
Dats Structures Page 1 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

DATA STRUCTURES SYLLABUS
Objective:

basic algorithms for sorting.

Unit I Basic Concepts:- Algorithm specification – Data Abstraction – Performance Analysis.

Arrays and Structures:- Arrays: Abstract data type – Polynomials – Sparse Matrices –

Representation of Multidimensional Arrays. (12L)

 Unit II Stacks and Queues:- Stacks – Queues – Evaluation of Expressions. Linked Lists:- Singly

Linked Lists and Chains – Linked Stacks and Queues – Polynomials: Polynomial Representation –

Adding Polynomials. Sparse Matrices: Sparse Matrix Representation. – Doubly Linked Lists. (12L)

Unit III Trees:- Introduction – Binary Trees – Binary Tree Traversals: Inorder Traversal – Preorder

Traversal – Postorder Traversal. Heaps – Binary Search Trees Forests: Transforming a Forest into a

Binary Tree. (12L)

 Unit IV Graphs: - The Graph Abstract Data Type-Elementary Graph Operations – Minimum Cost

Spanning Trees: Kruskal’s Algorithm – Prim’s Algorithm. – Shortest Paths and Transitive Closure:

Single Source/ All Destination: Nonnegative Edge Costs - All Pairs Shortest Paths. (12L)

Unit V Sorting:- Motivation – Insertion Sort – Quick Sort – Merge Sort: Recursive Merge Sort. –

Heap Sort – External Sorting: Introduction – k-way Merging..Hashing:- Static Hashing: Hash

Tables. (12L) Text Book: Fundamentals of Data Structures in C by Ellis Horowitz, Sartaj Sahni,

Susan Anderson- Freed – Second Edition – Universities Press (India) Private Limited. Reference

Books:

1. Data Structures Using C, Second Edition by Reema Thareja – Oxford University Press

2. Data Structures by Dr N Jeya Prakash – Anuradha Publications

Dats Structures Page 2 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

UNIT-1

1. ALGORITHM SPECIFICATION

Algorithm is a finite set of instructions to perform a task. All algorithms must satisfy the

following criteria.

 Input: zero or more quantities externally supplied

 Output: Atleast one quantity is produced.

 Definiteness: Each instruction is clear and unambiguous.

 Finiteness: The algorithm terminates after a finite number of steps

 Effectiveness: Each operation must be definite and must be feasible.

Eg. void swap(int *x, int *y)
{
int temp=*x;
*x=*y;
*y=temp;
}
Recursive algorithms:

 A function that is invoked by another function.

 It executes code and then returns control to the calling function.

 A function that calls itself is called direct recursion and that may call other function is

called indirect recursion.

E.g. Recursive implementation of binary search

int binsearch(int list[])
{
int middle;
If(left<=right)
{
middle=(left + right)/2;
switch(middle) {
case -1: return binsearch();
case 0: return middle;
case 1: return binsearch();
}}}

Dats Structures Page 3 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

2. Data Abstraction

 The basic data types of c include char, int, float, double, short, long unsigned etc.

 C helps to provide two mechanisms for grouping data together. These are arrays and

structures.

 Arrays are collection of elements of the same basic datatype.

Eg. int list[5];
struct{

char lastname;
int studid;
char grade;}student;

 A datatype is a collection of objects and a set of operations that act on those objects.

 An abstract datatype is a datatype that is organized in such a way that the specification of

the objects operations on the objects is separated from the representation of operations.

 E.g. Ada has a concept called package and c++ has a concept called class.

 It implies that an Abstract Data Type(ADT) is implementation independent.

 To classify the functions of a datatype into several categories.

 creator/constructor: these functions create a new instance of the designated type.

 Transformers: these functions create an instance of the designated type.

 Observers/reporters: these functions provide information about an instance of the

type.

Eg. ADT natural no
Objects: 0 to max
Functions: Boolean IsZero();

Boolean Equal(x, y);
End

 There are two main sections in the definition.

 The objects and the functions. Objects are integers. Operations are IsZero() and Equal().

3. Performance Analysis

 The criteria on performance evaluation is divided into two distinct fields.

 First field focuses on obtaining estimates of time and space that are machine independent

called as performance analysis.

Dats Structures Page 4 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 Second field called as performance measurement obtains dependent running times. These

times used to identify inefficient code segments.

 Space complexity of a program is the amount of memory that is needed to run to

completion.

 Time complexity of a program is the amount of computer time that it needs to run to

completion.

1. Space complexity: the space needed by a program is the sum of the following components.

a) Fixed space requirements: This component refers to space requirements that do not depend

on the number and size of the programs input and output.

