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Unit-I 

 

1. History of R programming 

o R was created by Ross Ihaka and Robert Gentleman at the University 

➢ of Auckland, New Zealand, which is currently developed by the R Development Core Team.  

➢ R made its first appearance in 1993.  

➢ This programming language was named R, based on the first letter of first name of the two R authors 

(Robert Gentleman and Ross Ihaka), and partly a play on the name of the Bell Labs Language S.  

➢ A large group of individuals has contributed to R by sending code and bug reports. 

➢ Since mid-1997 there has been a core group (the "R Core Team") who can modify the R source code 

archive. 

1.2 R Commands 

help() Obtain documentation for a given R command 

c(), scan() Enter data manually to a vector in R 

seq() Make arithmetic progression vector 

rep() Make vector of repeated values 

data() Load (often into a data.frame) built-in dataset 

View() View dataset in a spreadsheet-type format 

str() Display internal structure of an R object read.csv(), 

read.table() Load into a data.frame an existing data file 

library(), require() Make available an R add-on package 

dim() See dimensions (# of rows/cols) of data.frame 

length() Give length of a vector 

ls() Lists memory contents 

rm() Removes an item from memory 

names() Lists names of variables in a data.frame 

hist() Command for producing a histogram 

histogram() Lattice command for producing a histogram 

stem() Make a stem plot 

table() List all values of a variable with frequencies 

xtabs() Cross-tabulation tables using formulas 

mosaicplot() Make a mosaic plot 

cut() Groups values of a variable into larger bins 

mean(), median() Identify “center” of distribution 

by() apply function to a column split by factors 

summary() Display 5-number summary and mean 

var(), sd() Find variance, sd of values in vector 

sum() Add up all values in a vector 

quantile() Find the position of a quantile in a dataset 

plot() Produces a scatterplot 

barplot() Produces a bar graph 

barchart() Lattice command for producing bar graphs 



boxplot() Produces a boxplot 

bwplot() Lattice command for producing boxplots 

xyplot() Lattice command for producing a scatterplot 

lm() Determine the least-squares regression line 

anova() Analysis of variance (can use on results of 

predict() Obtain predicted values from linear model 

nls() estimate parameters of a nonlinear model 

residuals() gives (observed - predicted) for a model fit to data 

sample() take a sample from a vector of data 

replicate() repeat some process a set number of times 

cumsum() produce running total of values for input vector 

ecdf() builds empirical cumulative distribution function 

dbinom(), etc. tools for binomial distributions 

dpois(), etc. tools for Poisson distributions 

pnorm(), etc. tools for normal distributions 

qt(), etc. tools for student t distributions 

pchisq(), etc. tools for chi-square distributions 

binom.test() hypothesis test and confidence interval for 1 proportion 

prop.test() inference for 1 proportion using normal approx. 

chisq.test() carries out a chi-square test 

fisher.test() Fisher test for contingency table 

t.test() t test for inference on population mean 

qqnorm(), qqline() tools for checking normality 

addmargins() adds marginal sums to an existing table 

prop.table() compute proportions from a contingency table 

par() query and edit graphical settings 

power.t.test() power calculations for 1- and 2-sample t 

anova() compute analysis of variance table for fitted model 

 

1.3 Random Numbers Generation 

A sequence of random numbers R1, R2, …, must have two important statistical properties: 

Uniformity 

Independence. 

Random Number, Ri, must be independently drawn from a uniform distribution 

As we know, random numbers are described by a distribution. 

That is, some function which specifies the probability that a random number is in some range. 

For example P(a < X ≤ b). Often this is given by a probability density (in the continuous case) or by a function 

P(X=k) = f(k) in the discrete case. R will give numbers drawn from lots of different distributions. In order to 

use them, you only need familiarize yourselves with the parameters that are given to the functions such as a 

mean, or a rate. Here are examples of the most common ones. For each, a histogram is given for a random 

sample of size 100, and density (using the ``d'' 

functions) is superimposed as appropriate. 

Uniform 

Uniform numbers are ones that are "equally likely" to be in the specified range. Often these numbers are in 

[0,1] for computers, but in practice can be between [a,b] where a,b depend upon the problem. An example 

might be the time you wait at a traffic light. This might be uniform on [0,2]. 

>runif(1,0,2) # time at light 

    1.490857 # also runif(1,min=0,max=2) 

>runif(5,0,2) # time at 5 lights 

    0.07076444 0.01870595 0.50100158 0.61309213 0.77972391 

>runif(5) # 5 random numbers in [0,1] 

        0.1705696 0.8001335 0.9218580 0.1200221 0.1836119 

The general form is runif(n,min=0,max=1) which allows you to decide how many uniform random numbers 

you want (n), and the range they are chosen from ([min,max]) 

To see the distribution with min=0 and max=1 (the default) we have 



> x=runif(100) # get the random numbers 

>hist(x,probability=TRUE,col=gray(.9),main="uniform on [0,1]") 

>curve(runif(x,0,1),add=T) 

 

Normal 

Normal numbers are the backbone of classical statistical theory due to the central limit theorem. The normal 

distribution has two parameters a mean µ and a standard deviation s. These are the 

location and spread parameters. For example, IQs may be normally distributed with mean 100 and standard 

deviation 16, Human gestation may be normal with mean 280 and standard deviation 

about 10 (approximately). The family of normals can be standardized to normal with mean 0 (centered) and 

variance 1. This is achieved by "standardizing" the numbers, i.e. Z=(X-µ)/s. 

Here are some examples 

>rnorm(1,100,16) # an IQ score 

    94.1719 

>rnorm(1,mean=280,sd=10) 

    270.4325 # how long for a baby (10 days early) 

Here the function is called as rnorm(n,mean=0,sd=1) where one specifies the mean and the standard deviation. 

> x=rnorm(100) 

>hist(x,probability=TRUE,col=gray(.9),main="normal mu=0,sigma=1") 

>curve(dnorm(x),add=T) 

## also for IQs using rnorm(100,mean=100,sd=16) 

 

Binomial 

The binomial random numbers are discrete random numbers. They have the distribution of the number of 

successes in n independent Bernoulli trials where a Bernoulli trial results in success 

or failure, success with probability p. 

A single Bernoulli trial is given with n=1 in the binomial 

> n=1, p=.5 # set the probability 

>rbinom(1,n,p) # different each time 

   1 

>rbinom(10,n,p) # 10 different such numbers 

     0 1 1 0 1 0 1 0 1 0 

A binomially distributed number is the same as the number of1's in n such Bernoulli numbers. For the last 

example, this would be  There are then two parameters n (the number of Bernoulli trials) 

and p (the success probability). To generate binomial numbers, we simply change the value of n 

from 1 to the desired number of trials. For example, with 10 trials: 

> n = 10; p=.5 

>rbinom(1,n,p) # 6 successes in 10 trials 

    6 

>rbinom(5,n,p) # 5 binomial number 

     6 6 4 5 4 

The number of successes is of course discrete, but as n gets large, the number starts to look quite normal. This 

is a case of the central limit theorem which states in general that (X- µ)/s is 

normal in the limit (note this is standardized as above) and in our specific case that the graphs show 100 

binomially distributed random numbers for 3 values of n and for p=.25. Notice in the graph, as n increases the 

shape becomes more and more bell-shaped. These graphs were made with the commands 

> n=5;p=.25 # change as appropriate 

> x=rbinom(100,n,p) # 100 random numbers 

>hist(x,probability=TRUE,) 

## use points, not curve as dbinom wants integers only for x 

>xvals=0:n;points(xvals,dbinom(xvals,n,p),type="h",lwd=3) 

>points(xvals,dbinom(xvals,n,p),type="p",lwd=3) 

... repeat with n=15, n=50 

Exponential 



The exponential distribution is important for theoretical work. It is used to describe lifetimes of electrical 

components (to first order). For example, if the mean life of a light bulb is 2500 hours one may think its 

lifetime is random with exponential distribution having mean 2500. The one parameter is the rate = 1/mean. 

