c_n$$
 and $t_n = a_1 + a_2 + \dots + a_n$.

Since $a_n \le c_n$ we have $t_n \le s_n$.

Now, Since \mathbb{Z}_n is convergent, (s_n) is a convergent sequence.

- $\therefore (s_n)$ is a bounded sequence.
- ∴ There exists a real positive number k such that $s_n \le k$ for all n.
- $∴t_n ≤ k$ for all n

Hence (t_n) is bounded above.

Also (t_n) is a monotonic increasing sequence.

- $\therefore (t_n)$ converges
- $:: \Sigma a_n$ converges.

(ii)Let Σd_n diverge and $a_n \ge d_n$ for all n.

 $:t_n \geq s_n$

Now, (s_n) is diverges to ∞ .

- $\therefore (s_n)$ is not bounded above.
- $\therefore (t_n)$ is not bounded above.

Further (t_n) is monotonic increasing and hence (t_n) diverges to ∞ .

∴ a_n diverges to ∞ .

Theorem:4.5

(i) If Σc_n converges and if $\lim_{n\to\infty} \left(\frac{a_n}{c_n}\right)$ exists and is finite then a also converges.

(ii)If $\sum \frac{a_n}{c_n} d_n$ diverges and if $\lim_{n \to \infty} \left(\frac{a_n}{d_n} \right)$ exists and is greater than zero then $\sum a_n$ diverges.

Proof

(i) Let
$$\lim_{n\to\infty} \left(\frac{a_n}{a_n}\right) = k$$

Let $\varepsilon > 0$ be given. Then there exists $n \in \mathbb{N}$ such that $\frac{a_n}{c_n} < k + \epsilon$ for all $n \ge n_1$.

 $\therefore a_n < (k + \epsilon) c_n$ for all n ≥ n_1 .

Also since Σc_n is a convergent series, $\Sigma (k + \epsilon) c_n$ is also convergent series.

 \therefore By comparison test Σa_n is convergent.

(ii)Let
$$\lim_{n\to\infty} \left(\frac{a_n}{c_n}\right) = k > 0$$

Choose $\epsilon = \frac{1}{2}k$. Then there exists $n_1 \in \mathbb{N}$ such that $k - \frac{1}{2}k < \frac{a_n}{d_n} < k + \frac{1}{2}k$ for all $n \ge n_1$.

$$\therefore \frac{a_n}{d_n} > \frac{1}{2} k$$
 for all $n \ge n_1$

$$\therefore a_n > \frac{1}{2}kd_n$$
 for all $n \ge n_1$

Since d_n is a divergent series, $\sum_{i=1}^{n} k d_n$ is also divergent series.

 \therefore By comparison test, $\sum a_n$ diverges.

Theorem: 4.6

i) Let Σc_n be a convergent series of positive terms. Let Σa_n be another series of positive terms. If there exists $m \in \mathbb{N}$ such that $\frac{a_{n+1}}{a_n} \leq \frac{c_{n+1}}{c_n}$ for all $n \geq m$, then Σa_n is convergent.

ii) Let $\overline{\mathcal{A}}_n$ be a divergent series of positive terms. Let $\overline{\mathcal{A}}_n$ be another series of positive terms. If there exists $m \in \mathbb{N}$ such that

$$\frac{a_{n+1}}{a_n} \geq \frac{d_{n+1}}{d_n}$$
 for all $n \geq m$, then Σa_n is divergent.

Proof.(i)

$$\frac{a_{n+1}}{a_n} \le \frac{a_n}{c_n}$$

 $(\frac{a_n}{c_n})$ is a monotonic decreasing sequence.

 $\frac{a_n}{c_n} \le k$ for all n where $k = \frac{a_1}{c_1} : a_n \le kc_n$ for all $n \in \mathbb{N}$.

Now, Σc_n is convergent. Hence $\Sigma k c_n$ is also a convergent series of positive terms.

∴**a**_n is also convergent

(ii)Proof is similar to that of (i).

Theorem .:4.7

The harmonic series $\sum \frac{1}{n^p}$ converges if p > 1 and if p \le 1.

Proof.

Case (i) Let p=1.

Then the series becomes $\Sigma(1/n)$ which diverges.

Case (ii) Let p < 1.

Then $n^p < n$ for all n.

$$\frac{1}{n^p} > \frac{1}{n}$$
 for all n

 \therefore By comparison test $\sum \frac{1}{np}$ diverges.

