GOVERNMENT ARTS AND SCIENCE COLLEGE

NAGERCOIL - 629 004
[Affiliated to Manonmaniam Sundaranar University, Tirunelveli — 12]

DEPARTMENT OF PHYSICS

COURSE MATERIAL

NAME OF THE SUBJECT : COMPUTER PROGRAMMING IN C++

SUBJECT CODE : SMPHS52

YEAR : III B.Sc. PHYSICS

SEMESTER 1 ¥

STAFF IN-CHARGE : Dr. G.IM.CARMEL VIGILA BAI

Head, Department of Physics
Government Arts and Science College
NAGERCOIL.
Email : gmcarmelgasc @ gmail.com
Mobile No.: 9487819696

PAPER HANDLED BY : Dr. G.M.CARMEL VIGILA BAI

BOOK FOR REFERENCE : Object Oriented Programming with C"" -
E.Balagurusamy, Tata Mc Graw-Hill publishing company Ltd. New Delhi.

ACKNOWLEGEMENT

I express my thanks to the staff members, students and my family
members who helped me in some way to make this course material.

Also, I express my sincere thanks to the authors of various books,
specially to Prof. E.Balagurusamy, Author of Object Oriented Programming
with C™" - Tata Mc Graw-Hill publishing company Ltd., New Delhi.

(Dr. G.M.CARMEL VIGILA BAI)

CONTENTS

S.No. Topic Page No.

1 | M.S.University Syllabus i

2 | UNITI 1

3 |UNITI 17

4 | UNITIII 34

5 |UNITIV 86

6 |UNITV 112

7 | Unit Test, Internal Test, Model Exam Question Papers | 137

8 | MLS. University previous year Question Papers 143

SYLLABUS — Manonmaniam Sundaranar University, Tirunelveli — 12
PAPER VIII

COMPUTER PROGRAMMING IN C++

Preamble: Objective of the course is to provide knowledge about the basics of
Computer programming in C™ and to solve problems by writing programs.
The paper does not need any special prerequisite and the learners are expected
to come out with the ability to apply the computer language C™ to solve

problems .

UNIT-I.: WHATIS C™

Introduction - tokens - keywords - identifiers and constants - declaration
of variables - basic data types - user defined data types-derived data types -
symbolic constants - operators in C™ -expressions and their type-hierarchy of
arithmetic operators- scope resolution operator — declaring, initializing and
modifying variables-special assignment operators - all control structures-
structure of a simple
C ++ program (11L)
UNIT-II: ARRAYS AND FUNCTIONS IN C*™

Introduction - one dimensional and two dimensional arrays-initialization of

arrays-array of strings

Functions-introduction-function with no argument and no return values-
function with no argument but return value - function with argument and no
return values- function with argument and return values- call by reference-
return by reference- function prototyping - inline functions - local, -global and
static variables- -function overloading - virtual functions-main function-math
library
functions. (13L)

UNIT-III: CLASSES AND OBJECTS

Introduction - specifying a class - defining member functions-C™
program with class - nesting of member functions - private member functions -
objects as function arguments - arrays within a class-array of objects-static class
membersfriend functions-constructors - parameterized constructors-multiple

constructors - constructors with default arguments - copy constructor. (15L)

UNIT-1V: OPERATOR OVERLOADING, INHERITANCEAND
POINTERS

Introduction -defining operator overloading - overloading unary operators
- binary operators.
Inheritance - single inheritance - multiple inheritance - multilevel inheritance
- hybrid inheritance - hierarchial inheritance-virtual base class-abstract class
Pointers- definition-declaration- arithmetic operations. (12L)

UNIT-V:MANAGING CONSOLETI/O OPERATIONS

Introduction - C™ stream - C' stream classes - unformatted I/O Operations
formatted console I/O operations - working with files - classes for file steam
operations - opening and closing a file - file pointers and their manipulations.
(OL)

