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UNIT |
REAL NUMBER SYSTEM

Field Axioms
Axiom 1: x +y =y + X, Xy = yx (Commutative law)
Axiom 2: X +(y +z) = (X+y)+z, X(yz) = (xy)z (Associative law)
Axiom 3: x(y+z) =xy + xz (Distributive law)
Axiom 4: Given any two real number x and y there exists a real number z such that
Xtz =y....(0)
zZ=y-X
x+(y-x)=y
(x-X)+y =y
X—X=0

Therefore x is a negative of x.

Axiom 5: There exists atleast one real number x # 0. If x and y are two real numbers with x

+ 0. There exists a real number z such that xz =y implies z = Z

>
Yy —
x()=y
(2)y=y
X —
=(3)y=1Lly
>xx1=1%
X
-1 _1 .
=>x =-Xx#0.
X

1. .
~is the inverse of x.

x~1is the reciprocal of x.
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Order Axioms

The existence of a relation < which establishes an ordering among the real numbers and

which satisfy the following axioms.

Axiom 6: Exactly one of the relations x =y, X <y, x >y holds.
Axiom 7: If x < y,then for all z,we have x +z < y+z.

Axiom 8: If x>0and y > 0 thenxy >0

Axiom 9: If x>yandy>zthenx >z

Rational Numbers

Q= {%/a and b are integers b = 0}
Example

. +b . .
1. If aand b are rational numbers ,then aT is also a rational number.

2. Between any two rational numbers ,there are infinitely many rational numbers.

3. The field axiom and order axioms are satisfied by Q.
Irrational Numbers
Real numbers which are not rational are called irrational numers
Theorem 1.1 : Given real numbers a and b such that a < b +€ for all € >0. Thena < b.

Proof: We have to prove this theorem by contradiction method. Suppose a>b.

Givena,b eR,a<b+g, forall € >0. Take € =az;b.

Thenb+e:a7_b+b.

a—b+2b
b+e=

b+e<a.
But given b+€ > a,which is a contradiction.
Therefore our assumption is wrong.

Thus a<b.



Definition :

A subset A of R is said to be bounded above if there exists an element a € R such
thata = a for all aA.

o is called an upper bound of A.
Definition :

A subset A of R is said to be bounded below if there exists an element B € R such that
a= f forallaeA

B is called a lower bound of A.
Definition :
A is said to be bounded if it is both bounded above and bounded below.

Least Upper Bound and Greatest Lower Bound:

Definition :

Let A be a subset of Rand 1 € R. u s called the least upper bound or supremum
of Aif i) uisan upper bound of A.

i) ¥ =< uthenvisnotan upper bound of A.

Definition :
Let A be asubsetof R and leR. | iscalled the greatest lower bound or infimum

of Aif i) | isalower bound of A.

if m << Ithen mis not a lower bound of A.

Examples:
1.LetA={1,3,5,6}. Thenglbof A=1andlubof A=6

2. Let A=(0,1). Then glb of A =0 and lub of A = 1. In this case both glb and lub do not
belong to A.

Bounded Functions:

Definition:
Let f: A— R be any function. Then the range of f is a subset of R. f is said to be
bounded function if its range is a bounded subset of R.

Remark :

f is a bounded function iff there exists a real number m such that
If(x)] < mforallxeR
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1 f:[0,1] #Rgiven by f(x) =x + 2 is a bounded function where as f: R — R given by
f(x) = x + 2 isnot abounded function.

2. f:R= Rdefined by f(x) =sin x is a bounded function. Since |sin x| = 1.

Absolute Value:

Definition: For any real number x we defined the modulus or the absolute value of x
ifx>=20
x ifx=0"

x
denoted by |x| as follows |x] = { _

Clearly  |x| = 0 for all xeR.

Triangle inequality

For arbitrary real xandywe have Ix+yl<IxI+lyl
Proof:

We know that - IxI<x<Ixl — 5 (1)

and -lyl<y<lyl — > (2)

(1)+(2)=> -[Ixl+lyl] <x+y <Ixl+1lyl.

By theorem, “Ifa>0, then we have the inequality Ix| <a iff -a<s x < a”.
Hence, Ix+yl<Ixl+lyl

Cauchy-schwarz inequality

Theorem:1.1If &y, ... .., and by, .....DB, arerealnumbers, then

(E?:iﬂebejz <X, ﬂf xhy bf ........... (2)
Or, equivalently

[ [
n % A e 2
Triacbl < [T af [ZL B (2)
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We will use mathematical induction as a method for the proof. First we observe that
(aiby — “'fz'i?&:]2 =0

By expanding the square we get
(ayby)*+(azby)* —2a,bya,b, = 0

After rearranging it further and completing the square on the left-hand side, we get

2

a,?b,” + 2a,bya,b, +a,’b,” = a,’b,” +a,’b,” +a,’b,” + a,’b,’
By taking the square roots of both sides, we reach

la;byet azb, | = +Jai + a3+/bf + b3 ...........(3)

which proves the inequality (2) for n = 2.

Assume that inequality (2) is true for any n terms. For n + 1, we have that
|ZE =1 z |EE =1 z |ZE 1'1: + Eln+1 |Ez =1 bz + bn+1 (4)

By comparlng the rlght hand side of equation (4) with the right-hand side of
inequality (3)

we know that

IZ: 1‘7*: +azs, |Ez lbz +bi.y = |Zz =14; IZ b§+|ﬂ’n+1bn+1|

Since we assume that inequality (2) is true for n terms, we have that

IE: =1 & IE; =1 z+|a?‘!+1 ne1l = Xisy agb, +Ha, b, 44l

n

EZaibi

whii_c; proves the C-S inequality.

Given real numbers aand b suchthata <= b + = forevery €¢>0 .Thena = b
Proof:

Givena = b + s foreverye = 0 .. (1)

Suppose b < a

Chooses = a- b /2

Now,b + e = b + a-b /2

=(2b+ a— b)/2
=(a +b)/2 < (a+ a)/2
= 2a/2 = a
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Therefore, , + z « g Whichisa contradiction to (1)
Hence 5 = p

Theorem: 1.3

If n is positive integer which is not a perfect square, then yn is irrational.
Proof:

Let n contains no square factor > 1

Suppose yn is rational

Thenyn = a/b, where a and b are integers having no factor in common.

[X]

impliesn = —
= bn=4d..(1)

But b2n is a multiple of n, so a? is also a multiple of n

However if a%is a multiple of n, aitself must be a multiple of n. (since n has no square
factor >1)

= a = cm,wherecisaninteger

subin (1)

bin = cin?

b? = nc?

Therefore b is a multiple of n, which is a contradiction to a and b have no factor in common.
Hence vn is irrational

If n has a square factor, then n = m? k, where k> 1 and k has no square factor > 1.
ThenVn = mVk

If v/n is rational, then the numbers Vk is also

rational. Which is a contradiction to k is no square

factor > 1. Hence n has no square factor.

Problem:
Prove that v/2 isirrational.
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2 3 4 n
Theorem: Ife* =1 +x+>=+X+Z d

+=—+ ....+=—+..., theneisirrational.
20 31 4l n!
12 13 1
Proof: Let x =1. Then e? =1+1l+++ o+
— 1 1 1
andletx=-1.Then el =1-1+—-=+=-
21 3! 4!

_ (GOl _ (D2t
Sn = Xk=0 T then Syx—1 = Xk=o 2k—1)1

1 1.1, 1
e -Sp1 = Sttt

20 4! 6!

-1 1
0<e™-Sp-1< 2n!

1
< -1 < ————
O<e S2k-1 (2k-1)12k

0<Rk—1)!(e71-S1) = i <% forany integer k > 1.
Since (2k — 1)! Is an integer, (2k — 1)! (e - S,,_,) is always an integer.
0< 2k = 1)l (e~ Spq) = - < %o

If e~ isrational, (2k — 1)! e~ isan integer, which would lie between 0 and %%
Which is a contradiction.

Hence, e cannot be rational.



UNIT - 1l
SEQUENCES

Definition. Letf : N > R be a function and letf (n)= an. Then a;.,a,, ....,a, iscalled the
sequences in R determined by the function f and is denoted by (an).

anis called the nt" term of the sequence. The range of the function f which is a subset of R, is
called the range of the sequence

Examples.
a) The function f: N > R given by f (1) = ndetermines the sequence 1, 2, 3, ...,...,n,

b) The function f : N-> R given by f (n) = n” determines the sequence 1, 4, 9, ...,...,n,...

Definition:

A sequence (a,) is said to be bounded above if there exists a real number k such that

a, <k foralln €N. ks called an upper bound of the sequence(t,, ) .

A sequence (@, ) is said to be bounded below if there exists a real number k such thata, >k
for all n. k is called a lower bound of the sequence (@, ) .

A sequence (a,) is said to be a bounded sequence if it is both bounded above and below.

Note.

A sequence(a,) is bounded if there exists a real number k = 0 such that
la, | < k for alln

Examples.

1. Consider the sequence 1, 1/2, 1/3,.... 1/n.... Here 1listhel.u.bandOistheg.l.b.Itisa
bounded sequence.

2. Thesequencel, 2,3, ..., N,....... is bounded below but not bounded above. 1 is the g.
l.b of the sequence.
3. The sequence-1,-2,-3,...—n,...is bounded above but not bounded below.

—1is the l.u.b of the sequence.