We specify it as follows rexp(n,rate=1). Here is an example with the rate being 1/2500. 

> x=rexp(100,1/2500) 

>hist(x,probability=TRUE,col=gray(.9),main="exponential ,mean=2500") 

>curve(dexp(x,1/2500),add=T) 

 

1.4 Data Types 

In contrast to other programming languages like C and java in R, the variables are not declared as some data 

type. The variables are assigned with R-Objects and the data type of the R-object becomes the data type of 

the variable. There are many types of R-objects. The frequently used ones are 

➢ Vectors 

➢ Lists 

➢ Matrices 

➢ Arrays 

➢ Factors 

➢ Data Frames 

Vectors 

When you want to create vector with more than one element, you should use c() function which means to 

combine the elements into a vector. 

# Create a vector. 

apple<- c('red','green',"yellow") 

print(apple) 

# Get the class of the vector. 

print(class(apple)) 

Lists 

A list is an R-object which can contain many different types of elements inside it like vectors, functions and 

even another list inside it. 

# Create a list. 

list1 <- list(c(2,5,3),21.3,sin) 

# Print the list. 

print(list1) 

 

Matrices 

A matrix is a two-dimensional rectangular data set. It can be created using a vector input to the matrix function. 

# Create a matrix. 

M = matrix( c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE) 

print(M) 

Arrays 

While matrices are confined to two dimensions, arrays can be of any number of dimensions. The array function 

takes a dim attribute which creates the required number of dimension. In the below example we create an 

array with two elements which are 3x3 matrices each. 

# Create an array. 

a <- array(c('green','yellow'),dim = c(3,3,2)) 

print(a) 

Factors 

Factors are the r-objects which are created using a vector. It stores the vector along with the distinct values of 

the elements in the vector as labels. The labels are always character irrespective of whether it is numeric or 

character or Boolean etc. in the input vector. They are useful in statistical modeling. Factors are created using 

the factor() function. Then levels functions gives the count of levels. 

# Create a vector. 

apple_colors<- c('green','green','yellow','red','red','red','green') 

# Create a factor object. 

factor_apple<- factor(apple_colors) 



# Print the factor. 

print(factor_apple) 

print(nlevels(factor_apple)) 

 

Data Frames: 

Data frames are tabular data objects. Unlike a matrix in data frame each column can contain different modes 

of data. The first column can be numeric while the second column can be character and third column can be 

logical. It is a list of vectors of equal length. 

Data Frames are created using the data.frame() function. 

# Create the data frame. 

BMI <- data.frame( 

gender = c("Male", "Male","Female"), 

height = c(152, 171.5, 165), 

weight = c(81,93, 78), 

Age = c(42,38,26) 

) 

print(BMI) 

 

 Objects 

Objects are assigned values using <- , an arrow formed out of < and -. (An equal sign, =, can also be used.) 

For example, the following command assigns the value 5 to the object x.  

x <- 5 

After this assignment, the object x ‘contains’ the value 5. Another assignment to the same object will change 

the content. 

x <- 107 

we can check the content of an object by simply entering the name of the object on an interactive command 

line. Try that throughout these examples to see what the results are of the different operations and functions 

illustrated. 

 

1.5  Basic data and Computations 

R is case sensitive programming, it treats data as completely different objects. Statistics is the study of data. 

After learning how to start R, the first thing we need to be able to do is learn how to enter data into R and how 

to manipulate the data once there. 

Example 

help() #give help regarding a command, e.g. help(hist) 

c() #concatenate objects,e.g.x = c(3,5,8,9)ory= 

c(”Jack”,”Queen”,”King”) 

1:19 #create a sequence of integers from 1 to 19 

(…) #give arguments to a function, e.g. sum(x), or help(hist) 

[…] #select elements from a vector or list, e.g. x[2] gives 5, x[c(2,4)] 

gives 5 9 for x as above 

matrix() #fill in (by row) the values from y in a matrix of 4 rows and 3 

columns by giving #m = matrix(y,4,3,byrow=T) 

dim() #gives the number of rows and the number of columns of a 

matrix, or a data frame 

head() #gives the first 6 rows of a large matrix, or data frame 

tail() #gives the last 6 rows of a large matrix, or data frame 

m[ ,3] #gives the 3rd column of the matrix m 

m[2, ] #gives the 2nd row of the matrix m 

= or <- #assign something to a variable, e.g. x = c(”a”,”b”,”b”,”e”) 

== #ask whether two things are equal, e.g. x = c(3,5,6,3) and then 

x == 3 

< #ask whether x is smaller than y, 

> #ask whether x is larger than y 

& #logical „and‟ 



| #logical „or‟ 

sum() #get the sum of the values in x by sum(x) 

mean() #get the mean of the values in x by mean(x) 

median() #get the median of the values in x by median(x) 

sd() #get the standard deviation of the values in x 

var() #get the variance of the values in x 

IQR() #get the IQR of the values in x 

summary() #get the summary statistics of a single variable, or of all 

variables in a data frame 

round() #round values in x to 3 decimal places by round(x,3) 

sort() #sort the values in x by giving sort(x) 

unique() #get the non-duplicate values from a list, 

e.g. x = c(3,5,7,2,3,5,9,3) and then 

unique(x) #gives 3 5 7 2 9 

length(x) #gives the length of the vector x, which is 8 

hist() #create a histogram of the values in x by hist(x) 

stem() #create a stem and leaf plot of the values in x by stem(x) 

boxplot() #create a boxplot of the values in x by boxplot(x) 

plot() #scatterplot of x vs. y by plot(x,y); for more parameters see 

help(plot.default) 

cor() #gives the linear correlation coefficient 

lm() #fit a least squares regression of y (response) on x (predictor) by 

fit = lm(y~x) 

names() #get or set the names of elements in a R object. E.g. names(fit) will give the names of the R #object 

named “fit”, or #get or set the names of variables in a data frame. 

fit$coef #gives the least squares coefficients from the fit above, i.e. intercept and slope 

fit$fitted #gives the fitted values for the regression fitted above 

fit$residuals #gives the residuals for the regression fitted above 

lines() #add a (regression) line to a plot by lines(x,fit$fitted) 

abline() #add a straight line to a scatterplot 

points() #add additional points (different plotting character) to a plot 

scan() #read data for one variable from a text file, 

e.g. y = scan(”ping.dat”) 

read.table() #read spreadsheet data (i.e. more than one variable) 

from a text file 

table() #frequency counts of entries, ideally the entries 

are factors 

write() #write the values of a variable y in a file data.txt by 

write(y,file=”data.txt”) 

log() #natural logarithm (i.e. base e) 

log10() #logarithm to base 10 

seq() #create a sequence of integers from 2 to 11 by increment 3 with 

seq(2,11,by=3) 

rep() #repeat n times the value x, e.g. rep(2,5) gives 2 2 2 2 2 

getwd() #get the current working directory. 

setwd() #change the directory to. 

E.g. setwd("c:/RESEARCH/GENE.project/Chunks/") 

dir() #list files in the current working directory 

search() #searching through reachable datasets and packages 

library() #link to a downloaded R package to the current R session. 

E.g. library(Biostrings) link to the 

#R package #called “Biostrings” which you had downloaded earlier onto your laptop 

1.6 Input and Display 

load("c:/RData/pennstate1.RData") #load a R data frame 

read.csv(filename="c:/stat251/ui.csv",header=T) #read .csv file with labels in first row 



x=c(1,2,4,8,16) #create a data vector with specified elements 

y=c(1:10) #create a data vector with elements 1-10 

vect=c(x,y) #combine them into one vector of length 2n 

mat=cbind(x,y) #combine them into a n x 2 matrix 

mat[4,2] #display the 4th row and the 2nd column 

mat[3,] #display the 3rd row 

mat[,2] #display the 2nd column 

Data Manipulation Examples 

x.df=data.frame(x1,x2,x3 ...) 