Books forstudy

1. Object oriented Programming with C™ - E.Balagurusamy, Tata Mc Graw-
Hill publishing company Ltd. New Delhi

Books forreference

1. Programming with C" - D.Ravichandran, Tata Mc Graw-Hill
publishing company Ltd. New Delhi .

2. Object oriented Programming in C*™4 ™ Edn.Robert Lafore-Macmilan
publishing company Ltd.

3. Fundamentals of Programming with C™ -Richardl.Halterman

DEPARTMENT OF PHYSICS,
GOVERNMENT ARTS AND SCIENCE COLLEGE,
NAGERCOIL

SMPHS52 - COMPUTER PROGRAMMING IN C++
-Dr.G.M.CARMEL VIGILA BAI

UNIT-I:

WHAT IS C++: Introduction - tokens - keywords - identifiers and constants - declaration of
variables - basic data types - user defined data types-derived data types - symbolic constants -
operators in C++ -expressions and their type-hierarchy of arithmetic operators- scope resolution
operator — declaring, initializing and modifying variables-special assignment operators - all control
structures-structure of a simple C ++ program.

Introduction to C++

C++ is an object oriented programming language. It was developed by Bjarne Stroustrup in
1979 at Bell Laboratories in Murray Hill, New Jersey. He initially called the new language "C with
Classes." However, in 1983 the name was changed to C++.

C++ is a superset of C. Stroustrup built C++ on the foundation of C, including all of C’s features,
attributes, and benefits. Most of the features that Stroustrup added to C were designed to support
object-oriented programming .These features comprise of classes, inheritance, function overloading
and operator overloading. C++ has many other new features as well, including an improved
approach to input/output (I/O) and a new way to write comments.

C++ is used for developing applications such as editors, databases, personal file systems,
networking utilities, and communication programs. Because C++ shares C’s efficiency, much high-
performance systems software is constructed using C++.

C++ Tokens

Smallest individual units in a program are known as Tokens. Tokens of C++ are keyword,
identifiers, constants, strings, and operators.

C++ keywords

When a language is defined, one has to design a set of instructions to be used for communicating
with the computer to carry out specific operations. The set of instructions which are used in
programming, are called keywords. These are also known as reserved words of the language. They
have a specific meaning for the C++ compiler and should be used for giving specific instructions to
the computer. These words cannot be used for any other purpose, such as naming a variable. C++ is
a case-sensitive language, and it requires that all keywords be in lowercase. C++ keywords are:

asm
auto

bool

break
case

catch

char

class
const
const_cast
continue
default
delete

do

double
dynamic_cast
else

enum
explicit
export
extern
false

float

for

friend

goto

if

inline

nt

long
mutable
namespace
new
operator
private
protected
public
register

insert an assembly instruction
declare a local variable
declare a boolean variable
break out of a loop
a block of code in a switch statement
handles exceptions from throw
declare a character variable
declare a class
declare immutable data or functions that do not change data
cast from const variables
bypass iterations of a loop
default handler in a case statement
make memory available
looping construct
declare a double precision floating-point variable
perform runtime casts
alternate case for an if statement
create enumeration types
only use constructors when they exactly match
allows template definitions to be separated from their declarations
tell the compiler about variables defined elsewhere
the boolean value of false
declare a floating-point variable
looping construct
grant non-member function access to private data
Jump to a different part of the program
execute code based off of the result of a test
optimize calls to short functions
declare a integer variable
declare a long integer variable
override a const variable
partition the global namespace by defining a scope
allocate dynamic memory for a new variable
create overloaded operator functions
declare private members of a class
declare protected members of a class
declare public members of a class
request that a variable be optimized for speed

reinterpret_cast change the type of a variable

return
short
signed
sizeof
static
static_cast
struct

return from a function

declare a short integer variable

modify variable type declarations
return the size of a variable or type
create permanent storage for a variable
perform a nonpolymorphic cast

define a new structure

switch
template
this
throw
true

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

Identifiers

execute code based off of different possible values for a variable
create generic functions

a pointer to the current object

throws an exception

the boolean value of true

execute code that can throw an exception

create a new type name from an existing type

describes an object

declare a class or undefined type

a structure that assigns multiple variables to the same memory location
declare an unsigned integer variable

import complete or partial namespaces into the current scope

create a function that can be overridden by a derived class

declare functions or data with no associated data type

warn the compiler about variables that can be modified unexpectedly
declare a wide-character variable

looping construct

An identifier is a name assigned to a function, variable, or any other user-defined item. Identifiers
can be from one to several characters long. An identifier is a name for a variable, constant, function,
etc. It consists of a letter followed by any sequence of letters, digits, and underscores.