4. 1,-1,1,-1, ....is a bounded sequence. 1 isthe l. u. b -1 is the g. |. b of the sequence

5. Any constant sequence is a bounded sequence. Here 1.u.b = g. . b = the constant term of
the sequence.

Monotonic sequence

Definition: A sequence (@,,) is said to be monotonic increasing if @,, = @,+4 for all n. (a,,)
is said to be monotonic decreasing if @, 2a,, for all n.(a,) is said to be strictly monotonic
decreasing if @, < a,:+4 forall n. (z,) is said to be monotonic if it is either monotonic
increasing or monotonic decreasing.

Example.
1,2,2,3,3,3,4,4,4,4, ....is a monotonic increasing sequence.

1,2,3,4....... is a strictly monotonic increasing sequence
The sequence (a,) givenby1,-1,1,-1,1, ... is neither monotonic increasing nor

monotonic decreasing. Hence(a,) is not a monotonic sequence.

In—TH . - .
(3n+") IS @ monotonic increasing sequence.
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Proof:
In—=7 2(n+1)-7
Int2 F(n+1)+2
—-25
=———— <0
(An+2)(3n+s)
Therefore a, < a,s,

Hence the sequence is monotonic increasing.

dn— dn+l =

1 1 1
5. Consider the sequence (an) wherea,, =1+ m +=-+-.+ o Clearly (&) is a monotonic
increasing sequence.

Note: A monotonic increasing sequence (@) is bounded below and gz is the g.l.b of the
sequence.

A monotonic decreasing sequence (@, ) is bounded above and a1 is L. u. b of the sequence.

Solved Problems:

. . . 2, ta,+--ta . .
Show that if (a,) is a monotonic sequence then (—=—2 - ) is also a monotonic
sequence.
Solution:

Let (@, ) be a monotonic increasing sequence.

Therefore @y = @, T a3 = . TG, = e, W
Leth,,= (M)
Now, b,.1—b, = T
ntl i
M, — [‘11 +a, +-- ""'+an}
- n(n+ 1)
_”En+-__':"1n+f1n+---.....+um
B n(n+1) by (1)
nin+1)
=0

Therefore, b,2q = b,,.
Therefore (b, ) is monotonicincreasing.

The proof is similar if (@, ) is monotonic decreasing.

Convergent sequences

Definition. A sequence (a,)is said to converge to a number lif given €> 0 there exists a
positive

integer msuch that a,— ! < e foralln =m.We say that is the limit of the sequence
and we write

limnsean = lor (a,,) >
Note.1 (a, ) -> Liff given > 0 there exists a natural number m such that a,€( l-€, [ + €, )

for all n 2 mi.e, All but a finite number of terms of the sequence lie within the interval
(I — e,l +¢).
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Theorem. 2.1
A sequence cannot converge to two different limits.

Proof. Let (an) be a convergent sequence.
If possible let [1 and [2 be two distinct limits of (an).

Let €> 0 be given.
Since (an) =11, there exists a natural number n;

Let m = max {n1, n2}

Then |l, =L, =l —a,, + a,, — 1,

< la,, — 11+ la,, —1,]

<IE4E by(l)and(2)

=E

~l1- [,<eand this is true for every e€> 0. Clearly this is possible only if [1 - [, = 0.

Hence l1= [,

Examples

1.lim, . % =0
Proof:

Let >0 be given.

1 1 , 1 .
Then ‘;— 0| = =E if n= - -Hence if we choose m to any natural number

1 1
such that m = Ethen ‘;— ﬂ‘ < forall n= m.

1

lim, - = 0

Note. If € = 1/100, then m can be chosen to be any natural number greater
than100.In this example the choice of m depends on the given eand [ 1/ €] + 1 is the
smallest value of m that satisfies the requirements of the definition.

2. The constant sequence 1, 1, 1, ...... converges to 1.
Proof.
Let > 0 be given

Let the given sequence be denoted by (an). Then an =1 for all n.
~|la,=1|=|1-1| =0<eforallneN.
“la,~1 | < e foralln = m where m can be chosen to be any natural number.
sLiman = 1
n — o0
Note. In this example, the choice of m does not depend on the givene
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n+l

!

1

3. lim, .

Proof. Let €> 0 be given.

nt+l

Now, 52— 1] = [1+ 21 = [}

[ - [
=~ If we choose m to be any natural number greater than 1/e we have
ntl nt+l =1

T

— 1‘ <&for all n >.m .Therefore, lim,, _, .

!

. 1
4, 111']'1;,2 ey = 0

Proof.
Let > 0 begiven
Then ,%— ﬂ| = % < % (since2™>n for all n € N)

1 .
—— IZI‘<£ for all n 2 m where m is any natural number greater than 1/¢

. 1
Therefore, lim, . —=10

5. The sequence ( (-1) ™) is not convergent

Proof.
Suppose the sequence ( (-1) ™) converges to [

Then, given €> 0, there exists a natural number m such that

|(‘1]“-l| <eforalln = m
()M = (1) MHL = | (-1) M- 1 - (-1) M* L
<) M=l +] () M1y

<g+e=2¢

But| 1) M- (-ymTL| =2,
~2 =< 2€

i.e., 1 <e which is a contradiction since €> 0 is arbitrary.
~ The sequence ( (—1) ") is not convergent.

Theorem:2.2
Any convergent sequence is a bounded sequence.

Proof.

Let(a, ) be a convergent sequence.
Let limn —on By = l
Let e> 0 be given. Then there exists m eN such that | a, — 1 | <eforaln =2m

|rxn| < |l| + eforalln = m.

NOW,|etL' = Tﬂ()"}'{ !”J_! |n | |ﬂ- | !} | +E_}_

1 F 1 i il L I
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Then | (a,) | = k forall n.
~(a,) is a bounded sequence.

Note. The converse of the above theorem is not true. For example, the sequence ( (—1)") is
a bounded sequence. However it is not a convergent sequence.

Divergent sequence
Definition: A sequence (@) is said to diverge to o if given any real number k = 0, there
exists m eN such that @, = k for all n >m. In symbols we write (an) ->eoor lim, .. a, =w®

Note. (@, ) > o< if given any real number k > 0 there exists m eN such that a,,€( k, =) for all n
2m

Examples

1.(n) = o

Proof: Let k > 0 be any given real number.

Choose m to be any natural number such that m > k
Thenn>kforalln>m.

“(n) = o

2.(n?) Seoo

Proof: Let k > 0 be any given real number.

Choose m to be any natural number such that m > vk
Then n?> k foralln>m

o (n?)Seo

Definition. A sequence (a,,) is said to diverge to —ee if given any real number k < 0 there
exists

m €N such that that a,,< k for all n 2 m. In symbols we write

Lim an = -9, or (@, ) >-o°

n—>eo

Note. (a, )—> —o< iff given any real number k <0, there exists m eN such that
a, £( —w0,k) foralln = m
A sequence (a,) is said to be divergent if either (a, ) > oo or (a, }> —o°

Theorem. 2.3

(a,) >~ iff (~a,) >~

Proof.

Let (a, )>o°

Let k < 0 be any given real number. Since (a,,) - oo there exists m € N suchthata, = — k
foralln>m

“—a,< kforalln = m

(= a, = oo - -
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Similarly we can prove that if (- an) > - o= then (an) = o~.

Theorem. 2.4
If (@,.) -> > and an # 0 for all n €N then () > 0.

Proof. Let € > 0 be given.

Since(a,,) > oo, there exists m eN such thata, = 1/¢ forall n = m

1
.a<eforallnz>m
oo TL

1
—|<eforalln>m
T

Hence (i] =0
Gn
Note. The converse of the above theorem is not true. For example, consider the sequence

(an) where
An=(-1)"/n. Clearly (an) = 0

Now (1/an)=(n/(-1)")=-1,2,-3,4,......... which neither converges nor diverges to
o Of — oo

Thus if a sequence (an) =0, then the sequence (1/an)— 0 need not converge or diverge.

Theorem:2.5

If (@) > 0and (@n)> 0 foralln eN , then (,,ITJ Bl

Proof.
Let k > 0 be any given real number.
Since (an) - 0 there exists m €N such that |a, | < 1/kforall n = m

~an < 1/kforall n>m (since an>0)
Therefore 1/an> k for alln = m
Hence (1/ a,) — o0

Theorem:2.6

Any sequence (a,, ) diverging to o< is bounded below but not bounded above.

Proof.

Let (@, )-> oo. Then for any given real number k > 0 there exists m € N such that an >
kforalln>m.......... (1)

~ kis not an upper bound of the sequence (an)
~ (a,) is not bounded above

Now let [= min { a1, az, ....am,k}.

From (1) we see that an >l for all n.

=~ (an) is bounded below
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Theorem:2.7

Any sequence (a,, ) diverging to —== is bounded above but not bounded below.
Proof is similar to that of the previous theorem

Note 1. The converse of the above theorem is not true. For example, the function

f : N=>R defined by

0if nisodd
f(n)={

1 \ \
=n if nis even

Determines the sequence 0,1,0,2,0,3,.............. which is bounded below and not bounded
above. Also for any real number k > 0, we cannot find a natural number m such that an > k
forall n >m.

Hence this sequence does not diverge toeeo.

0if nisodd
Similarly f: N->R given by f(n)= {in if nis even

-
=

Determines the sequence O, -1, 0, -2, O, ..... which is bounded above and not bounded
below. However this sequence does not diverge to — oo.