#combine different kinds of data into a data frame 

scale() #converts a data frame to standardized scores 

round(x,n) #rounds the values of x to n decimal places 

ceiling(x) #vector x of smallest integers > x 

floor(x) #vector x of largest integer< x 

as.integer(x) #truncates real x to integers (compare to round(x,0) 

as.integer(x <cutpoint) 

#vector x of 0 if less than cutpoint, 1 if greater than cutpoint) 

factor(ifelse(a <cutpoint, "Neg", "Pos")) 

#is another way to dichotomize and to make a factor for analysis 

transform(data.df,variable names = some operation) 

#can be part of a set up for a data set 

Statistical Tests 

binom.test() 

prop.test() #perform test with proportion(s) 

t.test() #perform t test 

chisq.test() #perform Chi-square test 

pairwise.t.test() 

power.anova.test() 

power.t.test() 

aov() 

anova() 

TukeyHSD() 

kruskal.test() 

 

Distributions 

sample(x, size, replace = FALSE, prob = NULL) # take a simple random 

sample of size n from the 

# population x with or without replacement 

rbinom(n,size,p) 

pbinom() 

qbinom() 

dbinom() 

rnorm(n,mean,sd) #randomly generate n numbers from a Normal 

distribution with the specific mean and sd 

pnorm() #find probability (area under curve) of a Normal(10,3^2) 

distribution to the left 

qnorm() #find quantity or value x such that area under 

Normal(10,3^2) 

1.7 Data Input 

Unlike SAS, which has DATA and PROC steps, R has data structures (vectors, matrices, arrays, data frames) 

that you can operate on through functions that perform statistical analyses and create graphs. This section 

describes how to enter or import data into R, and how to prepare it for use 

in statistical analyses. Topics include R data structures, importing data (from Excel, SPSS, SAS, Stata, and 

ASCII Text Files), entering data from the keyboard, creating an interface with a database management system, 

exporting data (to Excel, SPSS, SAS, Stata, and Tab Delimited Text Files), annotating data (with variable 



labels and value labels), and listing data. In addition, methods for handling missing values and date values are 

presented. 

1.8 Data Frames 

A data frame is used for storing data tables. It is a list of vectors of equal length. For example, the following 

variable df is a data frame containing three vectors n, s, b. 

> n = c(2, 3, 5) 

> s = c("aa", "bb", "cc") 

> b = c(TRUE, FALSE, TRUE) 

>df = data.frame(n, s, b) # df is a data frame 

1.8 Graphics 

This provides the most basic information to get started producing plots in R. This section provides an 

introduction to R graphics by way of a series of charts, graphs and visualization. R has also been used to 

produce figures that help to visualize important concepts or teaching points. The organization of R graphics 

this section briefly describes how R’s graphics functions are organized so that the user knows where to start 

looking for a particular function. The R graphics system can be broken into four distinct levels: graphics 

packages; graphics systems; a graphics engine, including standard graphics devices; and graphics device 

packages 

To visualize data: 

• ggplot2 - R's famous package for making beautiful graphics.ggplot2 

lets you use the grammar of graphics to build layered, customizable plots. 

• ggvis - Interactive, web based graphics built with the grammar of 

graphics. 

• rgl - Interactive 3D visualizations with R 

• Colors : The package colorspace provides a set of functions for 

transforming between color spaces and mixcolor() for mixing colors within a 

color space. 

• htmlwidgets - A fast way to build interactive (javascript based) 

visualizations with R. Packages that implement htmlwidgets include: 

• leaflet (maps) 

• dygraphs (time series) 

• DT (tables) 

• diagrammeR (diagrams) 

• network3D (network graphs) 

• threeJS (3D scatterplots and globes). 

Graphics formats that R supports and the functions that open an appropriate R Programming language has 

numerous libraries to create charts and graphs.R provides the usual range of standard statistical plots, including 

scatterplots, boxplots, and histograms, bar plots, pie charts, and basic3Dplots 

Types of charts 

• scatterplots, 

• boxplots 

• histograms 

• bar plots 

• pie charts 

• basic3Dplots 

1.9 Table 

A table is an arrangement of information in rows and columns that make comparing and contrasting 

information easier. As you can see in the following example, the data are much easier to read than they would 

be in a list containing thread.table() #read spreadsheet data (i.e. more than one variable) from a text file table() 

#frequency counts of entries, ideally the entries are factors(although#it works with integers or even reals)at 

same data. 

Example 

smoke <-matrix(c(51,43,22,92,28,21,68,22,9),ncol=3,byrow=TRUE) 

colnames(o) <-c("High","Low","Middle") 

rownames(o) <-c("current","former","never") 

smoke<-as.table(smoke) 



smoke 

High Low Middle 

current 51 43 22 

former 92 28 21 

never 68 22 9 

 

 

 

 

 

 

 

 

 

 
Unit II 

 

Basics of Diagrammatic Presentation 

Concept of Diagrammatic Presentation 

• Diagrammatic presentation is a technique of presenting numeric data through Pictograms, Cartograms, 

Bar Diagrams & Pie Diagrams etc. It is the most attractive and appealing way to represent statistical 

data. Diagrams help in visual comparison and have a bird’s eye view. 

• Under Pictograms, we use pictures to present data. For example, if we have to show the production of 

cars, we can draw cars. Suppose, production of cars is 40,000. We can show it by a picture having four 

cars, where 1 Car represents 10,000 units. 

• Under Cartograms, we make use of maps to show the geographical allocation of certain things. 

• Bar Diagrams are rectangular in shape placed on the same base. Their height represents the 

magnitude/value of the variable. Width of all the bars and gap between the two bars is kept the same. 

• Pie Diagram is a Circle which is sub-divided or partitioned to show the proportion of various 

components of the data. 

• Out of the above, only One Dimensional Bar Diagrams and Pie Diagrams are in our scope. 

General Guidelines 

• Title – Every diagram must be given a suitable ‘Title’ which should be small and self-explanatory. 

• Size – Size of the diagram should be appropriate neither too small nor too big. 

• Paper used – Diagrams are generally prepared on blank paper. 

• Scale – Under one-dimensional diagrams especially ‘Bar Diagrams’ generally Y-axis is more 

important from the point of view of the decision of scale because we represent magnitude along this 

axis. 

• Index – When two or more variables are presented and different types of line/shading patterns are 

used to distinguish, then an index must be given to show their details. 

• Selection of Proper Type of Diagram – It’s very important to select the correct type of diagram to 

represent data effectively. 

Advantages of Diagrammatic Presentation 

(1) Diagrams Are Attractive and Impressive: 

• Data presented in the form of diagrams are able to attract the attention of even a common man. 



(2) Easy to Remember 

• Diagrams have a great memorizing effect. 

• The picture created in the mind by diagrams last much longer than those created by figures presented 

through the tabular form. 

(3) Diagrams Save Time 

• It presents complex mass data in a simplified manner. 

• Data presented in the form of diagrams can be understood by the user very quickly. 

(4) Diagrams Simplify Data 

• Diagrams are used to represent a huge mass of complex data in a simplified and intelligible form, 

which is easy to understand. 

(5) Diagrams Are Useful in Making Comparisons 

• It becomes easier to compare two sets of data visually by presenting them through diagrams. 

(6) More Informative 

• Diagrams not only depict the characteristics of data but also bring out other hidden facts and relations 

which are not possible from the classified and tabulated data. 

 

Diagrammatic presentation is a technique of presenting numeric data through Pictograms, Cartograms, Bar 

Diagrams & Pie Diagrams etc. It is the most attractive and appealing way to represent statistical data. ... Under 

Pictograms, we use pictures to present data. 

 

 

 

 



 

 

 

 



 

 

Simple Bar Diagram 

A simple bar chart is used to represent data involving only one variable classified on a spatial, quantitative 

or temporal basis. In a simple bar chart, we make bars of equal width but variable length, i.e. the magnitude 

of a quantity is represented by the height or length of the bars. Simple bar diagram is used for comparative 

study of two or more items or value of a single variable. These can also be drawn either vertically or 

horizontally. Distance between these bars should be equal. 