 These include instruction space, space for simple variables. Fixed size, structured variables

and constants.

b) variable space requirements: This component consists of the space needed by structured

variables whose size depends on the particular instance I of the problem being solved.

 Additional space required when a function uses recursion.

 If n is the only instance, the total space requirement s(p) is

S(p)=c+sp(I) where c is a constant.

Eg. float abc(float a, float b, float c)

{

return(a+b+b*c+(a+b+c)/(a+b)+4.00

}

Sabc(I)=0

2. Time complexity: The time T9P) taken by a program is the sum of its compile time and its run

time.

 The compile time is similar to the fixed space component.

 When program runs correctly , it is used many times without recompilation.

Tp(n)=Ca ADD(n)+Cs SUB(n)+Cl LDA(n)+Cs STA(n)

 where Ca, Cs, Cl, Cs are constants. ADD, SUB, LDA, STA are the number of additions, subtractions,

load and store.

Dats Structures Page 5 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 A program step is syntactically or semantically meaningful program segment whose

execution time is independent of the instance characteristic.

Eg. We count a simple assignment statement of the form a=2 as one step and also count a more

complex statement as

A=2*b+3*c/d-e+f/g/a/b/c as one step.

Only requirement is that the time required to execute each statement.

Eg. float sum(float list[], int n)

{

 for(i=0;i<n;i++)

Count t=2;

Count t=3;

return 0;

}

The final value will be(2n+3)

The step count table for matrix addition is

void add(int a*+*MAX_SIZE+…),

int I,j;

for(i=0;i<=rows;i++)

for(j=0;j<cols:j++)

c[i][j]=a[i][j]+b[i][j]

}

 The best case stepcount is the minimum number of steps that can be executed for the given

parameters.

 The worst case stepcount is the maximum number of steps that can be executed for the

given parameters.

 The average case stepcount is the average number of steps executed on instances with the

given parameters.

Dats Structures Page 6 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Asymptotic notation(O,Ω,ϴ)

 To determine step counts is to be able to compare the time complexities of two programs

that compute the same function and also to predict the growth in runtime as the instance

characteristics change.

 O-notation is one of the very famous mathematical tools available.

F(n)=O(g(n))

 Iff there are two positive constants c and n so that the following inequality holds for all n>=n0

F(n)<=c|g(n)|

 F(n) is the computing time of some algorithm when the algorithm is run on an input of size

 ‘n’. g(n) is the standard function like n2, n3, nlogn etc.

 O-notation has been extremely useful to classify algorithm by their performances.

 This notation helps designers to search for the best algorithms for some problems.

 Complexity expressed in O-notation is only an upper bound and the actual complexity may

be much lower.

 This complexity can almost be treated as worst case complexity.

 The constant c is unknown and is not necessarily small.

 Similarly the constant n0 is unknown and may not be small.

 Average case complexity of the algorithm is much less than its worst case complexity.

 Eg. Quick sort algorithm

 Its worst case complexity is O(Ω2) is O(nlogn).

o Its average case, the constants c and n0 implicit in the O-notation hide the details of

implementation.

o The most common computing times of algorithms are

O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n3)<O(2n)

 logn, if the time complexity of an algorithm is logn. The algorithm is said to be logarithmic.

The program becomes slightly slower as n increases

 n, the algorithm is said to be linear

 nlogn, algorithm solves a problem by breaking it up into smaller subproblems.

 n2 the algorithm is said to be quadratic

Dats Structures Page 7 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 n3 the algorithm is said to be cubic as it processes triplets of data items.

 2n , algorithms with exponential running time.

 Suppose an algorithm consists of three blocks, the first block is for initialization and takes a

constant amount of time c.

 Next block is simple iteration whose time complexity of c(nlogn).

Fnvals

Logn N Nlogn n2 n3 2n

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 526

4 16 64 256 4096 65536

5 32 160 1024 32768 429496729

4. ARRAYS

ARRAY ABSTRACT DATATYPE

 An array is a set of pairs <index, value> such that each index defined has a value associated

with it.

 ADT Array:

 Objects: A set of pairs <index, value> for each value of index there is a value from the set

item. Index is a finite ordered set of one or more dimensions.

 Eg. [0..n-1+ for one dimensions. ,(0,0),(0,1),(0,2)…..- for two dimensions.

 Functions for all a ϵ array, i ϵ index, x ϵ item, size ϵ integer,

 Array Create(j, list)::= return an array of j dimensions where list is a j tuple whose ith

element is the size of ith dimensions.

 Item Retrieve(a, i)::=if i ϵ index return the item associated with index value I in arrays else

return error.