Oscillating sequence

Definition: A sequence (a,,) which is neither convergent nor divergent to oo or —== is said to
be an

oscillating sequence. An oscillating sequence which is bounded is said to be finitely
oscillating. An oscillating sequence which is unbounded is said infinitely oscillating.

Examples.
1. Consider the sequence ((-1)7). Since this sequence is bounded it cannot to eeor — o= (by

theorems). Also this sequence is not convergent . Hence ((-1)) is a finitely oscillating
sequence.

2. The function f: N 5 R defined by
0if nisodd
f(n) = {

1(l—ﬂj if niseven

-
T

determines the sequence0,1,-1,2,-2,3, ... The

range of this sequence is Z. Hence it cannot converge or diverge to *oo. This sequence is
infinitely oscillating.

The Algebra of limits
In this section we prove a few simple theorems for sequences which are very useful in
calculating limits of sequences.

Theorem: 2.8
If (a,)->aand(b,) > bthen(an+b, ) >a+b.

Proof:

Let e> 0 be given.

Now |an+ bn-a—b|=|an-a+bn-b |< |an—a|+|bn—b].....(1)

Since (@, ) > a, there exist a natural number ni such that|an-a|<1/2 € for all n......... (2)
Since (b,,) > b, there exist a natural number n, such that |bn-b |<1/2 € for all n,......... (3)

Let m = max{ns, nz}
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Then |an+ bn—-a—-b|<1/2e+1/2e =€eforall n2m. (by (1),(2)and (3))
~ (an+bn) > a+b.

Note. Similarly we can prove that (an-bn) > a-b.

Theorem:2.9
If (@,)> aandk €Rthen (kan) > ka.

Proof:
If k =0, (kan) is the constant sequence 0, 0, O, .... And hence the result is trivial.

Now, let k # 0.

Then |k an-kal=|k]| | an—al................ (1)
Let €> 0 be given.

Since (a ) = a, there exist m €N such that

|an-a|<e/|k| forallnz=m.................... (2)

o |kan—ka|<eforalln>m (by 1 and 2).
~ (kan) = ka.

Theorem: 2.10

If (an) = a and (bn) = b then (anbn) > ab.

Proof.

Let e> 0 be given.

Now, |anbn-ab |= |anbn-anb+anb—ab|
Slanbn— anb|+|anb—ab|

=|an||bn—b|+|b| Ian—al ...... (1)

Also, since (an) 2a, (ax) is a bounded sequences.

. There exist a real number k >0 such that |an|<k foralln........ccoeceeee. (2)
Using (1) and (2) we get
|anbn—ab| <k |bn-b|+ |b| |an—al........... (3)

Now since (an) = a, there exist a natural number ni such that
|an-a|>g/2|b| foralln>n;
Since (bn) = b, there exist a natural number n, such that
|an-a|>g/2|b| foralln=n,
Let m = max{ni, na}.
Then|anbn—ab|<k (e/2k) + |b]| (e/2|b]|) = € for all n=m (by (3),(4)and(5))
Hence (anbn) —* ab

Theorem: 2.11

If(a,) +aanda, #0 foralln and a +# 0 then [Ei] - i
Proof:
Let €> 0 be given.

1

lagyllal

En_ﬂ
Gn

We have |1/an—1/a|=

la, — al v e ce v (1)

Now, a¥ 0 .Hence |a| = 0
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1
Since(a,) — a, there exists n1eN such that |a,, —al <= lalfor alln =n,
1
Hence la,| = =lalfor alln =n, .......(2)

Using (1) and (2) we get

1 1 2
———| < —la, —al foralln=n, .......(3)
a, al |al?

Now since (an)—* @, there exists n2eN such that
la, — al {%lalzsfarailﬂiﬂg ............. (4)
Let m = max {ni, n2}.

1 1 21
___‘ ——|a|*s = gforalln=m
a, al |al?2

Therefore (1/an)— 1/a

Corollary:

Let (@) = aand (b,) = b where bn#0forallnandb #0.

Then (22) - (£)

Proof:

(i) - G) (since If (a,) *aanda, + 0 foralln and a # 0 then [:—‘1:] — i)

(E—“) - E) (since If (an) > a and (bn) > b then (anbn) > ab)

bn
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Theorem: 2.12
If (a,) > athen (]an|) > |a].

Proof:
Let > 0 be given
Now | |an]| -]al] £ ]an—a| ccoeereerenene (1)

Since ( an) > athere exist meN such that |an—a|<e foralln>m.
Hence from (1) we get | |an |- |a|| <e forall n > m.
Hence (|an|) =(a).

Theorem: 2.13

If (a,,) > aand an>0 for all n then a 0.

Proof.

Suppose a<0.Then-a>0.

Choose € such that 0 <e< -a so thata + e< 0.

Now, since (an) > a, there exist m €N such that |an— a|<e for alln < m.
s a-e<an< a+e foralln<m.

Now, since a+e< 0, we have an< 0 for all n 2 m which is a contradiction since an2 0.
~az20.

Theorem: 2.14

If(a,) > a, (bn) > band an< baforalln,thenas<hb.

Proof.

Since an< bn, we have bn—an> 0 for all n.

Also (bn —an)> b—a (sincelf (a,) > aand(b,) > bthen(an+b, )>a+b)
~b—az20
~b>a.

Theorem: 2.15

If(a,) = L(b,) — land an<cn< bnforalln, then (cn) > L.

Proof.

Let e> 0 be given.

Since (@, ) > [ ,there exist n1€EN such that [ - e<an<l + € for all n > ns.
Similarly, there exist n2€EN such that [ — e<ba<l + € for all n 2 n,.

Let m = max {ni, n2}.

& —€<an< cn< bn<l+ € for alln > m.

~—e<cn<l+eforalln=>m.

o |en=1|<eforalln > m.

Theorem:2.16

If {a,,)> aand a,>20forallnand a#0,then (wf"a_n:] —+/a.

Proof.

Since an 20foralln,a>0 (sinceIf (@,) > aand an2 0 for all n then a 20)

— —
NOW, |1||"l i, - 1"l'|lt:':’|:

Gn—a@

Jae-te

. . 1
Since (an) > a #0, we obtain ar>a foralln>n;
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—

1
Ja, = ‘Hll (a) forallnn

— = 1z
fa, — w,-'a| =

|1,,. —|a, — alfor all ,n = 1y (1)

Now, let €> 0 be given.

Since (an) > a, there exist n2€N such that
|an-a|<e Va (V2+1)/V2forallnzns...... (2)
Let m = max {ni, na}.

Then | ¥in—- a/|< € for alln =2 m (by 1 and 2).

o (*Jl a_n:] % \.'I'E-

Theorem: 2.17

If (a,) > ooand (b,) > cothen(a, + b, ) — oo.
Proof.

Let k > 0 be any given real number.

1 —
Since (@a,,) > oo, there exists n1€N such that an>=k for all n > n1.

1
Similarly there exists n2€N such that b,>Zk for all n > n,.

Let m = max {ni, n2}.
Then an+ bn> k for all n > m.
~(an+ bn) = oo,

Theorem: 2.18

If (a,) > eoand(b,) > oo then(a,b,) > oo
Proof.

Let k > 0 be any given real number.

Since (@,) - o, there exist 11€N such that a->Vk for all n > n1.
Similarly there exists n2,€N such that bu>\k for all n > na.

Let m = max{ni, n2}.

Then anbn> k for all n > m.

Theorem: 2.19

Let(a,) - oo then
(i)ifc>0, (can) > oo
(ii)ifc<0, (can) > -0

Proof.

(i) Let c> 0.

Let k > 0 be any given real number.

Since (@, ) - oo, there exist m €N such that an>k/c for ak n > m.
~can>kforallnz>m.

s (can) > oo

(ii) Letc<O.

Let k < 0 be any given real number. Then k/c > 0.

~ There exists m €N such that a»> k/c for alln > m.
~can<kforalln2>m (since c<0).
s (can ) > —oo.
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Theorem: 2.20

If (a,,) > o= and (bn) is bounded then (an+ bn)-> oe.

Proof.

Since (bn) is bounded, there exists a real number m < 0 such that b»> m for all n.

Now, let k > 0 be any real number.

Sincem<0,k—m>0.

Since ( an) > o, there exists no€N such that an>k—m foralln>no ... (2)
“an+ bn>k—m+m=kforalln>no(by1and 2).

(an+ bn)% oo,

Solved Problems.

1. Show thatlim —_ =

It +In+s 1
R enltan+T 2

Solution:

,1 2 5
3In© +2n—|—5_ 3+;+n_z
6n2 +4n+7 g+

n n*

Now, 1imn—}m(3+i_+j_z:] =3+211mn+m3+511mn%m:—5= 3+40+0 =3

Similarly, lim, _,..(6 + %+:—1] =6
342+2
lim a, = lim Fa—
1 —oo H—+oa 6 _I_ — _I_ _z
=3/6

=%

2. Show that Alm [1‘1—3) =§

Solution:

Weknowthat 12+22+---....+n2=w
1P 4274t onn+1D(2n+1)
lim ( )= lim
n—oo n3 n—oo 613
. 1 1 1
=11mn+xg(1+;)(2+;]
=1/3
3.Showthat lim — =1

F1L —F OO ?'I_E_l:?! ¥ 1}

Solution:

1
lim —= lim ——
1 —oo 2 f— oo
VD) A+
Y n
1
limy_ o ——
a,-:':""'n;ﬂj
1

—

*!' limp_ oo (1+-5)
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4. Show that if (a,,) > 0 and (b,,) is bounded, then (axbn) >0.
Solution.
Since (bn) is bounded, there exists k > 0 such that|bx | < k for all n.

o |anbn|<k | an .