 

 

 

Simple Bar Diagram 

R-coding 

> population<-c(663,448,290,556) 

> state<-c("Andhra","Karnataka","Kerala","Tamil Nadu") 

> barplot(population,names.arg=state,main="Population in Lakhs",horiz=TRUE) 

> barplot(population,names.arg=state,main="Population in Lakhs",vertical=TRUE) 



 

 

 

 

 

Construction of Multiple Bar Diagram 

Multiple Bar Graphs 

Sometimes there are more than two sets of data to be compared in a bar graph. In that case, a multiple bar 

graph can be used. A multiple bar graph compares as many sets of data you want. The process for creating a 

multiple bar graph is just like creating any other bar graph, only you will have more colors to represent 

different sets of data. 

To create a multiple bar graph: 

1. Draw the horizontal (x) and vertical (y) axis. 

2. Give the graph a title. 

3. Label the horizontal x axis. 

4. Label the vertical y axis. 

5. Look at the range in data and decide how the units on the vertical axis (y) should be labeled. 
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6. For each item on the horizontal (x) axis, draw a vertical column to the appropriate value however many 

times as you have sets of data. For example, if you are looking at 3 days worth of data, you will have 

3 bars per item. 

7. Choose three colors to represent each different data set. Make sure to label the data sets in a key 

alongside the graph. 

Sometimes comparing data can also be done by comparing data sets across multiple different bar graphs. The 

difference is the data is split versus all being compared in one graph. Either method allows you to analyze and 

compare the data being displayed. 

 

R-coding 

> year<-c("2005","2006","2007") 

> color<-c("red","blue") 

> profit=matrix(c(1000,1500,2000,1800,1300,1200),nrow=2,ncol=3,byrow=T) 

>barplot(profit,names.arg=year,xlab="year",ylab="profit",col=color,main="Annual Profit",beside=T) 
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Construction of Sub divided  Bar Diagram 

A sub-divided or component bar chart is used to represent data in which the total magnitude is divided into 

different or components. In this diagram, first we make simple bars for each class taking the total magnitude 

in that class and then divide these simple bars into parts in the ratio of various components. 

 

R-code 

> funds<-c("Share","Surplus","loans","Foreign currency") 

> colors<-c("green","blue") 

> values<-matrix(c(339,998,5843,2552,352,1043,5614,3262),nrow=2,ncol=4,byrow=TRUE) 

> barplot(values,names.arg=funds,xlab="year",ylab="funds",main="sources of funds",col=colors) 

> barplot(values,names.arg=funds,xlab="year",ylab="funds",main="sources of funds",col=colors) 

> barplot(values,names.arg=funds,xlab="year",ylab="funds",main="sources of 

funds",col=colors,horiz=TRUE) 

 

 

 

 

Share Surplus loans Foreign currency

sources of funds

year

fu
nd

s

0
20

00
40

00
60

00
80

00
10

00
0



 

 

 

Construction Pie Diagram 

R code 

> x <-  c(21, 62, 10,53) 

> labels <-  c("London","New York","Singapore","Mumbai") 
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> piepercent<- round(100*x/sum(x), 1) 

> pie(x, labels = piepercent, main = "City pie chart",col = rainbow(length(x))) 

 

 
 

What Is a Histogram? 

A histogram is a graphical representation that organizes a group of data points into user-specified ranges. It is 

similar in appearance to a bar graph. The histogram condenses a data series into an easily interpreted visual 

by taking many data points and grouping them into logical ranges or bins. 

 

Construction of Histogram 

R-code 

> x<-c(5,15,25,35,45,55,65,75,85) 

> f<-c(4,6,7,14,16,14,8,16,5) 

> a<-rep(x,f) 

> brk=seq(0,90,by=10) 

> hist(a,brk,xlab="class        interval",ylab="frequency",col="green",main="histogram") 
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https://www.investopedia.com/terms/b/bar-graph.asp
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Computation measures of Central Values 

A measure of central tendency (also referred to as measures of centre or central location) is a summary 

measure that attempts to describe a whole set of data with a single value that represents the middle or centre 

of its distribution. 

There are three main measures of central tendency: 

The mode 

The median 

The mean. 

Each of these measures describes a different indication of the typical or central 

value in the distribution. 

 

Measures of Central Tendency 

Arithmetic mean 

Mean: 

The mean is the sum of the value of each observation in a dataset 

divided by the number of observations. This is also known as the arithmetic 

average.  

                 
n

x

x

n

i

i
== 1  

 

Looking at the retirement age distribution again: 

54, 54, 54, 55, 56, 57, 57, 58, 58, 60, 60 

The mean is calculated by adding together all the values 

(54+54+54+55+56+57+57+58+58+60+60 = 623) and dividing by the 

number of observations (11) which equals 56.6 years. 

Advantage of the mean: 

The mean can be used for both continuous and discrete numeric data. 

Limitations of the mean: 



The mean cannot be calculated for categorical data, as the values cannot be 

summed. As the mean includes every value in the distribution the mean is 

influenced by outliers and skewed distributions.  

 

R-code 

> Family<-c("A","B","C","D","E","F","G","H","I","J") 

> Expenditure<-c(30,70,10,75,500,8,42,250,40,36) 

> mean(Expenditure) 

output 

mean= 106.1 

 

 

 

 

 

R-code 

> persons<-c(2,3,4,5,6) 

> house<-c(10,25,30,25,10) 

> fx=sum(persons*house) 

> fx 

[1] 400 

> f=sum(house) 

> f 

[1] 100 

> fxx=(fx/f) 

> fxx 

 

Output 

Mean=  4 

 

 

 

 

Harmonic mean 

 

R-code 

> har<-c(6,15,35,40,900,520,300,400,1800,2000) 

> aa=(1/har) 

> aa 

 [1] 0.1666666667 0.0666666667 0.0285714286 0.0250000000 0.0011111111 

 [6] 0.0019230769 0.0033333333 0.0025000000 0.0005555556 0.0005000000 

 

 

> stt=data.frame(har,st) 

> stt 

    har       X_data 

1     6 0.1666666667 

2    15 0.0666666667 

3    35 0.0285714286 

4    40 0.0250000000 

5   900 0.0011111111 

6   520 0.0019230769 

7   300 0.0033333333 



8   400 0.0025000000 

9  1800 0.0005555556 

10 2000 0.0005000000 

> n=length(har) 

> n 

[1] 10 

> sttt=sum(st) 

> sttt 

[1] 0.2968278 

> haa=(n/sttt) 

> haa 

 

output 

[1] 33.68956 

 

Geometric mean 

In statistics, the geometric mean is calculated by raising the product of a series of numbers to the inverse of 

the total length of the series. The geometric mean is most useful when numbers in the series are not 

independent of each other or if numbers tend to make large fluctuations. 

 

a = c(10, 2, 19, 24, 6, 23, 47, 24, 54, 77) 

 

n = length(a) #now n is equal to the number of elements in a 

 

prod(a)^(1/n) #compute the geometric mean 

 

 

geoMean<-function(values){  

prod(values)^(1/length(values))  

}  

values<-c(2,4,6,8)  

geoMean(values) 

 

Harmonic Mean 

 

Harmonic mean is a type of average that is calculated by dividing the number of values in a data series by 

the sum of the reciprocals (1/x_i) of each value in the data series. The harmonic mean is often used to 

calculate the average of the ratios or rates. 

a = c(10, 2, 19, 24, 6, 23, 47, 24, 54, 77) 

 

1/mean(1/a) #compute the harmonic mean 

 

 

 

Mode 

The mode is the most commonly occurring value in a distribution. Consider this dataset showing the retirement 

age of 11 people, in whole years. 

 

54, 54, 54, 55, 56, 57, 57, 58, 58, 60, 60 

This table shows a simple frequency distribution of the retirement age data. 

Age Frequency 



54 3 

55 1 

56 1 

57 2 

58 2 

60 2 

 

The most commonly occurring value is 54, therefore the mode of this 

distribution is 54 years. 