Examples of valid identifiers: First_name, age, y2000, y2k

Examples of invalid identifiers: 2000y

Identifiers cannot have special characters in them. For example: X=Y, J-20,
~Ricky,*Michael are invalid identifiers.

Rules for naming identifiers:

» Variable names can start with any letter of the alphabet or an underscore. Next comes a letter,
a digit, or an underscore.

» Uppercase and lowercase are distinct.

* C++ keywords cannot be used as identifier.

Data types

Data type defines size and type of values that a variable can store along with the set of
operations that can be performed on that variable. Data types are classified as

* User Defined data types
* Built in data types
* Derived data types

Data typesin C++

| ! !

User Defined Built-in Derived
Y \l/
Structure, int, char, Array,

; float, double Function
Union, ;
Enum boolean, Pointer

void, Wide
Character

C++ provides built-in data types that correspond to Structure, Union and Enumeration.
C++ provides built-in data types that correspond to Array, Function and Pointer.

C++ provides built-in data types that correspond to integers, characters, floating-point
values, and Boolean values. There are the seven basic data types in C++ as shown below:

Type Meaning

o Char (character) holds 8-bit ASCII characters

o wchar_t (Wide character) holds characters that are part of large character sets

o int (Integer) represent integer numbers having no fractional part

o float (floating point) stores real numbers in the range of about 3.4x107* to

3.4x10% with a precision of seven digits.

o Double (Double floating point) Stores real numbers in the range from
1.7x10°% t01.7x10°*® with a precision of 15 digits.

o Bool (Boolean) can have only two possible values: true and false.

o Void Valueless

C++ allows certain of the basic types to have modifiers preceding them. A modifier alters the

4

meaning of the base type so that it more precisely fits the needs of various situations. The data type
modifiers are: signed, unsigned, long and short

Table 3.2 Size and range of C++ basic data types

Type Bytes _ Range
char 1 ~128 to 127
unsigned char 1 0 to 255
gigned char 1 - 128 to 127
int 2 — 32768 to 32767
unsigned int 2 0 to 85536
signed int 2 - 31768 to 32767
short int - 31768 to 32767

unsigned short int
signed short int

-0 -l

0 to 65536
~32768 to 32767

long int 4 ~2147483648 to 2147483647
signed long int 4 ~2147483648 to 2147483647
unsigned long int i 0 to 4294987295

float 4 3.4E-38 1o 34E+38

double 5 1.7TE-308 to 1.TE+308

3. 4FE—4932 to 1.1E+4932

long double 1

This Table 3.2 shows all combinations of the basic data types and modifiers along with their size
and range for a 16-bit word machine

Variable

A variable is a named area in memory used to store values during program execution.
Variables are run time entities. A variable has a symbolic name and can be given a variety of
values. When a variable is given a value, that value is actually placed in the memory space assigned
to the variable. All variables must be declared before they can be used.

The general form of a declaration is:

type variable_list;

Here, type must be a valid data type plus any modifiers, and variable_list may consist of one or
more identifier names separated by commas. Here are some declarations:

nt ijl;
short int si;

unsigned int ui;

double balance, profit, loss;
Constants

Constants refer to fixed values that the program cannot alter. Constants can be of any of the
basic data types. The way each constant is represented depends upon its type. Constants are also
called literals. We can use keyword const prefix to declare constants with a specific type as follows:

const type variableName = value;
e.E;

const int LENGTH = 10;
Enumerated Types An enumerated type declares an optional type name and a set of zero or more
identifiers that can be used as values of the type. Each enumerator is a constant whose type is the
enumeration. Creating an enumeration requires the use of the keyword enum. The general form of
an enumeration type is:
enum enum-name { list of names } var-list;

Here, the enum-name is the enumeration's type name. The list of names is comma separated.