Case (iii) Let p > 1.

$$\begin{split} & \text{Let } \mathbf{s_n} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots + \frac{1}{n^p} \\ & \text{Th} \overline{\mathbf{enS}} \underline{2n+1} - 1 = 1 + \frac{1}{2^p} + \cdots + \frac{1}{(2^{n+1}-1)^p} \\ & = 1 + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p}\right) + \cdots + \left(\frac{1}{(2^n)^p} + \frac{1}{(2^{n+1})^p} + \dots + \frac{1}{(2^{n+1}-1)^p}\right) \\ & < 1 + 2\left(\frac{1}{2^p}\right) + 4\left(\frac{1}{4^p}\right) + \cdots + 2^n\left(\frac{1}{(2^n)^p}\right) \\ & = 1 + \frac{1}{2^p-1} + \frac{1}{2^2p-2} + \frac{1}{2^p-1} + \left(\frac{1}{2^p-1}\right)^2 + \cdots + \left(\frac{1}{2^p-1}\right)^n \\ & \therefore \quad \mathbf{s_2}^{n+1} - 1 < 1 + \frac{1}{2^p-1} + \left(\frac{1}{2^p-1}\right)^2 + \cdots + \left(\frac{1}{2^p-1}\right)^n \end{split}$$

Now, since p > 1, p-1 > 0

Hence

$$\frac{1}{2^{p-1}} < 1$$

Therefore
$$1 + \frac{1}{2^{p-1}} + (\frac{1}{2^{p-1}})^2 + \dots + (\frac{1}{2^{p-1}})^n < \frac{1}{1 - \frac{1}{2^{p-1}}} = k \text{(say)}$$

$$: s_{2^{n+1}-1} < k$$

Now let n be any positive integer. Choose $m \in \mathbb{N}$ such that $n \le 2^{m+1} - 1$. Since (s_n) is a monotonic increasing sequence , $s_n \le s_2 + 1 - 1$.

Hence $s_n < k$ for all n.

Thus (s_n) is a monotonic increasing sequence and is bounded above.

 $\therefore (s_n)$ is convergent.

 $\therefore \sum \frac{1}{n^p}$ is convergent.

Solved problems.

1. Discuss the convergence of the series $\sum \frac{1}{\sqrt{(n^3+1)}}$

Solution.

$$\frac{1}{\sqrt{(n^3+1)}} < \frac{1}{n^{\frac{3}{2}}}$$

Also $\Sigma = \frac{1}{n^{\frac{3}{2}}}$ is convergent

- \therefore By comparison test, $\sum \frac{1}{\sqrt{(n^3+1)}}$ is convergent.
- 2. Discuss the convergence of the series $\sum_{3}^{\infty} (\log \log n)^{-\log n}$.

Solution.

Let $a_n = (\log \log n)^{-\log n}$

 $a_n = n^{-\theta n}$ where $\theta_n = \log (\log \log n)$.

Since $\lim_{n\to\infty}\log\log\log n=\infty$, there exists $m\in \mathbb{N}$ such that $\theta n\geq 2$ for all $n\geq m$.

∴ $n^{-\theta} \le n^{-2}$ for all $n \ge m$.

 $∴a_n ≤ n^{-2}$ for all n ≥ m.

Also Σn^{-2} is convergent.

∴ By comparison test the given series is convergent.

Show that $\sum \frac{1}{4n^2-1} = \frac{1}{2}$

Solution.

Let
$$a_n = \frac{1}{4n^2 - 1}$$

Clearly $a_n < \frac{1}{n^2}$ Also $\Sigma_{n^2}^{\frac{1}{2}}$ is convergent

∴ by comparison test, the given series converges

Now, $a_n = \frac{1}{4n^2-1} = \frac{1}{2} \left[\frac{1}{2n-1} - \frac{1}{2n+1} \right]$ (by partial fraction)

$$\therefore s_n = a_1 + a_2 + \dots + a_n$$

$$= \frac{1}{2} \left[\left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \cdots + \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right) \right]$$

$$=\frac{1}{2}\left[\left(1-\frac{1}{2n+1}\right)\right]$$

$$\therefore \lim_{n \to \infty} s_n = \frac{1}{2}$$

Hence
$$\sum \frac{1}{4n^2-1} = \frac{1}{2}$$

Theorem 4.8 (Kummer's test)

Let Σa_n be a given series of positive terms and $\Sigma \frac{1}{d_n}$ be a series of a positive terms diverging to ∞ . Then

(i)
$$\Sigma a_n$$
 converges if $\lim_{n \to \infty} (d_n \frac{a_n}{a_{n+1}} - d_{n+1}) > 0$ and

(ii)
$$\Sigma a_n$$
 diverges if $\lim_{n \to \infty} (d_n \frac{a_n}{a_{n+1}} - d_{n+1}) < 0$.

Proof.

(i) Let
$$\lim_{n\to\infty} (d_n \frac{a_n}{a_{n+1}} - d_{n+1}) = l > 0$$
.

We distinguish two cases.

Case (i) *l* is finite.

Then given ϵ > 0, there exists $m \in \mathbb{N}$ such that

$$l - \epsilon {<} d_n \frac{a_n}{a_{n+1}} - d_{n+1} {<} l + \epsilon \text{ for all n} \geq \mathsf{m}$$

$$\label{eq:definition} \therefore d_n a_n \text{--} \ d_{n+1} a_{n+1} \text{>-} \ (l-\epsilon) \ a_{n+1} \text{for all n} \geq \text{m}.$$

Taking $\epsilon = (1/2)l$, we get $\underline{d}_n a_n - d_{n+1} a_{n+1} > (1/2)l a_{n+1}$ for all $n \ge m$. Now , let $n \ge m$

$$d_m a_m - d_{m+1} a_{m+1} > (1/2) la_{m+1}$$

$$d_{m+1}a_{m+1}-d_{m+2}a_{m+2} > (1/2) la_{m+2}$$

.....