Array store(a,I,x)::= if I ϵindex return an array that is identical to array except the new pair <I,x>

has been inserted else return error.

Dats Structures Page 8 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 The create(j, list) function produces a new empty array of the appropriate size.

 Retrieve function accepts an array and an index. It returns the value associated with the

index, if the index is valid or error if the index is invalid.

 Store function accepts an array, an index and an item and returns the original array

augmented with the new <index,value> pair.

b) Array in C:

 A one dimenstional array in C is declared implicitly.

 int list[5], *ptlist[5];

 Eg. There are two arrays declared each containing 5 elements.

 First array defines 5 integers while second array declared 5 pointer integers.

 In c, all arrays start at index 0 so list*0+, list*1+,….list*n-1]. Similarly ptlist[0:4] contains

pointer to an integer.

 When the compiler encounters an array declaration, create list allocates 5 consecutive

memory location.

 The address of the first element list[0] is called the base address.

 If the size of an integer is denoted by size of int, then memory address of list[i] is

α +i*size of (int) where α is the base address.

5. POLYNOMIALS

POLYNOMIAL ABSTRACT DATATYPE

 One of the simplest and most commonly found data structures is the ordered or linear list.

 Eg. Days of the week=,Sunday, Monday…….Saturday-

 We can perform many operations on lists including:

1. Finding the length n of a list.

2. Reading the items in a list from left to right.

3. Retrieving the ith item from a list 0<i<n

4. Replacing the item in the ith position of a list 0<i<n

5. Inserting a new item in the ith position of a list

6. Deleting an item from the ith position of a list.

Dats Structures Page 9 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Eg. A(x)=3x20+2x5+4

B(x)=x4+10x3+3x2+1

 The largest exponent of a polynomial is called its degree.

 Coefficients that are zero are not displayed.

A(x)+B(x)=∑(ai+bi)x
i

A(x)B(x)= ∑(aix
i. ∑bjx

j))

ADT Polynomial

Objects: P(x)=a1xe1+…..anxen a set of ordered pairs of <ei,ai) where ai is coefficients and ei is the

exponent of integer>=0.

Functions: For all poly,poly1, poly2 ϵ Polynomial, coef ϵ coefficient, expon ϵ exponents.

1.Polynomial zero()::=return the polynomial P(x)=0

2. Boolean Iszero(poly)::= if polynomial returns false else return true.

3. Coefficient coef(poly, expon)::= if (expon ϵ poly) return its coefficient else return zero.

4. Exponent loadexp(poly)::= return the largest exponent in the polynomial

5. Polynomial Attach(poly, coef)::=if (exponent expon)poly return error else return the

polynomial poly with the term <coef, expon> inserted.

6. Polynomial Remove(poly, expon)::= if(expon ϵpoly) return the polynomial poly with the term

whose expon deleted.

7. Polynomial single mult(poly, coef, expon)::= return the polynomial expon, poly, coef,x

8.Polynomial add(poly1, poly2) ::= return the polynomial poly1+poly2.

9. Polynomial mult(poly1, poly2)::=return the polynomial poly1, poly2

End Polynomial.

b) Polynomial Representation:

typedef struct{

 int degree;

float coef[MAX_DEG];

}Polynomial

Array Representation of two Polynomials

A(x)=2x1000+1, B(x)=x4+10x3+3x2+1

Dats Structures Page 10 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 Start A Finish A Start B Finish B Avail

Coef 2 1 1 10 3 1

Expon 1000 0 4 3 2 0

 0

1 2 3 4 5 6

c) Polynomial Addition

Add two polynomials D=A+B

void padd(int startA, int FInishA, int StartB, int FInishB, int *StartD, int *FinishD){

float coef;

startD=avail;

while(startA<=FinishA && startB<=FinishB)

switch(compare(terms[startA].expon, terms[startB].expon)){

case -1:

 Attach(terms[startB].coef, terms[startB].expon);

 StartB++;

 Break;

Case 0:

 Coefficient=terms[StartA].coef+ terms[StartB].coef;

 If(Coefficient)

 Attach(coefficient, terms[StartA].expon)

 StartA++;

StartB++;

Break;

Case 1:

 Attach(terms[StartA].coef,terms[StartA], exponent);

 StartA++;}

For(; StartA<=FInishA; StartB++)

Attach(terms[startB].coef,terms[StartB].expon);

*FinishD=avail-1;

Dats Structures Page 11 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Worst case occurs when

A(x)= ∑x2iB(x)= ∑x2i+1

The asymptotic computing time of this algorithm is O(n+m).