 

Using R- code 

 

 

Mode 

Create the function. 

getmode <- function(v) { 

   ss <- unique(v) 

   ss[which.max(tabulate(match(v, ss)))] 
} 

 

# Create the vector with numbers. 

v <- c(2,1,2,3,1,2,3,4,1,5,5,3,2,3) 

 

# Calculate the mode using the user function. 

result <- getmode(v) 

print(result) 

 

 

 

Advantage of the mode: 

The mode has an advantage over the median and the mean as it can be found for both numerical and categorical 

(non-numerical) data. 

Limitations of the mode: 

The are some limitations to using the mode. In some distributions, the mode may not reflect the centre of the 

distribution very well. When the distribution of retirement age is ordered from lowest to highest value, it is 

easy to see that the centre of the distribution is 57 years, but the mode is 

lower, at 54 years. 

54, 54, 54, 55, 56, 57, 57, 58, 58, 60, 60 

It is also possible for there to be more than one mode for the same distribution of data, (bi-modal, or multi-

modal). The presence of more than one mode can limit the ability of the mode in describing the centre or 
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typical value of the distribution because a single value to describe the centre cannot be identified. 

In some cases, particularly where the data are continuous, the distribution may have no mode at all (i.e. if all 

values are different). In cases such as these, it may be better to consider using the median or mean, or group 

the data in to appropriate intervals, and find the modal class. 

Median 

The median is the middle value in distribution when the values are arranged in ascending or descending order. 

The median divides the distribution in half (there are 50% of observations on either side of the median value). 

In a distribution with an odd number of observations, the median value is the middle value. Looking at the 

retirement age distribution (which has 11 observations), the median is the middle value, which is 57 years: 

54, 54, 54, 55, 56, 57, 57, 58, 58, 60, 60 

When the distribution has an even number of observations, the median value is the mean of the two middle 

values. In the following distribution, the two middle values are 56 and 57, therefore the median equals 56.5 

years: 



52, 54, 54, 54, 55, 56, 57, 57, 58, 58, 60, 60 

Advantage of the median: 

The median is less affected by outliers and skewed data than the mean, and is usually the preferred measure 

of central tendency when the distribution is not symmetrical. 

Limitation of the median: 

The median cannot be identified for categorical nominal data, as it cannot be logically ordered. 

 

 Measures of Dispersion 

▪ The measure of dispersion shows how the data is spread or scattered around the mean. 

 

Such as range, variance, standard deviation, and coefficient of 

variation—can be calculated with standard functions in the native stats 

package. In addition, a function, here called summary.list, can be defined 

to output whichever statistics are of interest. 

Range 

▪ Simplest measure of dispersion 

▪ Difference between the largest and the smallest values: 

                      Range = Xlargest –  Xsmallest 

Standard Deviation 

◼ Most commonly used measure of variation 

◼ Shows variation about the mean 

◼ Is the square root of the variance 

◼ Has the same units as the original data 

◼ Steps for Calculating Standard Deviation 

◼ 1. Calculate the difference between each value and the mean. 

◼ 2. Square each difference. 

◼ 3. Add the squared differences. 

◼ 4. Divide this total by n-1 to get the sample variance. 

◼ 5. Take the square root of the sample variance to get the sample standard deviation. 

 

◼ Sample standard deviation: 
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Example 

Sample  

Data  (Xi) :     10     12     14     15    17    18    18    24 

 

 

n=8                       mean = X =16 
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Skewness 

measures the skewness of a distribution; 

positive or negative skewness 

 

Kurtosis 

 

 

 
 

 



 
 

 
 



 
 

 
 

 

 

 

 

 

 

 

 

 



 

 

Unit III 

Discrete Distributions 

 

In this chapter we introduce discrete random variables, those who take values 

in a finite or countably infinite support set. We discuss probability mass 

functions and some special ex- pectations, namely, the mean, variance and 

standard deviation. Some of the more important discrete distributions are 

explored in detail, and the more general concept of expectation is defined, which 

paves the way for moment generating functions. 

                            3.1Discrete Random Variables 

3.1.1 Probability Mass Functions 

Discrete random variables are characterized by their supports which take the form 

 

S X = {u1, u2, . . . , uk} or S X = {u1, u2, u3 . . .}. (3.1.1) 

                       Probability Mass Function(PMF) 

                    Every discrete random variable  X  has  associated with it a  probability mass function (PMF) 

fX : S X → [0, 1] defined by 

fX(x) = IP(X = x), x ∈ S X.

 (3.1.2) 

Since values of the PMF represent probabilities, we know from Chapter 4 that 

PMFs enjoy certain properties. In particular, all PMFs satisfy 

1. fX(x) > 0 for x ∈ S , 

2. fX(x) = 1, and 

3. IP(X  ∈ A) =   Σ fX(x), for any event A ⊂ S . 

 

 

 



x∈S 

. 
| | 

. 

Example 3.1. Toss a coin 3 times. The sample space would be 

                                                      S = {HHH, HTH, THH, TTH, HHT, HTT, THT, TTT } . 

Now let X be the number of Heads observed. Then X has support S X = {0, 1, 2, 
3}. Assuming that the coin is fair and was tossed in exactly the same way each 
time, it is not unreasonable to suppose that the outcomes in the sample space 
are all equally likely. What is the PMF of 

X? Notice that X is zero exactly when the outcome TTT occurs, and this event 
has probability 1/8. Therefore, fX(0) = 1/8, and the same reasoning shows that 
fX(3) = 1/8. Exactly three outcomes result in X = 1, thus, fX(1) = 3/8 and fX(3) 
holds the remaining 3/8 probability (the total is 1). We can represent the PMF 
with a table: 

 

 

3.1.1 Mean, Variance, and Standard Deviation 

There are numbers associated with PMFs. One important example is the mean µ, 

 
  

µ = IE X = 
 

x fX(x),

 (3.1.3

) 

provided the (potentially infinite) series x fX(x) is convergent. Another 

important number is the variance: 

σ2 = IE(X − µ)2 =(x − µ)2 , (3.1.4 

x∈S 

                                  which can be computed with the alternate fo√rmula   σ2  =  IE X2 − (IE X)2. 

                              Directly defined from the variance is the standard deviation σ = 2  

 

Example 3.2. We will calculate the mean of X in Example 3.1. 

                                            µ=ΣfX(x) = 3.5 

We interpret µ = 3.5 by reasoning that if we were to repeat the random experiment 
many times, independently each time, observe many corresponding outcomes of 
the random variable X, and take the sample mean of the observations, then the 
calculated value would fall close to 3.5. The 

fX(x) = IP(X = x) 1/8 

x S X 0 1  

3/8  

3 Total 

1/8  



∼ 

 

 

Remark 3.3. Note that although we say X is 3.5 on the average, we must keep in mind that our 

X never actually equals 3.5 (in fact, it is impossible for X to equal 3.5). 

Related to the probability mass function fX(x) = IP(X = x) is another 

important function called the cumulative distribution function (CDF), FX. It is 

defined by the formula 

FX(t) = IP(X ≤ t), −∞ < t < ∞.

 (5.1.5) 

We know that all PMFs satisfy certain properties, and a similar statement 

may be made for CDFs. In particular, any CDF FX satisfies 

• FX is nondecreasing (t1 ≤ t2 implies FX(t1) ≤ FX(t2)). 

• FX is right-continuous (limt→a+ FX(t) = FX(a) for all a ∈ R). 

• limt→−∞ FX(t) = 0 and limt→∞ FX(t) = 1. 

We say that X has the distribution FX and we write X ∼ FX. In an abuse of 
notation we will also write X fX and for the named distributions the PMF or CDF 
will be identified by the family name instead of the defining formula. 