.....

$$d_{n-1}a_{n-1} - d_na_n > (1/2) la_n$$

Adding, we get

$$d_m a_m - d_n a_n > (1/2) l (a_{m+1} + + a_n)$$

$$d_m a_m - d_n a_n > (1/2) l (s_n - s_m)$$
 where $s_n = a_1 + a_2 + + a_n$
 $d_m a_m > (1/2) l (s_n - s_m)$

$$s_n < \frac{2d_m a_m + ls_m}{l}$$
 which is independent of n

 \therefore The sequence (s_n) of partial sums is bounded.

 a_n is convergent.

Case (ii) $l = \infty$.

Then given real number k > 0 there exists a positive integer m such that $d_n \frac{a_n}{a_{n+1}} - d_{n+1} > k$ for all $n \ge m$.

 $:d_na_n - d_{n+1}a_{n+1} > ka_{n+1}$ for all n ≥ m.

Now, let $n \ge m$. Writing the above inequality for m, m+1,....,(n-1) and adding we get $d_m a_m - d_n a_n > k (a_{m+1} + \cdots + a_n)$

$$= k (s_n - s_m).$$

$$\therefore d_m a_m > k (s_n - s_m).$$

$$\therefore s_n < \frac{d_m a_m}{k} + s_m$$

∴ The sequence (s_n) is bounded and hence Σa_n is convergent.

(ii)
$$\lim_{n\to\infty} (d_n \frac{a_n}{a_{n+1}} - d_{n+1}) = l < 0$$

Suppose l is finite.

Choose $\epsilon > 0$ such that $l + \epsilon < 0$. Then there exists $m \in \mathbb{N}$ such that $l + \epsilon < d_n \frac{a_n}{a_{n+1}} - d_{n+1} < l + \epsilon < 0$ for all $n \ge m$.

 $d_n a_n < d_{n+1} a_{n+1}$ for all $n \ge m$.

Now let n ≥ m

$$d_m a_m < d_{m+1} a_{m+1}$$

.....

 $d_{n-1}a_{n-1} < d_n a_n$

$$\therefore$$
 $d_m a_m < d_n a_n$.

$$\therefore$$
 $a_n > \frac{d_m a_m}{d_n}$ Also by hypothesis $\sum \frac{1}{d_n}$ is divergent

Hence
$$\sum_{n=1}^{\infty} \frac{d_m a_m}{d_n}$$
 is divergent.

 \therefore By comparison test Σa_n is divergent.

The proof is similar if $l = -\infty$.

Corollary 1.(D' Alembert's ratio test)

Let Σa_n be a series of positive terms. Then Σa_n converges if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} > 1$ and diverges

$$\lim_{n\to\infty}\frac{a_n}{a_{n+1}}<1.$$

The series $1 + 1 + 1 + \dots$ is divergent \therefore We can put $d_n = 1$ in Kummer's test.

Then
$$d_n \frac{a_n}{a_{n+1}} - d_{n+1} = \frac{a_n}{a_{n+1}} - 1$$

Then $d_n \frac{a_n}{a_{n+1}} - d_{n+1} = \frac{a_n}{a_{n+1}} - 1$ Hence Σa_n converges if $\lim_{n \to \infty} (\frac{a_n}{a_{n+1}} - 1) > 0$ Therefore Σa_n converges if $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} > 1$

Similarly Σa_n diverges if $\lim_{n\to\infty}\frac{a_n}{a_{n+1}}<1$.

Corollary 2. (Raabe's test)

Let Σa_n be a series of positive terms . Then Σa_n converges if $\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1)>1$ and diverges if $\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1) < 1$.

Proof. The series $\sum_{n=1}^{\infty} is$ divergent.

 \therefore We can put $d_n = n$ in Kummer's test.

Then
$$d_n \frac{a_n}{a_{n+1}} - d_{n+1} = n \frac{a_n}{a_{n+1}} - (n+1)$$

$$= n \left(\frac{a_n}{a_n} - 1 \right) - 1$$

 $= n \left(\frac{a_n}{a_{n+1}} - 1\right) - 1$ $\therefore \Sigma a_n \text{converges if } \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1\right) > 1 \text{ and diverges if } \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1\right) < 1$

Theorem: 4.9 (Gauss's test)

Let Σa_n be a series of positive terms such that $\frac{a_n}{a_{n+1}} = 1 + \frac{\beta}{n} + \frac{r_n}{n^p}$ where p>1 and (r_n) is a bounded

sequence. Then the series Σa_n converges if $\beta > 1$ and diverges if $\beta \le 1$.

$$\frac{a_n}{a_{n+1}} = 1 + \frac{\beta}{n} + \frac{r_n}{n^p}, p>1$$

$$n\left(\frac{a_n}{a_{n+1}}-1\right)=n\left(\frac{\beta}{n}+\frac{r_n}{n^p}\right)=\beta+\frac{r_n}{n^{p-1}}$$

Now, since p>1, $\lim_{n\to\infty}\frac{1}{n^{p-1}}=0$

Also (r_n) is a bounded sequence.