6. SPARSE MATRICES:

 A matrix has m rows and n cols of elements. If the first matrix has 5 rows and 3 columns

and the second matrix has 6 rows and 6 columns. The total number of elements in such

a matrix is m x n. If m=n then the matrix is square matrix.

 When a matrix defined by 2D array as a [MAX_ROWS][MAX_COLS] by writing a[i][j] for

any element where i is the row index and j is the column index.

 The matrix contains many zero entries So it is a sparse matrix. It is represented

as<row,col, value> as given here <0,0,5> and <1,2,1>

000

100

005

 When a sparse matrix is represented as a 2D array we waste space.

 Eg. If only 8 out of 36 possible elements are non zero that is sparse. When dealing with

large matrix 1000x1000, if they are sparse, then it is hard to deal.

 A minimal set of operations for representing only non-zero elements are matrix

creation, addition, multiplication and transpose.

a) ADT Sparse Matrix

Objects: a set of triples <row, col, val> where row and column form a unique combination and

value comes from item.

Function: for all a,bϵSparse matrix, xϵitem, I,j,maxrow,maxcol ϵindex,

SparseMatrix.create(MaxRow, MaxCOl)::= return a sparse matrix that can hold upto

maxitems=maxrowxmaxcol;

SParseMatrix Transpose(a)::=return the matrix produced by interchanging row and column

value of every tuple.

SparseMatrix Add(a,b)::=if the dimensions of a and b are the same return the matrix produced

by adding corresponding row and column values ; else return error.

Dats Structures Page 12 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

SparseMatrix(Multiply(a,b))::=if no of columns in a= no of rows in b

Return the matrix d produced by multiplying a and b.

D[i][j]= ∑(a*i+*k+*b*k+*j+

Else return error;

End ADT

b) Sparse matrix representation:

 Use array of triples so as to represent sparse matrix.

 Organise the triple so that the row indices are in ascending order.

SparseMatrix create(MaxRow, MaxCol)

#define maxterms 101

Typedef struct{

Int col;

Int row;

Int value;}term:

Term a[Maxterms;

Maxterms >8

Eg. Row col value

A[0] 6 6 8

A[1] 0 0 15

A[2] 0 3 22

A[3] 0 5 -15

A[4] 1 1 11

A[5] 1 2 3

A[6] 2 3 -6

A[7] 4 0 91

A[8] 5 2 28

The triples are ordered by row and within rows by columns.

c) Transposing a matrix:

 To transpose a matrix, we interchange the rows and columns.

Dats Structures Page 13 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 Each element a[i][j] in the original matrix becomes element b[i][j] in transpose matrix.

 For each row i

 Take element <i,j,val> and store it as element <j,i,val> of the transpose.

o <0,0,15> becomes <0,0,15>

o <0,3,22> becomes <3,0,22>

o <0,5,-15> becomes <5,0,-15>

 To place these triples consecutively in the transpose matrix.

 For all elements in column j

 Place element <i,j,val> in element <j,i,val>

 This asymptotic time complexity is O(columns.elements).

 void transpose(term a[], term b[]){

 int n,I,j,current b:

 n=a[0].value

b[0]. Col=a[0].row;

b[0].val=n;

if(n>0){

 current=1;

 for(i=0;i<a[0].col;i++)

 for(j=1;j<=n;j++)

 if(a[j].col==I){

 b[current].row=a[j].col;

 b[current].col=a[j].row;

 b[current].value=a[j].value;

current++;}}}

 Fast transpose proceeds by first determining the number of elements in each column of the

transpose matrix.

 Asymptotic time complexity is O(columns.rows).

 The computing time is O(columns+element)

Dats Structures Page 14 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

d) Matrix Multiplication:

 Given A and B where A is m x n and B is n x p.

 The product matrix D has dimension m x p

 kjik

m

kij bad 1

0

 The product of two sparse matrices may no longer be sparse.

111

111

111

000

000

111

001

001

001

 We compute the elements of D by rows and store them in their proper place.

 We pick a row of A and find all the elements in column j

 We store the matrices A , B and D in arrays a,b and d.

 The overall time of the loops

 O(∑row(colsB.termRow+totalB))=O(colsB.totalA+rowsA.totalB)

 Classic multiplication algorithm is

 For(i=0;i<rowsA;i++)

 For(j=0;j<colsB;j++){

 Sum=0;

 For(k=0;k<colsA;k++)

 Sum+=(a[i][k]+b[k][j])

 D[i][j]=sum;}

This algorithm takes O(rowsA.ColsA.ColsB).

7. REPRESENTATION OF MULTIDIMENSIONAL ARRAYS

 The array of array representation is to map all elements of a multidimensional array into an

ordered or linear list.