 

3.1.2 How to do it with R 

The mean and variance of a discrete random variable is easy to compute at the 

console. Let’s return to Example 3.2. We will start by defining a vector x 

containing the support of X, and a vector f to contain the values of fX at the 

respective outcomes in x: 

 

> x  <-  c(0,1,2,3) 

> f  <-  c(1/8,  3/8,  3/8,  1/8) 

 
To calculate the mean µ, we need to multiply the corresponding values of x 

and f and add them. This is easily accomplished in R since operations on vectors 
are performed element-wise  

 

> mu  <-  sum(x f) 

> mu 

    1.5 

 
To compute the variance σ2, we subtract the value of mu from each entry in 

x, square the answers, multiply by f, and sum. The standard deviation σ is 
simply the square root of σ2. 

> sigma2  <-  sum((x-mu)^2 f) 

> sigma2 

   0.75 

> sigma  <-  sqrt(sigma2) 

> sigma 

     0.8660254 

 

Finally, we may find the values of the CDF FX on the support by 

accumulating the proba- bilities in fX with the cumsum function. 



  

 

> F  =  cumsum(f) 

> F 

[1]  0.125  0.500  0.875  1.000 

As easy as this is,  it is even easier to do with the distrEx package [74].   We 

define a random variable X as an object, then compute things from the object 

such as mean, variance, and standard deviation with the functions E, var, and 

sd: 

> library(distrEx) 

> X  <-  DiscreteDistribution(supp  =  0:3,  prob  =  c(1,3,3,1)/8) 

> E(X);  var(X);  sd(X) 

 
[1] 1.5 

[1] 0.75 

[1] 0.8660254 

 
 

Distributions In The Stats Package 

Density, cumulative distribution function, quantile function and random variate generation for many 

standard probability distributions are available in the stats package. 

Keywords 

distribution 

Details 

The functions for the density/mass function, cumulative distribution function, quantile 

function and random variate generation are named in the 

form dxxx, pxxx, qxxx and rxxx respectively. 

For the beta distribution see dbeta. 

For the binomial (including Bernoulli) distribution see dbinom. 

For the Cauchy distribution see dcauchy. 

For the chi-squared distribution see dchisq. 

For the exponential distribution see dexp. 

For the F distribution see df. 

For the gamma distribution see dgamma. 

For the geometric distribution see dgeom. (This is also a special case of the negative 

binomial.) 

For the hypergeometric distribution see dhyper. 

https://www.rdocumentation.org/search/keywords/distribution
https://www.rdocumentation.org/link/dbeta?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dbinom?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dcauchy?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dchisq?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dexp?package=stats&version=3.6.2
https://www.rdocumentation.org/link/df?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dgamma?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dgeom?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dhyper?package=stats&version=3.6.2


For the log-normal distribution see dlnorm. 

For the multinomial distribution see dmultinom. 

For the negative binomial distribution see dnbinom. 

For the normal distribution see dnorm. 

For the Poisson distribution see dpois. 

For the Student's t distribution see dt. 

For the uniform distribution see dunif. 

For the Weibull distribution see dweibull. 

 

The Bernoulli Distribution 

Density, distribution function, quantile function and random generation for the Bernoulli distribution with 
parameter prob 

Usage 

dbern(x, prob, log = FALSE) 

pbern(q, prob, lower.tail = TRUE, log.p = FALSE) 

qbern(p, prob, lower.tail = TRUE, log.p = FALSE) 

rbern(n, prob) 

 

Arguments 

x, q    vector of quantiles. 
P        vector of probabilities. 
N       number of observations. If length(n) > 1, the length is taken to be the number     

         required. 
Prob  probability of success on each trial. 
log, log.p   logical; if TRUE, probabilities p are given as log(p). 
lower.tail   logical; if TRUE (default), probabilities are P[X<=x],="" otherwise,="" p[x="">x]. 
 

Details 

The Bernoulli distribution with prob =p has probability mass function 
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If an element of x is not 0 or 1, the result of dbern is zero, without a warning. p(x) is computed using 

Loader's algorithm, see the reference below. 

The quantile is defined as the smallest value x such that F(x)≥p, where F is the distribution function. 

Value 

dbern gives the density, pbern gives the distribution function, qbern gives the quantile function 

and rbern generates random deviates. 

https://www.rdocumentation.org/link/dlnorm?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dmultinom?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dnbinom?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dnorm?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dpois?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dt?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dunif?package=stats&version=3.6.2
https://www.rdocumentation.org/link/dweibull?package=stats&version=3.6.2


 
 

 

The Binomial Distribution 

Density, distribution function, quantile function and random generation for the binomial distribution with 
parameters size and prob. 

This is conventionally interpreted as the number of ‘successes’ in size trials. 

Usage 
dbinom(x, size, prob, log = FALSE) 

pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE) 

qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE) 

 

Arguments 

x, q vector of quantiles. 

p vector of probabilities. 

n number of observations. If length(n) > 1, the length is taken to be the number required. 

Size number of trials (zero or more). 

Prob  probability of success on each trial. 

log, log.p      logical; if TRUE, probabilities p are given as log(p). 

lower.tail  logical; if TRUE (default), probabilities are P[X≤x], otherwise, P[X>x]. 

Details 

The binomial distribution with size =n and prob =p has density 

                                  ( ) xnx

x
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If an element of x is not integer, the result of dbinom is zero, with a warning. 

p(x) is computed using Loader's algorithm, see the reference below. 

The quantile is defined as the smallest value x such that F(x)≥p, where F is the distribution function. 

Value 

dbinom gives the density, pbinom gives the distribution function, qbinom gives the quantile function 

and rbinom generates random deviates. 

If size is not an integer, NaN is returned. 

The length of the result is determined by n for rbinom, and is the maximum of the lengths of the numerical 

arguments for the other functions. 

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the 

logical arguments are used. 

 



The Poisson Distribution 

Density, distribution function, quantile function and random generation for the Poisson distribution with 
parameter lambda. 

Usage 
dpois(x, lambda, log = FALSE) 

ppois(q, lambda, lower.tail = TRUE, log.p = FALSE) 

qpois(p, lambda, lower.tail = TRUE, log.p = FALSE) 

rpois(n, lambda) 

Arguments 

x vector of (non-negative integer) quantiles. 

q  vector of quantiles. 

p  vector of probabilities. 

n number of random values to return. 

Lambda vector of (non-negative) means. 

log, log.p   logical; if TRUE, probabilities p are given as log(p). 

lower.tail  logical; if TRUE (default), probabilities are P[X≤x], otherwise, P[X>x]. 

 

Details 

The Poisson distribution has density   
!

)(
x

e
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=    for x=0,1,2,… . The mean and variance 

are E(X)=Var(X)=λ. 

Note that λ=0 is really a limit case (setting 00=1) resulting in a point mass at 0, see also the example. 

If an element of x is not integer, the result of dpois is zero, with a warning. p(x) is computed using Loader's 

algorithm, see the reference in dbinom. 

The quantile is right continuous: qpois(p, lambda) is the smallest integer x such that P(X≤x)≥p. 

Setting lower.tail = FALSE allows to get much more precise results when the default, lower.tail = 

TRUE would return 1, see the example below. 

Value 

dpois gives the (log) density, ppois gives the (log) distribution function, qpois gives the quantile function, 

and rpois generates random deviates. 

Invalid lambda will result in return value NaN, with a warning. 

 

 

The Geometric Distribution 

Density, distribution function, quantile function and random generation for the geometric distribution 
with parameter prob 

Usage 
dgeom(x, prob, log = FALSE) 

pgeom(q, prob, lower.tail = TRUE, log.p = FALSE) 

https://www.rdocumentation.org/link/dbinom?package=stats&version=3.6.2


qgeom(p, prob, lower.tail = TRUE, log.p = FALSE) 

rgeom(n, prob) 

 

Arguments 

x, q  vector of quantiles representing the number of failures in a sequence of Bernoulli trials before     

         success occurs. 

P  vector of probabilities. 

n number of observations. If length(n) > 1, the length is taken to be the number required. 