Hence
$$\lim_{n\to\infty} \frac{r_n}{n^{p-1}} = 0$$

$$\therefore \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \beta$$

∴ By Raabes's test Σa_n converges if β > 1 and Σa_n diverges if β < 1.

If $\beta = 1$, Raabes's test fails. In this case we apply Kummer's test by taking $d_n = n \log n$

Now,
$$d_n \frac{a_n}{a_{n+1}} - d_{n+1} = n \log n \left(1 + \frac{1}{n} + \frac{r_n}{n^p} \right) - (n+1) \log(n+1)$$

$$= - (n+1) \log \left(1 + \frac{1}{n} \right) + \frac{r_n \log n}{n^{p-1}}$$

$$= - \log \left(1 + \frac{1}{n} \right)^{n+1} + \frac{r_n \log n}{n^{p-1}}$$

Now, by hypothesis (r_n) is abounded sequence and $\binom{\log n}{n^{p-1}} \to 0$

$$\therefore \left(\frac{r_n \log n}{n^{p-1}}\right) \to 0$$

$$\lim_{n \to \infty} (d_n \frac{a_n}{a_{n+1}} - d_{n+1}) = -\log e = \ -1 < 0$$

Hence by Kummer's test Σa_n diverges

Solved problems.

1. Test the convergence of the series $\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \cdots$...

Solution:

Let
$$a_n = \frac{1.2.3...n}{3.5.7...(2n+1)}$$

$$\frac{a_n}{a_{n+1}} = \frac{2n+3}{n+1} \cdot \frac{2 + \frac{3}{n}}{1 + \frac{1}{n}}$$

$$\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=2>1$$

Therefore by D' Alembert's ratio test Σa_n is convergent.

Theorem 4.10 (Cauchy's root test)

Let Σa_n be a series of positive terms. Then Σa_n is convergent if $\lim_{n\to\infty} a_n^{1/n} < 1$ and divergent if $\lim_{n\to\infty} a_n^{1/n} > 1$.

Proof.

Case(i) let
$$\lim_{n\to\infty} a_n^{\frac{1}{n}} = l < 1$$
.

Choose ϵ > 0 such that $l + \epsilon$ < 1.

Then there exists $m \in \mathbb{N}$ such that $a_n^{1/n} < l + \epsilon$ for all $n \ge m$

$$a_n$$
< ($l + \epsilon$) ⁿ for all n ≥ m.

Now since $l + \epsilon < 1$, $\Sigma(l + \epsilon)^n$ is convergent.

 \therefore By comparison test Σa_n is convergent.

Case (ii) Let $\lim_{n\to\infty}a_n^{1/n}=l>1$.

Choose ϵ > 0 such that $l - \epsilon$ >1.

Then there exists m \in **N** such that $a_n^{1/n} > l - \epsilon$ for all $n \ge m$

∴ $a_n > (l - \epsilon)$ for all $n \ge m$.

Now, since $l - \epsilon > 1$, $\Sigma (l - \epsilon)^n$ is divergent

∴ By comparison test, Σa_n is divergent.

Problems:

1. Test the convergence of $\sum \frac{1}{(\log n)^n}$

Solution:

Let
$$a_n = \frac{1}{(\log n)^n}$$

$$\sqrt[n]{a_n} = \frac{1}{\log n}$$

$$\lim \sqrt[n]{a_n} = 0 < 1$$

 $\lim_{n\to\infty} \sqrt[n]{a_n} = 0 < 1$ \therefore by Cauchy's root test $\sum \frac{1}{(\log n)^n}$ converges.

2. Prove that the series $\sum e^{-\sqrt{n}}x^n$ converges if 0 < x < 1 and diverges if x > 1.

Solution:

Let
$$a_n = e^{-\sqrt{n}} x^n$$

 $a_n^{1/n} = (e^{-\sqrt{n}} x^n)^{1/n}$

$$\lim_{n\to\infty}a_n^{1/n}=x$$

Hence by Cauchy's root test the given series converges if 0 < x < 1 and diverges if x > 1.

<u>UNIT - V</u>

ALTERNATIVE SERIES

Definition: A series whose terms are alternatively positive and negative is called an alternating series.

Thus an alternating series is of the form

$$a_1 - a_2 + a_3 - a_4 + \dots = \sum (-1)^{n+1} a_n$$
 where $a_n > 0$ for all n.

For example

i)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum (-1)^{n+1} \left(\frac{1}{n}\right)$$
 is an alternating series.

ii)
$$2 - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \dots = \sum (-1)^{n+1} \left(\frac{n+1}{n}\right)$$
 is an alternating series.

We now prove a test for convergence of an alternating series.

Theorem:5.1(Leibnitz's test)

Let $\sum (-1)^{n+1} a_n$ be an alternating series whose terms an satisfy the following conditions

i) (a_n) is a monotonic decreasing sequence.

ii)
$$\lim_{n\to\infty} a_n = 0$$
.

Then the given alternating series converges.