Now, let €> 0 be given.

Since (an) - 0 there exists m €N such that |ax|< g/k for all nn
~ |anbn | <€ foralln>m.

 (anbn) 0.

Einn

5. Show that lim,, _, . =0

Solution:
|sin n|< 1foralln.

~ (sinn) is a bounded sequences
Also, (1/n) -0

(Sim]90 (by problem 4).

T

6. Show that lim(a*") = 1 where a > 0 is any real number.
n-—yeo
Solution.

Case (i) Leta=1.Then a*/n=1 for each n . Hence (a*") > 1

Case (ii) Let a > 1. Then a'/n>1.
Leta/n=1+h,wherehp> 0.
Therefore a = (1+ hy)?

=1+ nhp+....... +h

> 1+ nhn

Therefore, hn< a-1/n
Therefore, O<hn< a-1/n
Hencelim, . _h =0
Therefore, (a¥/")=(1+h,)— 1.

Case(iii)

Let O<a <1

Then 1/a >1

Therefore, (1/a)V/"— 1 (By case (i)
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1
(-1
an
(al/n) n— 1

7. Show that limy >oo(n)Y"= 1T
Solution.

Clearly n*/n> 1 for all n.

Let n¥/" =1 +h, where h,= 0
Then n = (1+h,)"

=1+nhpt ncahi+......... +h ]
= n(n-1)h?

-
r

Therefore, h/2<

(m—1)
[
hn<1‘|n_1
[
Since an‘_l — 0 andh,= 0,(hy) = 0

Hence (n'/")=(1+h,) — 1.

8. Give an example to show that if (&, )isa sequence divergingto = and (b,) issequence

diverging to — oo then (an + bn) need not be a divergent sequence.

Solution.
Let (a,) = (n)and (bn) = (- n).

Clearly (a,,) > 0and ( bn) > — e,

However (an+bn) is the constant sequence 0, 0, 0,.... Which converges to 0.
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UNIT - 11l
BEHAVIOUR OF MONOTONIC SEQUENCES

Theorem: 3.1
i A monotonic increasing sequence which is bounded above converges to its l.u.b.
i. A monotonic increasing sequence which is bounded above diverges to oo.
i. A monotonic decreasing sequence which is bounded below converges to its g.l.b.
v. A monotonic decreasing sequence which is bounded below diverges to -o-.

Proof:
(i) Let (&,,) be a monotonic increasing sequence which is bounded above.

Let k be the l.u.b of the sequence.
Then an< k for all n.

Let >0 be given

Therefore, k- <k and hence k-¢ is not an upper bound of (an)
Hence, there exists a, such thata,, > k — &.

Now, since (&, ) is monotonic increasing an> amfor all n > m
Hence a, >k-€ for all n>m............ (2)

Therefore k — € < an<k for all n >m.(by 1 and 2)

Therefore |an—k|< € foralln > m.

Therefore (a,,) > k.

(ii) Let (a,,) be a monotonic increasing sequence which is not bounded above.
Let k > 0 be any real number.

since (&, ) is not bounded, there exists m € N such that am > k.

Also an = amfor all n2m.

~a, =kforalln=m

Hence,(ay) >o°

Proof of (iii) is similar to that of (i)

Proof of (iv) is similar to that of (ii)

Note:
The above theorem shows that a monotonic sequence either converges or diverges. Thus a
Monotonic sequence cannot be an oscillating sequence.

Solved Problems:

1. Letan= 1+%+ §+ et ni Show that lim,, _,_. a,, exists and lies between 2 and 3.

Solution:
Clearly (a,)is a monotonic increasingsequence


Free Hand


Also, an= 1+%+%+ +ni

=142 1—%]
=3'2.‘11—'_<3

i, <3

=~ (a,,)is bounded above
Thereforelim, _,_ a, exits
Also 2<ap<3foralln.
~2<lima, <3

1 —+oo

Hence the result.

1. Show that the sequence (1 + %]” converges.
Solution:
Let an=(1+ i]”

By binomial theorem,

11 (1) £ 215 (1) (1) (1-3) -5
<141 +%+%+--- +$

< 3 (by problem 1)

Therefore,(a,,) is bounded above.

Also,
a1+ 2) (-2 et (1) - 22
>l (1-2)+ (1= (1-2) 4+t 2 (1-3) - 5D

“ an+1>3an

~ (a,) is monotonic increasing.
~ (@a,) is a convergent sequence.

Theorem: 3.2 (Cauchy’s First Limit Theorem)
If(a,) — I then (M) - L.

H

Proof:
Case (i).
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Let 1=0
Let bn =

L P T

T

Let €>0 be given.
Since (a,,) — 0 there exists m € N such that |an|<(1/2) € for all iz.57%.u.......(1)
Now let n=m

gy fag t-wtamton e t-tay

Then |bn|= .
< la,| + lag| + .. +la,,l T la,oql + .. +la,l
T T
=Xy meal 2l where k= lay] + lal + .. +la,,|
<+ (2 by (1))
<§ +: (Sincen;—m < 1) (2)
Now since (k/n)— 0,there exists noeN such that k/n <(1/2)e for alln=1,_... (3)

Let n1 = max{m, no}

Then |bn|<e foralln=11 (using 2 and 3)

Therefore (bn)— 0

Case (ii)

Let 1= 0

Since (an) = L (a, —1) =0

. [:':ﬂ._—!:'+':rzz—!:+---...+l:ﬂn—1}j 0 (by case (i)
(cxl—i- a, +--..+a, —nl

T

) =0

(al-I-cxg + . ta

2_N)=o0
T :]_>

(al +a, +..+a,

T

) =1

Theorem: 3.3 (Cesaro’s theorem)
If (a,) = a and (bn) = b then (a-_bn+azbn_._+.....+anb._

) = ab
Proof:

T

Gybgtagby _+-atagb,

ol

Let cn=

Now put an=a + rpso that (r,) = 0
(atrybgt-tlatrglb,

Then cn=

T
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_alb,ttby) + rybgt o trgby

T T

Now, by Cauchy’s first limit theorem,[%} —+ 1

by +b;+-..+b
(a( 1T by nj)%ab
" +ontrg b
Hence it is enough if we prove that (= L =) =0

Since, since (bn) = b, (bn) is a bounded sequence.
Therefore, there exists a real number k>0 such that |bn|< k for all n.
by + oAby I LU SR o o

T T
Since (rn) = 0, (%] -0

(rb+ Tt b ]—?’D

Hence the theorem.

Theorem: 3.4 (Cauchy’s Second Limit Theorem)

Cnia

Let (&, ) be a sequence of positive terms. Then lim,, .. a,n = lim, _,_. prowded the limit

on the right hand side exists, whether finite or infinite.
Proof:

Case(i)lim,, . rI:_""=1, finite.

Let >0 be any given real number.

Then there exists me N such that [ — %s < E;‘A <+ %s foralln=m
Now choose n =m

Then l—%sﬁimﬂ l+%£

&m
1 Qm+2 1
l——e< <l+-e
2 Om+1 2
—tecfn gyl
——£ —£
2 @, q 2

Multiplying these inequalities, we obtain

(i 1 )?‘!—?‘J"I. :: ﬂ-n {(l-l_ 1 )?‘2—?‘1‘1
EE i ZE

[0

(1-3) (1+3e)

o, ————————— <. 4, <. 4, =l

1 g
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Now, (k= (I — &) - l—ze (Since (ky™) = 1)

 There exists nie N such that (I —%E] - %E = ki"i(i - %Ej < (I- %Ej + %E
foralln=n, ... (2)

Similarly, there exists n2e N such that (I + %E] — %E < k:%(H'%E] <(+ %Ej + %E
forallnz=n, .. . (3)

Let no= max {m, ni,nz}.
Then l—e < kyn(l—22) < a,n < kyn(l+2g) < 1+ sforalln=n, (by 1,2 and 3)
al—e< rxnic‘: L+ = forallnz=mn,

Hence (ani] — 1.
Case (ii):

e

noo (1,

Then lim,, _..(——)/(=) =0
e T 2n

Therefore, By case (i), (Eiji -0

Hence (a,") — o

Theorem: 3.5

Gn

Let (a,, )be any sequence and lim,, .. =L Ifl = 1, then (a,) — 0.

Gpna

Theorem: 3.6

Let (@, )be any sequence of positive terms and lim,, _, . (:“ ) =1.If l < 1,then (a,)— .

mn+1

Problems:

1. Show that lim,, . i{1 + §_|_ _|_£) =0
n 2 n

Solution:

Let an=1/n

We know that (an) — 0. Hence by Cauchy’s first limit theorem we get
(ai +a, + "-..+an) S0

i

2. Show that lim,, _, . :_1 =0

Solution:
n!
Let an= nT
a, n! (n4 1)1
a1 n* (n+1)!
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ntl. o,

=G
=(1+)"

' aﬂ ' 1
lim = lim (1 +—)"
F1—*00 ﬂ_n+1 Fi—* oo TL

=e>1

Hence(a,) — 0

Subsequence

Definition. Let (a,) be asequence. Let ( a,. ) be a strictly increasing sequence of natural
numbers. Then (a,, )is called a subsequence of (an ).