 Linear list is then stored in consecutive memory as one dimensional array.

 If an array is declared a[upper0][upper1+……..*uppern-1]

 Number of elements in the array is i

n

i

upper
1

0

 where ∏ is the product of upperis

Dats Structures Page 15 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 Eg. A[10][10][10] we require 10.10.10=1000 units of storage to hold the array.

 There are two common ways to represent multidimensional arrays. They are row major

order and column major order.

 Assume α is the address of A[0][0] then the address of A[i][0] is α+i.upperi because there

are i rows each of size upperi.

 To represent three dimensional array A[upper0.][upper1] [upper2], The address of a[i][j][k] is

 α+i.upper1.upper2+j.upper2+k

 The address of a[i0][i1]….. is 1321121 nn upperupperupperiupperupperupperi

 = jj

n

j

ai
1

0

 where aj= i

n

i

upper
1

0

 where 0<=j<=n-1; an-1=1

**

Dats Structures Page 1 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Unit II

Stacks and Queues:- Stacks – Queues – Evaluation of Expressions. Linked Lists:- Singly Linked

Lists and Chains – Linked Stacks and Queues – Polynomials: Polynomial Representation – Adding

Polynomials. Sparse Matrices: Sparse Matrix Representation. – Doubly Linked Lists.

1. STACKS

 A stack is an ordered list in which insertions and deletions are made at one end called as the

TOP.

 Given a stack S={a0,a1,…..an-1} where a0 is the bottom element, an-1is the top element and ai

is on top of ai-1.

 Restriction on stack is, if we add the elements A, B,C, D, E to the stack, then E is the first

element that can be deleted from the stack.

 Since the last element inserted into a stack is the first element removed, a stack is also

known as LIFO (Last In First Out).

Eg. System stack is used by a program at run time to process in calls.

Whenever a function is invoked the program creates a structure referred as activation record or

stack frame and places it on top of the system stack.

Dats Structures Page 2 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 The first or bottom element of the stack is stored in stack[0], second element in stack[1]

and ithin stack [i-1].Initially top is set to -1 to denote an empty stack.

Dats Structures Page 3 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

2. QUEUES

 A queue is an ordered list in which insertion s and deletions takes place at different ends.

 The end at which new elements are added is called the rear and that from which old

elements are deleted is called the front.

 Restrictions on a queue is if we insert A, B, C, D and E then A is the first element deleted

from the queue.

 The first element inserted into a queue is the first element removed from queue and is

called as First In First Out(FIFO).

Dats Structures Page 4 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

ADT Queue

structure Queue is
 objects: a finite ordered list with zero or more elements.
 functions:

 for all queue Queue, item element,

 max_ queue_ size positive integer
 Queue CreateQ(max_queue_size) ::=
 create an empty queue whose maximum size is
 max_queue_size
 Boolean IsFullQ(queue, max_queue_size) ::=
 if(number of elements in queue == max_queue_size)
 return TRUE
 else return FALSE
 Queue AddQ(queue, item) ::=
 if (IsFullQ(queue)) queue_full
 else insert item at rear of queue and return queue

Boolean IsEmptyQ(queue) ::=
 if (queue ==CreateQ(max_queue_size))
 return TRUE
 else return FALSE
 Element DeleteQ(queue) ::=
 if (IsEmptyQ(queue)) return
 else remove and return the item at front of queue.

ADD FROM A QUEUE

void addq(int *rear, element item)
{
/* add an item to the queue */
 if (*rear == MAX_QUEUE_SIZE_1) {
 queue_full();
 return;
 }
 queue [++*rear] = item;
}

DELETE FROM A QUEUE

element deleteq(int *front, int rear){
/* remove element at the front of the queue */
 if (*front == rear)
 return queue_empty(); /* return an error key */
 return queue [++ *front];}

Dats Structures Page 5 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

CIRCULAR QUEUE:

Front variable points one position counterclockwise from the location of the front element in

the queue but rear is unchanged.

The position next to position MAX_QUEUE_SIZE-1 is 0 and the position that precedes 0 is

MAX_QUEUE_SIZE-1

Dats Structures Page 6 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

3. EVALUATION OF EXPRESSIONS

Dats Structures Page 7 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Dats Structures Page 8 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Dats Structures Page 9 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Dats Structures Page 10 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

4. LINKED LISTS

A linked-list is a sequence of data structures which are connected together via links.

Linked List is a sequence of links which contains items.

Each link contains a connection to another link.

Linked list the second most used data structure after array. Following are important terms to
understand the concepts of Linked List

 Link − Each Link of a linked list can store a data called an element.