Proof:

Let (s_n) denote the sequence of partial sums of the given series.

Then
$$s_{2n} = a_1 - a_2 + a_3 - a_4 + \dots + a_{2n-1} - a_{2n}$$

$$S_{2n+2} = S_{2n} + a_{2n+1} - a_{2n+2}$$

Therefore,
$$s_{2n+2} - s_{2n} = (a_{2n+1} - a_{2n+2}) \ge 0$$
 (by (i)).

Therefore, $s_{2n+2} \ge s_{2n}$.

Therefore, (s_{2n}) is a monotonic increasing sequence.

Also,
$$s_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n-1} - a_{2n-1}$$

Therefore, (s_{2n}) is bounded above.

Therefore, (s_{2n}) is a convergent sequence.

Let
$$(s_{2n}) \rightarrow s$$
.

Now,
$$s_{2n+1} = s_{2n} + a_{2n+1}$$
.

Therefore,
$$\lim_{n\to\infty} s_{2n+1} = \lim_{n\to\infty} s_{2n} + \lim_{n\to\infty} a_{2n+1} = s + 0 = s$$
 (by (i))

Therefore,
$$(s_{2n+1}) \rightarrow s$$
.

Thus the subsequences (s_{2n}) and (s_{2n+1}) converges to the same limits.

Therefore, $(s_n) \rightarrow s$ (by theorem 3.29).

Therefore, The given series converges.

Problem: 1 Show that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ converges.

Solution : The given series is $\sum (-1)^{n+1} a_n$ where $a_n = \frac{1}{n}$. Clearly $a_n > a_{n+1}$ for all n and hence (a_n) is monotonic decreasing.

Also
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n} = 0.$$

∴ By Leibnitz's test the given series converges.

Problem : 2 Show that the series $\sum_{\log(n+1)}^{(-1)^{n+1}}$ converges.

Solution: Let $a_n = \frac{1}{\log(n+1)}$.

Clearly $(a_n) \to 0$ as $n \to \infty$. Also $\frac{1}{\log n} > \frac{1}{\log (n+1)}$ for all $n \ge 2$.

∴ By Leibnitz's test the given series converges.

Absolute convergence

Definition: A series $\sum a_n$ is said to be absolutely convergent if the series $\sum |a_n|$ is convergent.

Example: The series $\sum \frac{(-1)^n}{n^2}$ is absolutely convergent, for $\sum \left| \frac{(-1)^n}{n^2} \right| = \sum \frac{1}{n^2}$ which is convergent.

Theorem: 5.2

Any absolutely convergent series is convergent.

Proof:

Let $\sum a_n$ be absolutely convergent.

∴ ∑ |a_n| is convergent.

Let $s_n = a_1 + a_2 + a_3 + a_4 + \dots + a_n$ and $t_n = |a_1| + |a_2| + \dots + |a_n|$

By hypothesis (t_n) is convergent and hence is a Cauchy sequence

Hence given $\epsilon > 0$, there exist $n_1 \in \mathbb{N}$ such that $|t_n - t_m| < \epsilon$ for all $n, m > n_1$ (1)

Now let m > n.

Then
$$|s_n - s_m| = |a_{n+1} + a_{n+2} + \dots + a_m|$$

 $\leq |a_{n+1}| + |a_{n+2}| + \dots + |a_m|$
 $= |t_n - t_m| < \epsilon \text{ for all n, m} > n_1 \text{ (by (i))}.$

: (s_n) is a Cauchy sequence in R and hence is convergent

 \therefore $\sum a_n$ is a convergent series.

Definition: A series $\sum a_n$ is said to be conditionally convergent if it is convergent but not absolutely convergent.

Example: The series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n!}$ is conditionally convergent.

Theorem: 5.3

In a absolutely convergent series, the series formed by its positive terms alone is convergent and the series formed by its negative terms alone is convergent and conversely.

Proof:

Let $\sum a_n$ be the given absolutely convergent series.

$$\text{We define p}_{\text{n}} \quad = \begin{cases} a_n & \text{if } a_n > 0 \\ 0 & \text{if } a_n \leq 0 \end{cases} \text{ and } \mathsf{q}_{\text{n}} = \begin{cases} 0 & \text{if } a_n \geq 0 \\ -a_n & \text{if } a_n < 0 \end{cases}$$

(i.e) p_n is a positive terms of the given series and q_n is the modulus of a negative term.

 $\sum p_n$ is the series formed with the positive terms of the given series and q_n is the series formed with the moduli of the negative terms of the given series.

Clearly $p_n \le |a_n|$ and $q_n \le |a_n|$ for all n.

Since the given series is absolutely convergent, $\sum |\alpha_n|$ is a convergent series of positive terms Hence by comparison test $\sum p_n$ and $\sum q_n$ are convergent.

Conversely $\sum p_n$ and $\sum q_n$ are converge to p and q respectively. We claim that $\sum a_n$ is absolutely convergent.

We have
$$|a_n| = p_n + q_n$$

$$\therefore \sum |a_n| = \sum (p_n + q_n)$$

$$= \sum p_n + \sum q_n$$

$$= p + q$$
.