Note. The terms of a subsequences occur in the same order in which they occur in the
original sequence.

Examples.

1. ( a2n) is a subsequence of any sequence (an ). Note that in this example the interval
between any two terms of the subsequence is the same, (i.e.,) n1=2, n.=4 , n3=6,... nx= 2k.
2. (an2) is a subsequence of any sequence (an). Hence an1=ai, Gn2= aa, an3 = Qas ..... Here
the interval

between two successive terms of the subsequence goes on increasing as k becomes large.
Thus the interval between various terms of a subsequence need not be regular.

3. Any sequence ( an) is a subsequence of itself.

Theorem: 3.7
If a sequence (an) converges to |, then every subsequence(ank ) of (ax) also converges to I.
Proof.

Let e> 0 be given.

Since (an) = [ there exists m €N such that

|an -l |<eforallnzm. ............ (1)

Now choose nio= m.

Then k > ko=nk > nko ( * (nk) is monotonic increasing)
Snk2m.

= |ank—l]|<€ (by 1)

Thus |ank— | <€ for all k > ko.

~(ank) > L.

Note 1. If a subsequence of a sequence converges, then the original sequence need not
converge.

Theorem :3.8

If the subsequences (azn-1) and (azn) of a sequence (ar) converge to the same limit [
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then (an) also convergesto [ .
Proof.

Let e> 0 be given. Since (axn-1) - [ there exists n1€EN such that|an-1- [ [<e forall2n -1
2Nn1.

Similarly there exists n2€N such that | azn— | <€ for all 2n > n,.

Let m = max{ni, n2}.
Clearly |an—1l|<eforalln>m.
s(an) > L.

Note. The above result is true even if we have | > oo o1 — oo,

Definition. Let (an ) be a sequence. A natural number m is called a peak point of the
sequence (an)
if an<amforalln>m.

Example.

1. For the sequence ( 1/n), every natural number is a peak point and hence the sequence has
infinite number of peak point. In general for a strictly monotonic decreasing sequence every
natural number is a peak point.

2. Consider the sequence 1, %,1/3, -1, -1,..... Here 1, 2, 3 are the peak points of the
sequence.

3. The sequence 1,2,3, ... has no peak point. In general a monotonic increasing sequence
has no Peak point.

Theorem :3.9

Every sequence (an) has no monotonic subsequence.

Proof.

Case (i)

(an) has infinite number of peak points. Let the peak points be
N1<N< ... <NE< ...

Then ani>an2> ..... >Ank> ....

~(@y, ) is a monotonic decreasing subsequence of (an).

Case (ii)

(an) has only a finite number of peak points or no peak points.

Choose a natural number ni such that there is no peak point greater than or equal to ni.
Since n1is not a peak point of (an) , there exists no>n1 such that an2 2 an.

Again since nyis not a peak point, there exist n3>n, such that ans > any.

Repeating this process we get a monotonic increasing subsequence (a,, ) of (an).

Theorem : 3.10
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Every bounded sequences has a convergent subsequences.

Proof.
Let (an ) be a bounded sequence. Let (a,, ) be monotonic subsequence of ( an).
since (an) is bounded, (&, ) is also bounded.

= (&, )is a bounded monotonic sequence and hence converges.
=~ (@, )is a convergent subsequence of ( an).

Cauchy sequences.

Definition. A sequence (an) is said to be a Cauchy sequence if given €> 0, there exists noeN
such that

| an— am|<e for all n, m = no.

Note. In the above definition the condition |an- am |<e for all n, m = npcan be written in
the

following equivalent form, namely , | anp — an | <€ for all n 2 npand for all positive integers p.

Examples

1. The sequence (1/n) is a Cauchy sequence.

Proof.

Let(an) =(1/n).

Let >0 be given.

Now, |an— am|=|1/n-1/m|

=~ If we choose ngto be any positive integer greater than 1/¢ , we get
|an - am | <Eforalln, m > ng.

~ (1/n) is a Cauchy sequence.

2. The sequence ((-1)") is not a Cauchy sequence.

Proof.

Let (an)=((-1)").

| an— An+1 |= 2.

~If €<2, we cannot find no such that | an— an+1 | <€ for all n >no.
~((-1)") is not a Cauchy sequence.

3. (n) is not a Cauchy sequence.

Proof.

Let (an) = (n).

|an- am IZ lifnzm.

=~ If we choose €< 1, we cannot find nosuch that |an— am |<e foralln, m > no.
~ (n) is not a Cauchy sequence.

Theorem :3.11
Any convergent sequence is a Cauchy sequence.
Proof.
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Let (an) = . Then given €> 0, there exists noEN such that |an-l |<(1/2)e for all n 2 ng
~lan—am|=lan-1+1-am|

= lan—=1|+ |1 -am|

< (1/2)e +(1/2)=e forall n ,-m >no.

=~ (an) is a Cauchy sequence.

Theorem .3.12

Any Cauchy sequence is a bounded sequence .

Proof.

Let (an) be a Cauchy sequence.

Let €> 0 be given. Then there exists no€EN such that |an- am | <€ for all n, m > no.
o |an |<|ano | +€ for n = no.

Now, letk=max{lail, laz |, ... lano |+ €}.

Then |an < k for all n.

~ (an) is a bounded sequence.

Theorem . 3.13
Let (an) be a Cauchy sequence. If ( an) has a subsequence ( a,, ) convergingto ,then (an)

>

Proof.

Let e> 0 be given. Then there exists ngEN such that

|an- am|<(1/2) € for alln, m > no....(1)

Also since (ank )= [, there exists koEN such that lﬂ'n;..r -1 = %s forallk = ky ... (2)

Choose nk such that nk>nkoand no
Then |an -1 |= |an- ank+ ank — 1|
< lan- ank |+ |ank=1|
=(1/2) e+(1/2)e
=g for all n 2 ni.

Hence (an) = L

Theorem : 3.14 (Cauchy’s General Principle of Convergence

Sequence)

A sequence (an) in Ris convergent iff it is a Cauchy

sequence.

Proof.

we have proved that any convergent sequence is a Cauchy sequence.
Conversely, let (an )be a Cauchy sequence in R.

~ (an) is a bounded sequence (Any Cauchy sequence is a bounded sequence)
- There exist a subsequence (@, ) of (an ) such that (a,, ) > l

~ (an) = L ( by previous theorem ).
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UNIT - IV
SERIES

Infinite series

Definition. Let (an) = a1, az, ... an, ... be a sequence of real numbers. Then the formal
expression ai+a; + ...+ an +..... is called an infinite series of real numbers and is denoted
by 27 a,, ok %n

let s1=ai; S2=a1+Qz; S3= A1+ A2+ A3;.... Sn=C1+ A2+ *++ + An.

Then ( sn) is called the sequence of partial sums of the given series n |

The series Z @» is said to converge, diverge or oscillate according as the sequence of partial
sums (sn) converges, diverges or oscillates.

If (sn ) = s, we say that the seriesX @n converges to the sum s.
We note that the behavior of a series does not change if a finite number of terms are added
or altered.

Examples.

Consider the series1+ 1+ 1 + 1...... Here sn= n. Clearly the sequence (sn) diverges to oo.
Hence the given series diverges toeo.

2. Consider the geometric series 1 +r + 12+ ...... S

Here, Sn=1+r+7%+ ... +rnl=

Case (i)0<r<1.Then(r")=>0

Therefore, (sn)— ﬁ The given series converges to the sum 1/(1-r)

Case (ii) r > 1.

Pt —1
r—1

Then sn=

Also (r")—* @@ whenr>1

Hence the series diverges to &0
Case (iii) r=1.

Then the series becomes 1 +1 + ....

(sn) = (n). which diverges to oo.

Case (iv) r=-1.

Then the series becomes 1 -1+1-1+......
_(0if niseven

" Sn _{1L’fnisodd

~ ('sn) oscillates finitely.

Hence the given series oscillates finitely.

Case (v) : r<-1.
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=~ (r") oscillates infinitely
~ ( sn) oscillates infinitely.
Hence the given series oscillates infinitely.

Note 1. Let X @» be a series of positive terms. Then (sn) is @ monotonic increasing sequence.
Hence (sn) converges or diverges to oo according as (sn) is bounded or unbounded. Hence the

series & @n converges or diverges toee. Thus a series of positive terms cannot oscillate.

Note 2. LletX @ be a convergent series of positive terms converging to the sum s. Then s

is the |. u. b. of (sn). Hence sn< s for all n.
Also given €> 0 there exists m €N such that s - e<snfor alln>m.
Hence s - e<sn<sforalln<m.

Theorem : 4.1
LetZ @ be a convergent series converging to the sum s..
Then limnsean=0
Proof.
Iimnewan= lim (Sn— Sn—l)
n-oeo

=lim sn—lim Sn-1
n—pee  m-poo

=s—s=0.

Theorem . 4.2

Let 2 n converge to a and X by, convergeto b . Then 2(a, T by,) converges to ath and
2k, converges to ka.

Proof.

Let sh=ai+az+ ...+ anand tn=b1+b2+ ...+ bn. Then (sn) > a and (tn) > b.
a(GnIty)satp

Also (5= tt, ) is the sequence of partial sums of Zla,Th,)
~2la,Th,) convergestoa Th.

Similarly kan converges toka.