Prob  probability of success in each trial. 0 < prob <= 1. 

log, log.p logical; if TRUE, probabilities p are given as log(p). 

lower.tail   logical; if TRUE (default), probabilities are P[X≤x], otherwise, P[X>x]. 

Details 

The geometric distribution with prob =p has density p(x)=p(1−p)x for x=0,1,2,…, 0<p≤1. 

If an element of x is not integer, the result of dgeom is zero, with a warning. 

The quantile is defined as the smallest value x such that F(x)≥p, where F is the distribution function. 

Value 

dgeom gives the density, pgeom gives the distribution function, qgeom gives the quantile function, 

and rgeom generates random deviates. 

Invalid prob will result in return value NaN, with a warning. 

The length of the result is determined by n for rgeom, and is the maximum of the lengths of the numerical 

arguments for the other functions. 

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the 

logical arguments are used. 

 

 

 

 

 

 

 

 

 

 



Unit –IV 

The Normal Distribution 

Density, distribution function, quantile function and random generation for the normal distribution with 
mean equal to mean and standard deviation equal to sd 

Usage 
dnorm(x, mean = 0, sd = 1, log = FALSE) 

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 

rnorm(n, mean = 0, sd = 1) 

Arguments 

x, q  vector of quantiles. 

P  vector of probabilities. 

n number of observations. If length(n) > 1, the length is taken to be the number required. 

Mean vector of means. 

Sd vector of standard deviations. 

log, log.p  logical; if TRUE, probabilities p are given as log(p). 

lower.tail logical; if TRUE (default), probabilities are P[X≤x] otherwise, P[X>x]. 

 

Details 

If mean or sd are not specified they assume the default values of 0 and 1, respectively. 

The normal distribution has densityf(x)=12πσe−(x−μ)2/2σ2where μ is the mean of the distribution and σ the 

standard deviation. 

Value 

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile function, 

and rnorm generates random deviates. 

The length of the result is determined by n for rnorm, and is the maximum of the lengths of the numerical 

arguments for the other functions. 

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the 

logical arguments are used. 

For sd = 0 this gives the limit as sd decreases to 0, a point mass at mu. sd < 0 is an error and returns NaN. 

The Uniform Distribution 

These functions provide information about the uniform distribution on the interval 

from min to max. dunif gives the density, punif gives the distribution function qunif gives the quantile 

function and runif generates random deviates. 

Keywords 

distribution 

https://www.rdocumentation.org/search/keywords/distribution


Usage 
dunif(x, min = 0, max = 1, log = FALSE) 

punif(q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE) 

qunif(p, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE) 

runif(n, min = 0, max = 1) 

Arguments 

x, q vector of quantiles. 

p vector of probabilities. 

n number of observations. If length(n) > 1, the length is taken to be the number required. 

min, max lower and upper limits of the distribution. Must be finite. 

log, log.p logical; if TRUE, probabilities p are given as log(p). 

lower.tail logical; if TRUE (default), probabilities are P[X≤x], otherwise, P[X>x]. 

Details 

If min or max are not specified they assume the default values of 0 and 1 respectively. 

The uniform distribution has densityf(x)=1max−minfor min≤x≤max. 

For the case of u:=min==max, the limit case of X≡u is assumed, although there is no density in that case 

and dunif will return NaN (the error condition). 

runif will not generate either of the extreme values unless max = min or max-min is small compared 

to min, and in particular not for the default arguments. 

Value 

dunif gives the density, punif gives the distribution function, qunif gives the quantile function, 

and runif generates random deviates. 

The length of the result is determined by n for runif, and is the maximum of the lengths of the numerical 

arguments for the other functions. 

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the 

logical arguments are used. 

The Exponential Distribution 

Density, distribution function, quantile function and random generation for the exponential distribution with 

rate rate (i.e., mean 1/rate). 

Keywords 

distribution 

Usage 
dexp(x, rate = 1, log = FALSE) 

pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE) 

qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE) 

rexp(n, rate = 1) 

Arguments 

x, q vector of quantiles. 

p vector of probabilities. 

n number of observations. If length(n) > 1, the length is taken to be the number required. 

https://www.rdocumentation.org/search/keywords/distribution


Rate vector of rates. 

log, log.p logical; if TRUE, probabilities p are given as log(p). 

lower.tail logical; if TRUE (default), probabilities are P[X≤x], otherwise, P[X>x]. 

 

Details 

If rate is not specified, it assumes the default value of 1. 

The exponential distribution with rate λ has densityf(x)=λe−λxfor x≥0. 

Value 

dexp gives the density, pexp gives the distribution function, qexp gives the quantile function, 

and rexp generates random deviates. 

The length of the result is determined by n for rexp, and is the maximum of the lengths of the numerical 

arguments for the other functions. 

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the 

logical arguments are used. 

The Gamma Distribution 

Density, distribution function, quantile function and random generation for the Gamma distribution with 

parameters shape and scale. 

Keywords 

distribution 

Usage 
dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE) 

pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, 

       log.p = FALSE) 

qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, 

       log.p = FALSE) 

rgamma(n, shape, rate = 1, scale = 1/rate) 

Arguments 

x, q vector of quantiles. 

P vector of probabilities. 

n number of observations. If length(n) > 1, the length is taken to be the number required. 

Rate an alternative way to specify the scale. 

shape, scale shape and scale parameters. Must be positive, scale strictly. 

log, log.p logical; if TRUE, probabilities/densities p are returned as log(p). 

lower.tail logical; if TRUE (default), probabilities are P[X≤x], otherwise, P[X>x]. 

Details 

If scale is omitted, it assumes the default value of 1. 

The Gamma distribution with parameters shape =α and scale =σ has 

densityf(x)=1σαΓ(α)xα−1e−x/σfor x≥0, α>0 and σ>0. (Here Γ(α) is the function implemented 

by R's gamma() and defined in its help. Note that a=0 corresponds to the trivial distribution with all mass at 

point 0.) 

https://www.rdocumentation.org/search/keywords/distribution
https://www.rdocumentation.org/link/gamma?package=stats&version=3.6.2


The mean and variance are E(X)=ασ and Var(X)=ασ2. 

The cumulative hazard H(t)=−log⁡(1−F(t)) is 

-pgamma(t, ..., lower = FALSE, log = TRUE) 

Note that for smallish values of shape (and moderate scale) a large parts of the mass of the Gamma 

distribution is on values of x so near zero that they will be represented as zero in computer arithmetic. 

So rgamma may well return values which will be represented as zero. (This will also happen for very large 

values of scale since the actual generation is done for scale = 1.) 

Value 

dgamma gives the density, pgamma gives the distribution function, qgamma gives the quantile function, 

and rgamma generates random deviates. 

Invalid arguments will result in return value NaN, with a warning. 

The length of the result is determined by n for rgamma, and is the maximum of the lengths of the numerical 

arguments for the other functions. 

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the 

logical arguments are used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Unit V 

 

 LINEAR CORRELATION 
 

The term correlation is used by a common man without knowing that he is making use of the 

term correlation. For example when parents advice their children to work hard so that they may get 

good marks, they are correlating good marks with hard work. The study related to the characteristics 

of only variable such as height, weight, ages, marks, wages, etc., is known as univariate analysis. The 

statistical Analysis related to the study of the relationship between two variables is known as Bi-

Variate Analysis. Sometimes the variables may be inter-related. In health sciences we study the 

relationship between blood pressure and age, consumption level of some nutrient and weight gain, 

total income and medical expenditure, etc. The nature and strength of relationship may be examined 

by correlation and Regression analysis. Thus Correlation refers to the relationship of two variables 

or more. Correlation is statistical Analysis which measures and analyses the degree or extent to 

which the two variables fluctuate with reference to each other. The word relationship is important. 

It indicates that there is some connection between the variables. It measures the closeness of the 

relationship. Correlation does not indicate cause and effect relationship. Price and supply, income and 

expenditure are correlated. 