∴ ∑ a_n is absolutely convergent

Theorem: 5.4

If $\sum a_n$ is an absolutely convergent series and (b_n) is a bounded sequence, then the series $\sum a_nb_n$ is an absolutely convergent series.

Proof:

since (b_n) is a bounded series, there exist a real number k > 0 such that $|b_n| \le k$ for all n.

$$|a_n b_n| = |a_n||b_n|$$

 $\leq k \mid a_n \mid$ for all n.

Since $\sum a_n$ is absolutely convergent $\sum |a_n|$ is convergent.

 $\therefore \sum \mathbf{k} | a_n |$ is convergent.

 \therefore By comparison test , $\sum |a_n b_n|$ is convergent.

Problem 1: Test the convergence of $\sum_{n^3} \frac{(-1)^n sinn\alpha}{n^3}$

Solution: We have $\left|\frac{(-1)^n \sin n\alpha}{n^3}\right| \le \frac{1}{n^3}$ (since, $|\sin \theta| \le 1$)

∴ By comparison test the series is a absolutely convergent.

Tests For Convergence of Series Of Arbitrary Terms

Theorem: 5.5

Let (a_n) be a bounded sequence and (b_n) be a monotonic decreasing bounded sequence. Then the series $\sum a_n(b_n-b_{n+1})$ is absolutely convergent.

Proof:

Since (a_n) and (b_n) are bounded sequences there exists a real number k> 0 such that $|a_n| \le k$ and

 $|b_n| \le k$ for all n.

Let s_n denote the partial sum of the series $\sum |a_n(b_n-b_{n+1})|$

$$\therefore s_n = \sum_{r=1}^n |a_r(b_r - b_{r+1})|$$

$$=\sum_{r=1}^{n}|a_r|(b_r-b_{r+1})$$

$$\leq \mathsf{k} \; \sum_{r=1}^n (b_r - b_{r+1})$$

$$= \mathsf{k} \; (b_1 - b_{n+1})$$

$$\leq \mathsf{k} \; (|b_1| + |b_{n+1}|)$$

$$\leq \mathsf{k} \; (|b_1| + |b_{n+1}|$$

Theorem: 5.6 (Dirichlet's test)

Let Σa_n be a series whose sequence of partial sums (s_n) is bounded. Let (b_n) be a monotonic decreasing sequence converging to 0. Then the series $\Sigma a_n b_n$ converges.

Proof:

Let t_n denote the partial sum of the series $\Sigma a_n b_n$

Since (s_n) is bounded and (b_n) is a monotonic decreasing bounded sequence $\sum_{r=1}^{n-1}(b_r-b_{r+1})s_r$

is a convergent sequence.

Also since (s_n) is bounded and $(b_n) \to 0$, $(s_n b_n) \to 0$ From (1) it follows that (t_n) is convergent. Hence $\Sigma_{a_n} b_n$ converges.

Theorem:5.7 (Abel's test)

Let Σ a_n be a convergent series. Let (b_n) be a bounded monotonic sequence. Then Σ a_nb_n is convergent.

Proof:

Since (b_n) be a bounded monotonic sequence, (b_n) \rightarrow b(say)

Let $c_n = \begin{cases} b - b_n if (b_n) is monotonic increasing \\ b_n - b if (b_n) is monotonic decreasing \end{cases}$ $\therefore a_n c_n = \begin{cases} a_n b - a_n b_n if (b_n) is monotonic increasing \\ a_n b_n - a_n b if (b_n) is monotonic decreasing \end{cases}$ $\therefore a_n b_n = \begin{cases} ba_n - a_n c_n if (b_n) is monotonic increasing \\ ba_n + a_n c_n if (b_n) is monotonic decreasing \end{cases}$ (1)

Clearly (c_n) is a monotonic decreasing sequence converging to 0. Also since Σ a_n is a convergent series its sequence of partial sums is bounded.

.. by Dirichlet's test Σ a_n c_n is convergent.

Also Σ a_n is convergent.

 Σ b a_n is convergent.

Hence by (1) Σ a_nb_n is convergent.

Problems:

1. Show that convergence of $\sum a_n$ implies the convergence of $\sum \frac{a_n}{n}$

Solution:

Let Σa_n be convergent

The sequence (1/n) is a bounded monotonic sequence.

Hence by Abel's test $\sum \frac{a_n}{n}$ is convergent.2. Prove that $\sum_{n=2}^{\infty} \frac{\sin n}{\log n}$ is convergent.

Solution:

Let $a_n = \sin n$ and $b_n = 1/\log n$.

Clearly (b_n) is a monotonic decreasing sequence converging to 0.

$$\begin{aligned} &s_n = \sin 2 + \sin 3 + \dots + \sin (n+1) \\ &= \frac{1}{2} cosec \frac{1}{2} \left[\cos \left(\frac{3}{2} \right) - \cos \left(\frac{2n+1}{2} \right) \right] \\ &\therefore |s_n| \le cosec \left(\frac{1}{2} \right) \end{aligned}$$

 (s_n) is a bounded sequence.