Theorem 4.3 (Cauchy’s general principle of convergence in Series)
The series & @z is convergent iff given > 0 there exists noEN such that

| @ne1+ Anezat -+ + ansp | <€ for all n 2 ngand for all positive integers p.

Proof.
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LetX @ be a convergent series. Let sn=as +.....+an.

=~ (sn) is a convergent sequence.

= (sn) is @ Cauchy sequence

=~ There exists no€N such that | snip - sn | <€ for all n 2 npand for all pEN.

& |ans1+ ansz+ -+ + ansp| <€ for all n 2 noand for all pEN.

Conversely if |ani1+ ani2+ -+ + ansp| <€ for all n 2 ngand for all pEN then (sn) is a Cauchy
sequence in R and hence (s») is convergent.

=~ The given series converge.

Solved Problems.

1. Apply Cauchy’s general principle of convergence to show that the series Ei not

convergent. -
. 1 1
Solution. Let sy =147 + *= ... + —

1
Suppose the series X — is convergent.

~ By Cauchy’s general principle of convergence, given e> 0 there exists meN such that

| Sn+p — Sn | <€ for all n 2 m and for all pEN.

143+ 4+ - (@ +3++D| <= foralinzmandforall peN.

1 1
. < 5 -
|n+1+n+z+ -|—n+p| € for all n > m and for all peN
In particular if we take n = m and p = m we obtain
L 1 1 11
it Tmz Lt bt =

-~-<€ which is a contradiction since €> 0 is arbitrary.

~ The given series is not convergent.

Comparison test
Theorem 4.4 (Comparison test)

). Let £cn be a convergent series of positive terms. Let £anbe another series of positive

terms. If there exists mEN such that a» < cnfor all n > m, then £ay is also convergent.

i). Let £d, bea divergent series of positive terms. Let £anbe another series of positive

terms. If there exists meN such that a=< dnfor all n 2m, then&nis also divergent.

Proof:

(i) Since the convergence or divergence of a series is not altered by the removal of a finite
number

of terms we may assume without loss of generality that ax < cxfor all n.

Let sn=c1+C2+ .....+ cnand tn=a1+az+ .....+ an.
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Since an< chnwe have th< sn.

Now, SinceZxis convergent, (sn) is a convergent sequence.
~(5,)is a bounded sequence.

-~ There exists a real positive number k such that sn< k for all n.
~tn<kforalln

Hence (t,,) is bounded above.

Also (t,,) is a monotonic increasing sequence.

~(t,) converges

~Z an converges.

(ii)Let £dn diverge and an2 dxfor all n.

stn2 Sn.

Now, (=, ) is diverges to oo.

~(s,) is not bounded above.

~(t,) is not bounded above.

Further (t,,) is monotonic increasing and hence(t,,) diverges to oo.
%y diverges to o,

Theorem :4.5
(i) If¥cnconverges and if lim,, _, . ( :—“]exists and is finite then & also converges.
m

(i)l £ :—:dndiverges and if lim,, :—”] exists and is greater than zero therta, diverges.
Proof | )

(i) .Let lim,, .. (=%)=k

Let £>0be give.r_m. Then there exists n€N such that:—“< k + € for all n 2n;.

m
~an< (k + €) cnfor all n 2 n1.
Also sinceZ cn is a convergent series,Z (k + €) cn is also convergent series.
= By comparison testZax is convergent.

(ii)Let lim,, %(:—“j=k >0
m
1 1 1
Choose € =~k . Then there exists n1€N such that k - :k<:—"‘< k+ <k for all n > nj.
£ = L8 «
:—“ ‘:,:%kforall n>mn

1 r

~a, >~kd, foralln2n

1
Since dnis a divergent series, E; kd,is also divergent series.
= By comparison test, £ an diverges.
Theorem: 4.6

) Let £¢, be a convergent series of positive terms. Let £anbe another series of positive

Cr+s

terms. If there exists meN such that —2*& <

Gn Cn

for all n> m, then £anis convergent.
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i) Let¥dnbe a divergent series of positive terms. Let @& be another series of
positive terms. If there exists meN such that
Qpyq - d, 1

a,  d, for all n > m, then £axis divergent.

Proof.(i)

l:1;~1+1 = an

2y Cn

E . . .
~(Z)is a monotonic decreasing sequence.
m

— <k for all n where k =%-’-an < kcn for all neN.

i i

Now, £cnis convergent. Hence Zkcnis also a convergent series of positive terms.
~anis also convergent
(ii)Proof is similar to that of (i).

Theorem .:4.7

The harmonic series X :—P convergesifp>1andifp<1.
Proof.

Case (i) Let p=1.

Then the series becomes %(1/n) which diverges.
Case (ii) Let p < 1.

Then nP < n for all n.

" :—p ?Fiforall n

.. By comparison test X :—p diverges.

Case (iii) Letp > 1.
Let sn= 1+%+3%+ S
Then52n+1_1=1+%

+o b
=1+(% +3) +(i+ip+ip+ 1F)+---.+(_ _+

F 3F (2P

+ ...+

[zn+yp |:2n+'__1}p:]

<1+ z(ij +4(5) + 2 ()

1 1

_1+2p 1 + 22p-2 + 5(p—1in

Son+r_y < 14

+(

)2 4o

[
2p-1 | igrt 21

Now, since p>1, p-1>0

Hence

<1

b
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1

T
ar

)P

Therefore 1+ + ( zp_._]” < 1; = k(say)

1-—=

Snex_y < k
Now let n be any positive integer. Choose meEN such that n < 2m*1 - 1. Since (sn) is a

monotonic increasing sequence , sn< Sym +1 —1.

Hence s»< k for all n.
Thus (5,,) is a monotonic increasing sequence and is bounded above.
~(5,) is convergent.

1.
-'.EE is convergent.

Solved problems.

. . 1
1. Discuss the convergence of the series X —
—_ Y in*+1)

Solution.
1

<
Yin"+1) n

Also X

| [

B[

1.
IS convergent

T

. 1 .
.. By comparison test, X Nl convergent.
win

logn

2. Discuss the convergence of the series 23 (loglogn)~™

Solution.
Let an= (log log n)™'o&"

~an=n""where 6= log (log log n).

lim, ., logloglogn_

Since
~n®<n2foralln>m.

san<n?foralln>m.

Also Zn~2 is convergent.

~ By comparison test the given series is convergent.

oo  there exists meN such that n > 2 foralln > m.

1 1
Show that & el
Solution.
L _ 1
et an= i1
1 1,
Clearly an<_z Also Z—is convergent

~ by comparison test, the given series converges

% o | (by partial fraction)

1
Now,an=rz = s[5~ mg

21
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-9+ (-9t (-2

~ lim s, ==
n—+oo 2

1 1

Hence L= = ;

Theorem 4.8 (Kummer’s test)
1
Let Zanbe a given series of positive terms and ) 2. be a series of a positive terms diverging

to o=. Then

(i) Zanconverges if lim, _,_ (d, —%—d, ,,) = 0 and
Eﬂ. -

(i) Zan diverges iflim,, _,..(d,, :—1 —du) <0,

m+i

Proof.

(i) Let lim,, .. (d,, == — d,,11) = [>0.
En4s
We distinguish two cases.
Case (i) Lis finite.
Then given e> 0, there exists mEN such that

a
l—e<dni— d,.i<l+eforalln>m

~dpy= dpq > (- €) ay,qforalln 2 m.

Taking € =(1/2)I, we get dnan -dnaan+1> (1/2)lanafor alln > m.,
Now,letn2>m

-3dn1am"dnwlanwl>(1/2)lam+l

dm+1am+1_ dm+2am+2 > (1/2) lam+2

dn-10n1— dnan> (1/2) lan
Adding, we get
dm am_ dn an> (1/2) l (am+1+ I an)
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dmam—dn an>(1/2) L (sn -sm) Wheresy=ai+az+....+an
dmam> (1/2) I (sn- Sm)

Zdpmamtis

Sn< which is independent of n

=~ The sequence (sn) of partial sums is bounded.

~.anis convergent.

Case (ii) [ = oo.

Then given real number k > 0 there exists a positive integer m such that d,, :“ —d, =k

n+i

forall n 2m.

~dn@n = dn+1ane1> kans for alln > m.

Now, let n = m. Writing the above inequality for m, m+1,.....,(n — 1) and adding we get
dmam— dnan>k (@ms1+ -+ +an)

=k (Sn=Sm).

~dmam>k (Sn—Sm).

o &
.'.sn<—mk n+5,,

~. The sequence (sn) is bounded and hence Zaxis convergent.

(ll) hmn %M(dn EE_H‘_ dn+1:] =1<0

Suppose lis finite.

Choose €> 0 such that [ + e< 0. Then there exists m€N such that

Bn

l+e<d, —d,. <l+e<O0foralln=m.

Tn4a
~dnan<dnaansforalln>m.
Now letn>m

dmam<dnan.

an>2mEm Ao by hypothesis % di is divergent

d."l
oo dmﬂm. .
HenceE.-r::1—ﬁ!‘1 is divergent.

~ By comparison test 2axis divergent.
The proof is similar if [ = —oo,

Corollary 1.(D’ Alembert’s ratio test)

Let Zaxbe a series of positive terms. Then Zanconverges if lim “n >1 and diverges
n—oolly 41
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oy

lim = 1.
noes g

Proof.

The series1+1+1 +.... is divergent
~ We can put dn=1 in Kummer’s test.