 Next − Each Link of a linked list contain a link to next link called Next.

 LinkedList − A LinkedList contains the connection link to the first Link called First.

 Consider the 3 letter English words ending with AT

 (BAT, CAT, EAT, FAT, HAT, JAT, LAT, MAT, OAT, PAT, RAT, SAT, TAT, VAT,

WAT)

 To insert GAT it is required to move elements one location higher or lower.

 We must move either HAT, JAT….. or BAT, CAT etc.

 Excessive data movements are required for insertion and deletion.

 An elegant solution to this problem of data movement in sequential representation is

achieved using linked representation.

 The elements of the list are stored in a one dimensional array called “Data”. A second array

LINK is added to show the array in any order.

 For any i, DATA[i] and LINK[i] comprise a node.

Dats Structures Page 11 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Non Sequential representation of list representation

 DATA LINK

HAT 15

CAT 4

EAT 9

GAT 1

WAT 0

BAT 3

FAT 6

VAT 7

 Nodes do not actually reside in sequential locations.

 Actual locations of nodes are immaterial.

struct Node

{

 int data;

 struct Node *next;

};

 In a single linked list each node has exactly one pointer field.

 A chain is a single Linked list that is comprised of zero or more nodes.

To insert a node into the linked list we need to do following steps.

For example the data item D has to be inserted between C and E

Dats Structures Page 12 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

(i) get a node which is currently unused; let its address be X;

(ii) set the DATA field of this node to D;

(iii) set the LINK field of X to point to the node after C which contains E;
(iv) set the LINK field of the node containing C to X.

To delete a node from linked list, we need to do following steps.

1) Find previous node of the node to be deleted.

2) Change the next of previous node.

3) Free memory for the node to be deleted.

To delete an element from a single linked list. To delete C from the list. Find the element that

immediately precedes C which is B and set link to the position of D which is after C.

5. LINKED STACKS AND QUEUES:

A linked stack is a linear list of elements commonly implemented as a singly linked list whose

start pointer performs the role of the top pointer of a stack

● A linked queue is also a linear list of elements commonly implemented as a singly linked list

but with two pointers viz., FRONT and REAR. The start pointer of the singly linked list plays

the role of FRONT while the pointer to the last node is set to play the role of REAR.

Dats Structures Page 13 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

When several stacks and queues coexisted, there was no efficient way to represent them

sequentially.

We can easily add or delete a node from the top of the stack.

We can easily add or delete a node to the rear of the queue and add or delete a node at the front.

Algorithm: Push item ITEM into a linked stack S with top pointer TOP

procedure PUSH_LINKSTACK (TOP, ITEM)

/* Insert ITEM into stack */

Call GETNODE(X)

DATA(X) = ITEM /*frame node for ITEM */

LINK(X) = TOP /* insert node X into stack */

TOP = X /* reset TOP pointer */
end PUSH_LINKSTACK.

Algorithm: Pop from a linked stack S and output the

element through ITEM

procedure POP_LINKSTACK(TOP, ITEM)

/* pop element from stack and set ITEM to

the element */

Dats Structures Page 14 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

if (TOP = 0) then call LINKSTACK_EMPTY

/* check if linked stack is empty */

else { TEMP = TOP

ITEM = DATA(TOP)

TOP = LINK(TOP)

}

call RETURN(TEMP) ;
end POP_LINKSTACK.

Algorithm: Enqueue an ITEM into a linked list queue Q

procedure INSERT_LINKQUEUE(FRONT,REAR,ITEM)

Call GETNODE(X);
DATA(X)= ITEM;
LINK(X)= NIL; /* Node with ITEM is ready to be
inserted into Q */
if (Queue = 0) then

•Queue = FRONT = REAR = X;
/* If Q is empty then ITEM is the
first element in the queue Q

else {LINK(REAR) = X;
REAR = X
}
end INSERT_LINKQUEUE.

Dats Structures Page 15 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Algorithm: Dequeue an element from the linked queue Q

procedure DELETE_LINKQUEUE (FRONT,ITEM)

if (FRONT = 0) then call LINKQUEUE_EMPTY;

/* Test condition to avoid deletion in an empty

queue */

else {TEMP = FRONT;

ITEM = DATA (TEMP);

FRONT = LINK (TEMP);

}

call RETURN (TEMP); /* return the node TEMP to

the free pool */

end DELETE_LINKQUEUE

6. POLYNOMIAL ADDITION

To represent any number of different polynomials as long as their combined size does not

exceed our block of memory. In general, we want to represent the polynomial

A(x) = amxem + ... + a1xe1

where the ai
are non-zero coefficients with exponents ei such that em > em-1

> ... > e2
 > e1

 >= 0.