Hence by Dirichlet's test $\sum_{n=2}^{\infty} \frac{\sin n}{\log n}$ is convergent

Exercise:

1. Show that the series $\sum \frac{\sin n\theta}{n}$ converges for all values of θ and $\sum \frac{\cos n\theta}{n}$ converges if θ is not a multiple of 2^{π} .

MULTIPLICATION OF SERIES

Definition: Let $\sum a_n$ and $\sum b_n$ be two series.

Then the series $\sum c_n$ is called the Cauchy product of $\sum a_n$ and $\sum b_n$.

Example:

Consider the series
$$\sum \frac{(-1)^{n-1}}{(\sqrt{n})}$$

We take the Cauchy product of the series with itself.

Let
$$a_n = \frac{(-1)^{n-1}}{(\sqrt{n})} = b_n$$
.

Then $c_n = a_1b_1 + a_2b_{n-1} + a_3b_{n-2} + \dots + a_nb_1$.

$$= (-1)^{n-1} \left[\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{2}\sqrt{n-1}} + \frac{1}{\sqrt{3}\sqrt{n-2}} + \cdots + \frac{1}{\sqrt{n}} \right]$$

$$\therefore |c_n| \ge \left[\frac{1}{\sqrt{n}\sqrt{n}} + \frac{1}{\sqrt{n}\sqrt{n}} + \cdots + \frac{1}{\sqrt{n}\sqrt{n}} \right]$$

$$= n \frac{1}{n} = 1.$$

- $|c_n| \ge 1$ for all $n \in \mathbb{N}$.

 $\begin{tabular}{l} $ \dot{\sim} $ The Cauchy product $\sum_{n}^{\infty} c_n$ is divergent. \\ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(\sqrt{n})}$ converges (by Leibnitz's test). \\ \end{tabular}$

Thus the Cauchy product of two convergent series need not converges.

Theorem: 5.8 (Abel's theorem).

If $\sum a_n$ and $\sum b_n$ converge to a and b respectively and if the Cauchy product ∑ c_n converges to c, then c = ab.

Proof:

Let $A_n = a_1 + a_2 + \dots + a_n$.

$$B_n = b_1 + b_2 + \dots + b_n$$

$$C_n = c_1 + c_2 + \dots + c_n$$
.

$$\cdot$$
 C_n = a₁b₁ + (a₁b₂ + a₂b₁) + + (a₁b_n+ a₂b_{n-1}+... + a_nb₁)

$$= a_1(b_1 + b_2 + \dots + b_n) + a_2(b_1 + b_2 + \dots + b_{n-1}) + \dots + a_nb_1$$

$$= a_1B_n + a_2B_{n-1} + \dots + a_nB_1 - \dots + a_nB_1$$

From (1) $C_1 = a_1B_1$

$$C_2 = a_1B_1 + a_2B_1$$

.....

$$C_n = a_1B_n + a_2B_{n-1} + \dots + a_nB_1$$

$$\cdot \cdot \cdot C_1 + C_2 + \dots + C_n$$

$$= a_1B_1 + (a_1B_1 + a_2B_1) + \dots + (a_1B_1 + a_2B_2 + \dots + a_nB_n)$$

$$= B_1 (a_1 + a_2 + \dots + a_n) + B_2 (a_1 + a_2 + \dots + a_{n-1}) + \dots + B_n a_1$$

$$= A_n B_1 + A_{n-1} B_2 + \dots + A_1 B_n.$$

By hypothesis $\sum a_n$ converges to a and $\sum b_n$ converges to b.

$$\therefore$$
 (A_n) \rightarrow a and (B_n) \rightarrow b.

Hence by Cesaro's theorem,

$$\left(\frac{A_1B_n + A_2B_{n-1} + \cdots + A_nB_1}{n}\right) \to \text{ ab.}$$

i.e.,
$$\left(\frac{c_1+c_2+\cdots\cdots+c_n}{n}\right) \to ab$$
.

Also by hypothesis ∑ c_n converges to c

 \therefore (Cn) \rightarrow c.

Hence by Cauchy's first limit theorem,

$$\left(\frac{c_1 + c_2 + \dots + c_n}{n}\right) \to c$$

$$\therefore c = ab.$$

Theorem 5.9 (Merten's Theorem)

If the series $\sum a_n$ and $\sum b_n$ converge to the sums a and b respectively and if one of the series, say, $\sum a_n$ is absolutely convergent, then the Cauchy product $\sum C_n$ converges to the sum ab.

Proof:

Let
$$A_n = a_1 + a_2 + \dots + a_n$$
.
 $B_n = b_1 + b_2 + \dots + b_n$.
 $C_n = c_1 + c_2 + \dots + c_n$.
 $\overline{A_n} = |a_1| + \dots + |a_n|$
and $\sum |a_n| = \overline{a}$, so that $(\overline{A_n}) \rightarrow \overline{a}$.
Now, let $B_n = b + r_n$.

Since, $(B_n) \to b$, $(r_n) \to 0$ as $n \to \infty$.