Then d?‘! “n - d?’!‘l‘l = n - 1

Cn+a Cn+a

Hence Zanconverges iflim, _..( —2—1)>0

Cnes

L1 a

Therefore Zanconverges iflim, _, . . > 1
S

Zn

Similarly Zandivergesif lim, _, < 1.

Opia

Corollary 2. (Raabe’s test)

L)

Let Za, be a series of positive terms . Then Zan converges if lim,, _,..1( . ~—1)>1and
+41
diverges if lim,, .. .n( 1)< 1.
Cn+a

Proof. The series nis divergent.

~ We can put dn=nin Kummer’s test.

i} En

Thend,,

—(n+1)

—d =n
+1
Cn+a " e

=Ny a,
(an+1A7 1) -1
~ 2anconverges if lim, _,,xn(:“ — 1)>1 and diverges if lim, _mn(:"‘ - 1)1
m+i m+i

Theorem: 4.9 (Gauss’s test)

Let 2anbe a series of positive terms such that | -I-f + :—".:,where p>1 and (rn) is a

Gpna
bounded
sequence. Then the series Zanconverges if B> 1 and diverges if B= 1.

Proof:

il L -1

(- 1)=n(E+3) a4 2
Now, since p>1,1imn e  —o

nF—2

Also (rn) is a bounded sequence.

. ¥
Hence lim, _, HF—"_ =0


Free Hand


~ lim n(
noem s My

~1)-p
-~ By Raabes’s test Zanconverges if B> 1 and Zandiverges if < 1.

If B = 1, Raabes’s test fails. In this case we apply Kummer’s test by taking dn=nlog n

Now, d,, —dn+1=nlngﬂ(1+i+:—g}—(n+ 1)log(n + 1)

=- (n+1)log (1+1 1) 4 mcen ?"'LlDE”

rplogn lngn

=-log(1+ ]’”1 + o
Now, by hypothesis (rn) is abounded sequence and (l:;i_?i] =0

(r.llcug n) =0

nFT=

lim (d,,

d =—loge= —1=<10
Jm e ni1) g

Hence by Kummer’s test Zan diverges

Solved problems.

1.2.3

1. Test the convergence of the serie% + = —|- T 4.

Solution:
1.2.3...n

Letan= 3.5.7..[2n41)

m+3 2% ‘+
oy 1+—

Bpn _ =

Cn4a

lim =2=>=1
et oty

Therefore by D’ Alembert’s ratio test Zax is convergent.

Theorem 4.10 (Cauchy’s root test)
Let Zax be a series of positive terms. Then Zanis convergent if limns~a;, /"< 1 and divergent

if liMnseay Yn>1.

Proof.

Case(i) let UMMy B ™= < 1,
Choose €> 0 such that [ + e< 1.

Then there exists me N such that ap V"< [+ eforalln>m
La< (L+€)nforalln=m.

Now since [ + e< 1, (I + €) ™is convergent.

~. By comparison test Zanis convergent.
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Case (ii) Let limnsean V"= 1> 1.

Choose €> 0 such that I — e >1.

Then there exists m €N such that ap /">l -eforalln>m
~an>(l-€)foralln>m.

Now, since [ - e>1, X (I - €) "is divergent

-~ By comparison test, Zanis divergent.

Problems:
1

{logn)™

1. Test the convergence of

Solution:

?}i_x}agcya_n=n-=:1

= by Cauchy’s root test 2, =

(logn)™

converges.

2. Prove that the series ¥, e ¥™x™ converges if 0< x < 1 and diverges if x > 1.

Solution:

Letan= e ¥"x™

an 1/n — (E_-"E:xn)l/n

|imn9w an Un= X

Hence by Cauchy’s root test the given series converges if 0< x < 1 and diverges if x > 1.
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UNIT -V
ALTERNATIVE SERIES

Definition: A series whose terms are alternatively positive and negative is called an
alternating series.
Thus an alternating series is of the form

a1— a2+ a3 —Ad +eeeereerennn, =5 (- 1)™! apwhere a,> 0 for alln.

For example

. 11 1 TEAY . .
i)l1--+ 37 3 =5(-1) (;) is an alternating series.

. 3.4 +1Y . . .
ii)2--+ 3" §+ ................ =5 (- 1)“*1(%) is an alternating series.

We now prove a test for convergence of an alternating series.

Theorem :5.1( Leibnitz’s test )

Let 5 (- 1)"*! an be an alternating series whose terms an satisfy the following conditions
i) (an) is @ monotonic decreasing sequence.

i) lim,, ... a,= 0.

Then the given alternating series converges.

Proof:
Let (sn) denote the sequence of partial sums of the given series.
Thensy =a1— a2+ a3 —as+ ceveeeennennne. +aam-1—an

S2n+2= S2nt A2n+1- A2n+2

Therefore, san+2- S2n= (a2n+1- a2n+2) 2 0 ( by (i)).

Therefore, san+2 > San.

Therefore, (s2n) is @ monotonic increasing sequence.

Also, son=a1—(a2-a3) — (a4—as) = weeeveverrernne. -(a2n-2-a2n-1) —am

<a1( by (i)).

Therefore, (s2n) is bounded above.

Therefore, (s2n) is a convergent sequence.

Let (s2n) = s.

NOow, Son+1= San + Q2n+1.

Therefore, limsyy,; = lims;, + limay,.= s+0=s(by(i))
n—oo n—oo n—oo

Therefore, (san+1) —* s.

Thus the subsequences (s2n) and ( s2n+1) converges to the same limits.

Therefore, (sn) —* s ( by theorem 3.29).
Therefore, The given series converges.

B |

1 1
+ 372 F o converges.

Problem : 1 Show that the series 1 - :

Solution : The given seriesis 5 (- 1) an where an == . Clearly an> an+1 for all n and hence

N

(an) is monotonic decreasing.

. .1
Also limg, = lim = =0,
L —Foa fn—roo T

-~ By Leibnitz’s test the given series converges.
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(-1t
Problem : 2 Show that the series Zl

————— converges.
oE(n+1) converges

Solution : Let an=

login®+1}’
Clearly (an) #0as n—* 00,
1 1
Also = foralln = 2.

log n login+ 1)
= By Leibnitz’s test the given series converges.

Absolute convergence
Definition : A series § anis said to be absolutely convergent if the series 5 la,l is
convergent.

]

(- (—13" 1
Example : The series > ‘HS is absolutely convergent, for ‘ n:} ‘ =2 = which is
convergent.
Theorem: 5.2
Any absolutely convergent series is convergent.
Proof :

Let > anbe absolutely convergent.

~ 3y la,lis convergent.

Let sp=ar+az+as+ast eeeennnn. +anand to=lagl+lasl+ .. + | a,l
By hypothesis (tn) is convergent and hence is a Cauchy sequence

Hence given € > 0, there exist n1EN such that lt, — t,l<eforalln, m>n1 e,
(1)

Now let m > n.

Then s, — 5| = @, + Qs+ e+ a,, |
Slan+1|+|ﬂn+g|+ ............... +|f1m|

= |t, — t, I<eforalln, m>ni(by(i)).

- (sn) is a Cauchy sequence in R and hence is convergent

-~ > anis a convergent series.

Definition : A series S anis said to be conditionally convergent if it is convergent but not
absolutely convergent.

m

. is conditionally convergent.

ne

Example : The series Y

Theorem: 5.3
In a absolutely convergent series, the series formed by its positive terms alone is convergent
and the series formed by its negative terms alone is convergent and conversely.

Proof :
Let > anbe the given absolutely convergent series.

{ﬂ‘n ifﬂ'n =0 0 Il-f .y, ED
0t

We define pn Ffa <0 and gn=j—a, ifa, <0

(i.e) pnis a positive terms of the given series and qnis the modulus of a negative term.
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> pnis the series formed with the positive terms of the given series and qnis the series
formed with the moduli of the negative terms of the given series.
Clearly pn < | @,land gn<|an| for alln.
Since the given series is absolutely convergent, > | a,l isa convergent series of positive
terms Hence by comparison test > pnand > qnare convergent.
Conversely > pnand Y gnare converge to p and g respectively. We claim that 3 anis
absolutely convergent.
We have | a,| =pn+ On
= 3 lagl =3 (pat an)
=2 Pnt 2 On
=p+q.
=~ Y anis absolutely convergent

Theorem: 5.4
If > anis an absolutely convergent series and (bn) is a bounded sequence, then the series Y
anbnis an absolutely convergent series.

Proof :
since (bn) is a bounded series , there exist a real number k > osuch that | &,1 <k for all n.
la,b, | = [a,llb,l

<k |a,|foralln.

Since S anis absolutely convergent S | a, | is convergent.
~ Skl a,lis convergent.

=~ By comparison test, 5 | a,,b,, | is convergent.

=~ Y anbnis an absolutely convergent .

F—13ei
Problem 1 : Test the convergence of 5 %

(=13"s . ,
Solution : We have ‘% < :—5 (since, |sinf| < 1)

-~ By comparison test the series is a absolutely convergent.

Tests For Convergence of Series Of Arbitrary Terms
Theorem: 5.5

Let (a,) be abounded sequence and (b,,) be a monotonic decreasing bounded sequence.
Then the series Z a, (b, — b, +1) is absolutely convergent.

Proof:

Since (a,) and (b,,) are bounded sequences there exists a real number k> 0 such that |an| =
k and

|bn| = k for all n.