Each term will be represented by a node. A node will be of fixed size having 3 fields which

represent the coefficient and exponent of a term plus a pointer to the next term

|COEF | EXP |LINK|

|______|_____|____|

For instance, the polynomial A= 3x14
 + 2x8

 + 1 would be stored as while B = 8x14
 - 3x10

 + 10x6
.

To add two polynomials together examine their terms starting at the nodes pointed to by A and B.

Two pointers p and q are used to move along the terms of A and B. If the exponents of two terms

are equal, then the coefficients are added and a new term created for the result. If the exponent of

the current term in A is less than the exponent of the current term of B, then a duplicate of the

term of B is created and attached to C. The pointer q is advanced to the next term. Similar action

is taken on A if EXP (p) > EXP(q)
Input:

Dats Structures Page 16 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 1st number = 5x^2 + 4x^1 + 2x^0

 2nd number = 5x^1 + 5x^0

Output:

 5x^2 + 9x^1 + 7x^0

Input:

 1st number = 5x^3 + 4x^2 + 2x^0

 2nd number = 5x^1 + 5x^0

Output:

Void polyadd(struct Node *poly1, struct Node *poly2, struct Node *poly)

{
while(poly1->next && poly2->next)
 {
 // If power of 1st polynomial is greater then 2nd, then store 1st as
 // and move its pointer
 if(poly1->pow > poly2->pow)
 {
 poly->pow = poly1->pow;
 poly->coeff = poly1->coeff;
 poly1 = poly1->next;
 }

 // If power of 2nd polynomial is greater then 1st, then store 2nd as
 // and move its pointer
 else if(poly1->pow < poly2->pow)
 {

Dats Structures Page 17 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 poly->pow = poly2->pow;
 poly->coeff = poly2->coeff;
 poly2 = poly2->next;
 }

 // If power of both polynomial numbers is same then add their Coefficients
 else
 {
 poly->pow = poly1->pow;
 poly->coeff = poly1->coeff+poly2->coeff;
 poly1 = poly1->next;
 poly2 = poly2->next;
 }

 // Dynamically create new node
 poly->next = (struct Node *)malloc(sizeof(struct Node));
 poly = poly->next;
 poly->next = NULL;
 }
while(poly1->next || poly2->next)
 {
 if(poly1->next)
 {
 poly->pow = poly1->pow;
 poly->coeff = poly1->coeff;
 poly1 = poly1->next;
 }
 if(poly2->next)
 {
 poly->pow = poly2->pow;
 poly->coeff = poly2->coeff;
 poly2 = poly2->next;
 }
 poly->next = (struct Node *)malloc(sizeof(struct Node));
 poly = poly->next;
 poly->next = NULL;
 }
}

// Display Linked list
void show(struct Node *node)
{
while(node->next != NULL)
 {
 printf("%dx^%d", node->coeff, node->pow);
 node = node->next;
 if(node->next != NULL)
 printf(" + ");
 }
}

// Driver program
int main()
{
 struct Node *poly1 = NULL, *poly2 = NULL, *poly = NULL;

Dats Structures Page 18 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 // Create first list of 5x^2 + 4x^1 + 2x^0
 create_node(5,2,&poly1);
 create_node(4,1,&poly1);
 create_node(2,0,&poly1);

 // Create second list of 5x^1 + 5x^0
 create_node(5,1,&poly2);
 create_node(5,0,&poly2);

 printf("1st Number: ");
 show(poly1);

 printf("\n2nd Number: ");
 show(poly2);

 poly = (struct Node *)malloc(sizeof(struct Node));

 // Function add two polynomial numbers
 polyadd(poly1, poly2, poly);

 // Display resultant List
 printf("\nAdded polynomial: ");
 show(poly);

return 0;
}
Output:

1st Number: 5x^2 + 4x^1 + 2x^0

2nd Number: 5x^1 + 5x^0

Added polynomial: 5x^2 + 9x^1 + 7x^0

7. SPARSE MATRICES

In computer programming, a matrix can be defined with a 2-dimensional array. Any array with

„m‟ columns and „n‟ rows represents a mXn matrix. There may be a situation in which a matrix

contains more number of ZERO values than NON-ZERO values. Such matrix is known as

sparse matrix.

Sparse matrix is a matrix which contains very few non-zero elements.

When a sparse matrix is represented with 2-dimensional array, we waste lot of space to represent

that matrix. For example, consider a matrix of size 100 X 100 containing only 10 non-zero

elements.