Meaning of Correlation: 
 

In a bivariate distribution we may interested to find out if there is any correlation or covariation 

between the two variables under study. If the change in one variable affects a change in the other 

variable, the variables are said to be correlated. If the two variables deviate in the same direction, i.e., 

if the increase in one results in a corresponding increase in the other, correlation is said to be direct 

or positive. 

Example 
 

• The heights or weights of a group of persons 

• The income and expenditure is positive and correlation between 



❖ Price and demand of a commodity 

❖ The volume and pressure of a perfect gas; is negative 
 

Correlation is said to be perfect if the deviation one variable is followed by a corresponding and 

proportional deviation in the other. 

Definitions: 
 

Ya-Kun-Chou: 

 

Correlation Analysis attempts to determine the degree of relationship between variables. 

A.M. Tuttle: 
 

Correlation is an analysis of the covariation between two or more variables. Correlation 

expresses the inter-dependence of two sets of variables upon each other. One variable may 

be called as (subject) independent and the other relative variable (dependent). Relative 

variable is measured in terms of subject. 

Uses of correlation: 
 

1. It is used in physical and social sciences. 
 

2. It is useful for economists to study the relationship between variables like price, quantity. 

4. Businessmen estimates costs, sales, price etc. using correlation. 
 

4. It is helpful in measuring the degree of relationship between the variables like income and 

expenditure, price and supply, supply and demand etc. 

5. Sampling error can be calculated. 
 

6. It is the basis for the concept of regression. 
 

 SCATTER DIAGRAM 
 

Scatter diagram pertaining independent variables, it is easily verifiable that if any line is drawn 

through the plotted points, not more than two points will be lying on the line most of the other points 

will be at a considerable distance from this line. Scatter diagram that the two variables 



 

Correlation 

 

are linearly related, the problem arises on deciding which of the many possible lines the best fitted 

line is. The lease square method is the most widely accepted method of fitting a straight line and is 

discussed here adequately. 

Use of Scatter Diagram: 
 

• When you have paired numerical data 

• When trying to identify potential root causes of problems. 

• After brain storming causes and effects using a bishbone diagram, to determine objectively 

whether a particular cause and effect are related. 

• When determining whether two effects that appear to be related both occur with the same 

cause 

It is the simplest method of studying the relationship between two variables 

diagrammatically. One variable is represented along the horizontal axis and the second variable along 

the vertical axis. For each pair of observations of two variables, we put a dot in the plane. There are 

as many dots in the plane as the number of paired observations of two variables. The direction of dots 

shows the scatter or concentration of various points. This will show the type of correlation. 

 

 

 

 

 

perfect Negative Correlation 

Y Y (r = -1) 
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1. If all the plotted dots lie on a straight line falling from upper left hand corner to lower right 

hand corner, there is a perfect negative correlation between the two variables. In this case 

the coefficient of correlation takes the value r = -1. 

 
2. If all the plotted points form a straight line from lower left hand corner to the upper right hand 

corner then there is Perfect positive correlation. We denote this as r = +1 

 
3. If the plotted points in the plane form a band and they show a rising trend from the lower 

left hand corner to the upper right hand corner the two variables are highly positively 

correlated. Highly Positive Highly Negative 

 
 

 

 
 

 

1. If the points fall in a narrow band from the upper left hand corner to the lower right hand 

corner, there will be a high degree of negative correlation. 



2. If the plotted points in the plane are spread all over the diagram there is no correlation 

between the two variables. 
 

 

 
Merits: 
 

1. It is a simplest and attractive method of finding the nature of correlation between the two 

variables. 

2. It is a non-mathematical method of studying correlation. It is easy to understand. 

3. It is not affected by extreme items. 
 

4. It is the first step in finding out the relation between the two variables. 
 

5. We can have a rough idea at a glance whether it is a positive correlation or negative 

correlation. 

Demerits: 
 

By this method we cannot get the exact degree or correlation between the two variables. 

Types of Correlation: 
 

Correlation is classified into various types. The most important ones are 
 

• Positive and negative. 

• Linear and non-linear. 

• Partial and total. 

• Simple and Multiple. 



Positive and Negative Correlation 
 

It depends upon the direction of change of the variables. If the two variables tend to move 

together in the same direction (i. e) an increase in the value of one variable is accompanied by an 

increase in the value of the other, (or) a decrease in the value of one variable is accompanied by a 

decrease in the value of other, then the correlation is called positive or direct correlation. Price and 

supply, height and weight, yield and rainfall, are some examples of positive correlation. 

 

 

If the two variables tend to move together in opposite directions so that increase (or) decrease 

in the value of one variable is accompanied by a decrease or increase in the value of the other variable, 

then the correlation is called negative (or) inverse correlation. Price and demand, yield of crop and 

price, are examples of negative correlation. 

 

 
 

 

 
 

Linear and Non-linear correlation: 
 

If the ratio of change between the two variables is a constant then there will be linear 

correlation between them. 

Example 
 

Consider the variables with the following values. 
 

X 10 20 30 40 50 

Y 20 40 60 80 100 

 

 
Here the ratio of change between the two variables is the same. If we plot these points on a 



graph we get a straight line. 

If the amount of change in one variable does not bear a constant ratio of the amount of change 

in the other. Then the relation is called Curve- linear (or) non-linear correlation. The graph will be a 

curve. 

Example 
 

Consider the variables with the following values 
 

 
 

X 10 20 30 40 50 

Y 10 30 70 90 120 

Here there is a non linear relationship between the variables. The ratio between them is not fixed 

for all points. Also if we plot them on the graph, the points will not be in a straight line. It will be a 

curve. 

Simple and Multiple correlation: 
 

When we study only two variables, the relationship is simple correlation. For example, 

quantity of money and price level, demand and price. But in a multiple correlation we study more 

than two variables simultaneously. The relationship of price, demand and supply of a commodity 

are an example for multiple correlations. 

 

 



Example: 
 

Calculate coefficient of correlation from the following data. 
 

x 1 2 3 4 5 6 7 8 9 

y 9 8 10 12 11 13 14 16 15 

Solution: 
 

x Y x2 y2 xy 

1 9 1 81 9 

2 8 4 64 16 

3 10 9 100 30 

4 12 16 144 48 

5 11 25 121 55 

6 13 36 169 78 

7 14 49 196 98 

8 16 64 256 128 

9 15 81 225 135 

45 108 285 1356 597 

 

 

r = 
n xy − ( x) ( y) 

[n x 2 − ( x)2 ][n y 2 − ( y)2 ] 

r = 
9  597 − 45 108 

(9  285 − (45)2 ).(9 1356 − (108)2 ) 

r = 
5373 − 4860 

        (2565 − 2025).(12204 − 11664)      

                                           
= 0.95 

 

 
                                           r = 0.95 

 



Regression 
 
MEANING OF REGRESSION: The dictionary meaning of the word Regression is ‘Stepping back’ or 
‘Going back’. Regression is the measures of the average relationship between two or more variables in 
terms of the original units of the data. And it is also attempts to establish the nature of the relationship 
between variables that is to study the functional relationship between the variables and thereby provide a 
mechanism for prediction, or forecasting. 

 

 

 



 

 

 

 

Example 9.9 

Calculate the regression coefficient and obtain the lines of regression for the following data 

 

Solution: 



 

  

Regression coefficient of X on Y 

 

(i) Regression equation of X on Y 

 



(ii) Regression coefficient of Y on X 

 

(iii) Regression equation of Y on X 

 

 Y = 0.929X–3.716+11 

 = 0.929X+7.284 

The regression equation of Y on X is Y= 0.929X + 7.284 

  

Example 9.10 

Calculate the two regression equations of X on Y and Y on X from the data given below, taking 

deviations from a actual means of X and Y. 

 

Estimate the likely demand when the price is Rs.20. 

Solution: 

Calculation of Regression equation 



 

(i) Regression equation of X on Y 

 

(ii) Regression Equation of Y on X 

 

When X is 20, Y will be 



            = –0.25 (20)+44.25 

            = –5+44.25 

= 39.25 (when the price is Rs. 20, the likely demand is 39.25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