Now ,
$$C_n = a_1B_n + a_2B_{n-1} + \dots + a_nB_1$$

= $a_1 (b + r_n) + a_2 (b + r_{n-1}) + \dots + a_n (b + r_1)$
= $(a_1 + \dots + a_n)b + (a_1r_n + \dots + a_nr_1)$
= $A_n b + (a_1r_n + \dots + a_nr_1)$
= $A_n b + R_n$ where $R_n = a_1r_n + \dots + a_nr_1$.

Since, $(A_n) \rightarrow a$, $(A_n b) \rightarrow ab$.

∴ To prove that $(C_n) \rightarrow a$ b, it is enough if we prove that $(R_n) \rightarrow 0$

Further since $(\overline{A_n}) \to \overline{a}$, $(\overline{A_n})$ is a Cauchy sequence. \therefore There exists $n_2 \in \mathbb{N}$ such that $|\overline{A_n} - \overline{A_m}| < \varepsilon$ for all n, $m \ge n_2$(3) Let $p = \max\{n_1, n_2\}$, Let $n \ge 2p$.

Then
$$R_n = a_1 r_n + a_2 r_{n-1} + \dots + a_p r_{n-p+1} + a_{p+1} r_{n-p} + \dots + a_n r_1$$
. $\therefore |R_n| \le \{|a_1||r_n| + |a_2||r_{n-1}| + \dots + |a_p||r_{n-p+1}|\} + \{|a_{p+1}||r_{n-p}| + \dots + |a_n||r_1|\}$ Now $n \ge 2p =>n$, $n-1$,, $(n-p-1) \ge p \ge n_1$. $\therefore |a_1||r_n| + |a_2||r_{n-1}| + \dots + |a_p||r_{n-p+1}|$ $< (|a_1| + |a_2| + \dots + |a_n|) \varepsilon$ (by 1).

$$= \overline{A_{v}} \varepsilon$$

 $<\!ar{a}\varepsilon$ (since $(\overline{A_p})$ is a monotonic increasing sequence converging to $ar{a}$)(5) Also, $|a_{p+1}| |r_{n-p}| +$ $|a_n| |r_1|$

$$\leq (|a_{n+1}| + |a_{n+2}| + \dots + |a_n|) + |a_n| + |a_n$$

$$\begin{array}{l} (\text{by 2}) \\ \leq (\overline{A_n} - \overline{A_p}) \text{ k} \\ < \varepsilon \text{ k} \qquad (\text{by 3}) \end{array}$$

∴ Using (5) and (6) in (4) we get

 $|R_n| < (\overline{a} + k) \varepsilon$ for all $n \ge 2p$.

 \therefore (R_n) \rightarrow 0.

∴ (c_n) converges to a b.

 $\therefore \sum C_n$ converges to a b.

Power Series

Definition:

A series of the form $a_0+a_1x+a_2x^2+\cdots +a_nx^n+\cdots =\sum_{n=0}^\infty a_nx^n$ is called a power series in x. The

number a_n are called the coefficients of the power series.

Example:

Consider the geometric series $\sum_{n=0}^{\infty} x^n$. Here a_n =1 for all n. This series converges absolutely if |x| < 1,

diverges if $x \ge 1$, oscillates finitely if x = -1 and oscillates infinitely if x < -1

Theorem: 5.10

Let $\sum a_n x^n$ be the given power series. Let $\alpha = \lim \sup |a_n|^{\frac{1}{n}}$ and let $R = \frac{1}{\alpha}$. Then $\sum a_n x^n$ converges absolutely if |x| < R. If |x| > R the series is not convergent.

Proof:

Let
$$c_n = a_n x^n$$

$$\therefore |c_n|^{\frac{1}{n}} = |c_n|^{\frac{1}{n}} |x|$$

$$\therefore \lim \sup |c_n|^{\frac{1}{n}} = |x| \lim \sup |a_n|^{\frac{1}{n}}$$

$$= |x| \frac{1}{n}$$

Hence By Cauchy's root test the series converges if $\frac{|x|}{R} < 1$.

i.e) if
$$|x| < R$$

Now suppose |x| > R .Choose a real number μ such that $|x| > \mu > R$.

$$\therefore \frac{1}{\mu} < \frac{1}{R} = \lim\sup |a_n|^{\frac{1}{n}}$$

Hence by definition of upper limit, for infinite number of values of n we have

$$|a_n|^{\frac{1}{n}} > \frac{1}{\mu} > \frac{1}{|x|}$$

 $|a_n x^n| > 1$ for finite number of values of n. Hence the series cannot converge.

Definition:

The number $R=\frac{1}{\limsup |a_n|^{\frac{1}{n}}}$ given in the above theorem is called the radius of convergence of the power series $\sum a_n x^n$

Example:

- 1. For the geometric series $\sum x^n$, the radius of convergence R = 1
- 2. Consider the exponential series $1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+\cdots$ Here $a_n=\frac{1}{n!}$

Here
$$a_n = \frac{1}{n!}$$

$$\left| \frac{a_n}{a_{n+1}} \right| = n+1$$

$$\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\infty.$$

$$\therefore R = \infty$$
.

Hence the series converges for all values of x.