In this matrix, only 10 spaces are filled with non-zero values and remaining spaces of matrix are

filled with zero. That means, totally we allocate 100 X 100 X 2 = 20000 bytes of space to store

this integer matrix. And to access these 10 non-zero elements we have to make scanning for

10000 times.

Dats Structures Page 19 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Sparse Matrix Representations

A sparse matrix can be represented by using TWO representations, those are as follows…

1. Triplet Representation

2. Linked Representation

Method 1 : Triplet Representation

In this representation, we consider only non-zero values along with their row and column index

values. In this representation, the 0
th

 row stores total rows, total columns and total non-zero

values in the matrix.

For example, consider a matrix of size 5 X 6 containing 6 number of non-zero values. This

matrix can be represented as shown in the image…

In above example matrix, there are only 6 non-zero elements (those are 9, 8, 4, 2, 5 & 2) and

matrix size is 5 X 6. We represent this matrix as shown in the above image.

Here the first row in the right side table is filled with values 5, 6 & 6 which indicates that it is a

sparse matrix with 5 rows, 6 columns & 6 non-zero values. Second row is filled with 0, 4, & 9

which indicates the value in the matrix at 0th row, 4th column is 9. In the same way the

remaining non-zero values also follows the similar pattern.

 Method 2: Using Linked Lists

In linked list, each node has four fields. These four fields are defined as:

 Row: Index of row, where non-zero element is located

 Column: Index of column, where non-zero element is located

 Value: Value of the non zero element located at index – (row,column)

 Next node: Address of the next node

Why to use Sparse Matrix instead of simple matrix ?

 Storage: There are lesser non-zero elements than zeros and thus lesser memory can be used to

store only those non-zero elements.

Dats Structures Page 20 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 Computing time: Computing time can be saved by logically designing a data structure

traversing only non-zero elements..

Operations of Sparse Matrix

 Add

 Transpose and

 Multiply

Given two sparse matrices, perform the operations such as add, multiply or transpose of the

matrices in their sparse form itself.

The result should consist of three sparse matrices, one obtained by adding the two input matrices,

one by multiplying the two matrices and one obtained by transpose of the first matrix.

Example: Note that other entries of matrices will be zero as matrices are sparse.

8. DOUBLY LINKED LIST

Doubly Linked List is a variation of Linked list in which navigation is possible in both ways,

either forward and backward easily as compared to Single Linked List. Following are the

important terms to understand the concept of doubly linked list.

 Link − Each link of a linked list can store a data called an element.

 Next − Each link of a linked list contains a link to the next link called Next.

 Prev − Each link of a linked list contains a link to the previous link called Prev.

 LinkedList − A Linked List contains the connection link to the first link called First and

to the last link called Last.

Dats Structures Page 21 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

Doubly Linked List Representation

As per the above illustration, following are the important points to be considered.

 Doubly Linked List contains a link element called first and last.

 Each link carries a data field(s) and two link fields called next and prev.

 Each link is linked with its next link using its next link.

 Each link is linked with its previous link using its previous link.

 The last link carries a link as null to mark the end of the list.

Basic Operations

Following are the basic operations supported by a list.

 Insertion − Adds an element at the beginning of the list.

 Deletion − Deletes an element at the beginning of the list.

 Insert Last − Adds an element at the end of the list.

 Delete Last − Deletes an element from the end of the list.

 Insert After − Adds an element after an item of the list.

 Delete − Deletes an element from the list using the key.

 Display forward − Displays the complete list in a forward manner.

 Display backward − Displays the complete list in a backward manner.

Insertion Operation

Following code demonstrates the insertion operation at the beginning of a doubly linked list.

//insert link at the first location

void insertFirst(int key, int data) {

 //create a link
 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()) {

 //make it the last link

 last = link;

Dats Structures Page 22 Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

 } else {

 //update first prev link

 head->prev = link;
 }

 //point it to old first link

 link->next = head;

 //point first to new first link

 head = link;

}

Deletion Operation

Following code demonstrates the deletion operation at the beginning of a doubly linked list.

//delete first item

struct node* deleteFirst() {

 //save reference to first link

 struct node *tempLink = head;

 //if only one link

 if(head->next == NULL) {

 last = NULL;

 } else {

 head->next->prev = NULL;

 }

 head = head->next;

 //return the deleted link

 return tempLink;

}

Insertion at the End of an Operation

Following code demonstrates the insertion operation at the last position of a doubly linked list.

//insert link at the last location

void insertLast(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()) {

 //make it the last link

 last = link;

 } else {

 //make link a new last link

 last->next = link;

 //mark old last node as prev of new link

 link->prev = last;

 }
 //point last to new last node

 last = link;}

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