Let 5,, denote the partial sum of the series & |a, (b, — b, +,)|
(]
S Z |a’:—'[br‘ - b:—'+1]
r=1

= 22:1 |ﬂ’r| (br - IE‘1":'"+1:]
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= kZﬁ:l(br - br+1:]

= k (by — b, 1)

<k (|b1] +|bn+1])

= k(k+k)=2k?

= (5,) is a bounded sequence.

= 2la, (b, —b,.,)|is convergent.

Hence X a, (b, — b, .,) is absolutely convergent.

Theorem: 5.6 (Dirichlet’s test)
Let Zan be a series whose sequence of partial sums (sn) is bounded. Let (bn) be a monotonic

decreasing sequence converging to 0. Then the series Zanb, converges.

Proof:
Let tn denote the partial sum of the series Xanbn
i

=Y,

r=1
=slbl+ Z§=2(Er‘ - Er‘—ljbr‘ (Since Sp T Spoq= ar)
= Z?;jj:(br - b:'"-l'l:]s?" + Snbn ................. (1)

Since (s,) is bounded and (b,) isa monotonic decreasing bounded sequence
zggi(br - lbl:"'+1:]‘Il':":v'

is a convergent sequence.

Also since (5,,) isbounded and (b, ) = 0,(s,b,) —= 0
From (1) it follows that (t,,) is convergent.

Hence Zanbn converges.

Theorem:5.7 (Abel’s test)

Let 2 an be a convergent series. Let (bn) be a bounded monotonic sequence. Then X anbnis
convergent.

Proof:

Since (bn) be a bounded monotonic sequence, (bn) —* b(say)

_ (b —b,if (b,)is monotonic increasing
Letc, = {bn — b if (b, )is monotonic decreasing
_(a,b—a,b,if (b,)is monotonic increasing
nn = {an b, —a b if (b, )is monotonic decreasing
ah = {bcxn — a,c,if (b, )is monotonic increasing Q)
Cmn Aba, +a,c, if (b,)is monotonic decreasing” "

Clearly (cn) is @ monotonic decreasing sequence converging to 0. Also since X anis a
convergent series its sequence of partial sums is bounded.
~ by Dirichlet’s test X a, cnis convergent.
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Also Z anis convergent.
2 b anis convergent.
Hence by (1) 2 anbn is convergent.

Problems:

1. Show that convergence of Za,implies the convergence of X ?
Solution:

Let Za, be convergent

The sequence (1/n) is a bounded monotonic sequence.

Hence by Abel’s test Z 1—" is convergent.2. Prove that 27—, % isconvergent.

Solution:

Let an=sin n and b,= 1/log n.

Clearly (bn) is a monotonic decreasing sequence converging to 0.
Sh =Sin 2 +sin3 +........ +sin (n+1)

1 1 3 In+1
=-cosec—[cos (:)—cos( - )]

1
als,l = casec(ij

(5,) is a bounded sequence.
Hence by Dirichlet’s test ¥, % is convergent

Exercise:
1. Show that the series X

sinn# cosnf

converges for all values of & and X converges if & is not

n n
d

multiple of 27

MULTIPLICATION OF SERIES

Definition : Let > anand > b, be two series.
Let c1=aib:

c2=aiba+ azb:

c3=aibs+azbz+ asb;

Then the series Y cnis called the Cauchy product of 5 anand S bn.

(-1
2w

We take the Cauchy product of the series with itself.

Example :

Consider the series
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Foqym L
Let dn = % =bn.

\Vm
Then ch=aibn + azbn1+ asbna+ e, + anb1.
1 1 1 1
- (1) ™ [—_+ TSI o —_]
W Vavn—1 +3vn—2 R
1 1 1
sl Zl—m=t ——=F i ——
L VI yTyn Vi
!

~ e, =1foralln€ N.

~ The Cauchy product Y cnis divergent.
(Gl

However the given series (vn) converges ( by Leibnitz’s test ).

Thus the Cauchy product of two convergent series need not converges.

Theorem: 5.8 (Abel’s theorem).
If > anand >bnconverge to a and b respectively and if the Cauchy product Y cnconverges
to ¢, then c = ab.

Proof:

Let An=ai+azt............. + an.

Bn = bitbo+.............. + bn.

Ch=C1+Cotuueirrnnnnnns +Cn.

“ Cph = aib1+ (a1b2 + azbl) F o +(albn+ azbn-1t... ...l + anbl)
= ai(bi+ bot............ +bn) + az(bi+ bo+............ +bn1) Feeeeeee, +anb1
=a1Bn+aBn1tes +anB1 (1)

From (1) C1=a1B1
Cy=ai1B1+ a2B:

Ch =a1Br+aBna 4, +anB1

Ci+ G+, +C,
=a1B1+(a1B1+ a2B1)F e +(a1Bi1+axBa+... ... +anBn )
= Bi(art+azt.cnn... +an) + B2 (a1t+azt..n..... =TT L + Bhai
=AnBi+ AnaBota + A1 Bn.

By hypothesis > a,converges to a and Y b, converges to b.
“~ (Ay) #a and (Bn)—b.

Hence by Cesaro’s theorem,

(A._Bn+ T - S + A, B,

) Ca# Gyt e crmmmveers sness e +Cp
ie.,

Also by hypothesis Y cnconverges to ¢
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=~ (Cn) —c.
Hence by Cauchy’s first limit theorem,

(c._+ o + cn)

c= ab.

Theorem 5.9 (Merten’s Theorem)

If the series > anand > b, converge to the sums a and b respectively and if one of the
series, say, > an is absolutely convergent, then the Cauchy product > C, converges to the
sum ab.

Proof :

Let An = aitazt......... + an.
Bn = bitbo+.............. + bn

Ch = C1+Cote e, +Cn

A = lagl + e + la,l

and  la,l=a, sothat (4,) = a.
Now, let Bn=b +rn.

Since, (Bn) b, (rn) = 0 as n— @,

Now, Cn = a1Brn+ @B+, +anB1
=ai(b+rn)+az(b+rna)+ s +an(b+r)

= (a1t +an)b+ (a1 +eeeeeennee. + anf1)
=Anb+ (@1rn +eeunneeee. +anr)

= Ahb+Rn whereRn=airn+.eeeeennn. + anr1

Since, (An) —*a, (Anb)—*ab.

~ To prove that (C,) —* a b, it is enough if we prove that (Rn)— 0

Let £> 0 be given. Since (rn) = 0, there exist n1€ N such that |r,l<e for all n = ni.
.................. (1) Also since the sequence (rn) is convergent, it is a bounded sequences and
hence there exists k = O such that I7,l< kforalln. e,

(2)
Furthersince ( 4, )~ @, ( 4, )isa Cauchy sequence.
~ There exists n2€ Nsuch that [4, — A4_|<sforalln,m =na ... (3)
Let p = max {ny,n2},
Let n = 2p.
Then Rn=airn+ azrat.c.... + Aprn-p+1+ ap+ifnp +...oot anla,
R, = {laglln e laglln _g | + e, +a,||femper| 1+
T Ly | R a— +a,lln |}
Nown=2p =>n,n-1, ... ,(N=p-1)=p =n1.
eyl l+ laglln, _g 1 + +ay, |[h-pe1]

<( lagl+lazl + e +|aﬂ|)s (by 1).
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<@aE (since (A,) is a monotonic increasing sequence converging to a)

..................... (5)

Also,|aysq | [Tump| + v +a, |l

F oo v e e e lag | k

= (|‘1¢:+1| + |‘1¢:+2
(by2)
= (‘qn - A‘p) k
<ck (by3)
= Using (5) and (6) in (4) we get
IR, I< (& + k)= foralln=2p.
=~ (Rn) = 0.
= (cn) converges to a b.
=~ > Chconverges to a b.

Power Series

Definition:

A series of the form ap +a;x +a,x*+ .. +a,x"+--..= = ;a,x" is called a power
series in x. The

number @, are called the coefficients of the power series.

Example:

Consider the geometric series 25 =g X " .Here a,, =1 for all n. This series converges absolutely
if [l <1,

diverges if x= 1, oscillates finitely if x = -1 and oscillates infinitely if x < -1

Theorem: 5.10
Let X a,x™ be the given power series. Let o = lim sup |a,|"and let R = % .Then

2 a,x"converges absolutely if [x| < R . If [x| = R the series is not convergent.
Proof:

J— )
Letc, = a@,x

o eyl = le, a1l

~ lim sup Ic.".,,li = |x| limsup |¢1,-,;|i
1

= |x| =
R

Hence By Cauchy’s root test the series converges if %l < 1.
i.e)iflxl <R

Now suppose x| = R .Choose a real number i such that |x| = p = R.
1 1 :
s —< —=limsupla_|n
1R p la,l
Hence by definition of upper limit, for infinite number of values of n we have

a st
a, |n =—=—
e xl
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~ la,x™| = 1 for finite number of values of n.
Hence the series cannot converge.

Definition:

The number R = ;; given in the above theorem is called the radius of convergence
!imsu‘p|ﬂn|-‘l

of the power series Za,x"

Example:

1. For the geometric series £ x™ ,the radius of convergence R =1

z n
2. Consider the exponential series 1 + f—!-l- x— +oat i— + -

1
Herea, = —
("

a,
T
=n+1
L]
lim = oo,
moee iy 4
R = oo,

Hence the series converges for all values of x.
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