For example, the following code defines an enumeration of colors called color and the variable ¢ of
type color. Finally, c is assigned the value "blue".

enum color { red, green, blue } =c;

By default, the value of the first name is 0, the second name has the value 1 and the third has the
value 2, and so on. But you can give a name, a specific value by adding an initializer. For example,
in the following enumeration, green will have the value 5.

enum color { red, green=5, blue };

Here, blue will have a value of 6 because each name will be one greater than the one that precedes
it.

Operator

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators. Generally, there are six type of operators:
Arithmetical operators, Relational operators, Logical operators, Assignment operators, Conditional

operators, Comma operator.

Arithmetical operators

Arithmetical operators +, -, *, /, and % are used to performs an arithmetic (numeric) operation.

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus

You can use the operators +, -, *, and / with both integral and floating-point data types. Modulus or
remainder % operator is used only with the integral data type.

Relational operators

The relational operators are used to test the relation between two values. All relational
operators are binary operators and therefore require two operands. A relational expression returns
zero when the relation is false and a non-zero when it is true. The following table shows the
relational operators.

Relational Operators Meaning
< Less than
<= Less than or equal to
== Equal to
> Greater than
>= Greater than or equal to
1= Not equal to

Logical operators

The logical operators are used to combine one or more relational expression. The logical operators
are

Operators Meaning
| OR
&& AND

! NOT
Assignment operator

The assignment operator '=' is used for assigning a variable to a value. This operator takes
the expression on its right-hand-side and places it into the variable on its left-hand-side. For
example:

m=5;
The operator takes the expression on the right, 5, and stores it in the variable on the left, m.
X=Y=F= 32

This code stores the value 32 in each of the three variables x, y, and z. In addition to standard
assignment operator shown above, C++ also support compound assignment operators.

Compound Assignment Operators

Operator Example Equivalent to
+= A+=2 A=A+2
-= A-=2 A=A-12
% = A%=2 A=A%2
= Al=2 A=A/2
W= A*=2 A=A*2

Increment and Decrement Operators

C++ provides two special operators viz '++' and '--' for incrementing and decrementing the
value of a variable by 1. The increment/decrement operator can be used with any type of variable
but it cannot be used with any constant. Increment and decrement operators each have two forms,

pre and post.

The syntax of the increment operator is: Pre-increment: ++variable Post-increment: variable++ The
syntax of the decrement operator is:

Pre-decrement: —variable Post-decrement: variable—

In Prefix form first variable is first incremented/decremented, then evaluated In Postfix form first
variable is first evaluated, then incremented / decremented.

Conditional operator

The conditional operator ?: is called ternary operator as it requires three operands. The
format of the conditional operator is :

Conditional _ expression ? expressionl : expression2;

If the value of conditional expression is true then the expressionl is evaluated, otherwise
expression? is evaluated.

nta=5"b=6;

big =(a>b) ?a:b;

The condition evaluates to false, therefore big gets the value from b and it becomes 6.
The comma operator

The comma operator gives left to right evaluation of expressions. When the set of
expressions has to be evaluated for a value, only the rightmost expression is considered.

mta=1b=2,¢=3,1 // comma acts as separator, not as an operator

i = (a, b); // stores b into i would first assign the value of a to i, and then assign value of b to
variable 1. So, at the end, variable 1 would contain the value 2.

The sizeof operator

The sizeof operator can be used to find how many bytes are required for an object to store in
memory. For example

sizeof (char) returns 1
sizeof (float) returns 4
Typecasting:

Typecasting is the concept of converting the value of one type into another type. For example, you
might have a float that you need to use in a function that requires an integer.

Implicit conversion:

Almost every compiler makes use of what is called automatic typecasting. It automatically converts
one type into another type. If the compiler converts a type it will normally give a warning. For

9

example this warning: conversion from ‘double’ to ‘int’, possible loss of data. The problem with
this is, that you get a warning (normally you want to compile without warnings and errors) and you
are not in control. With control we mean, you did not decide to convert to another type, the
compiler did. Also the possible loss of data could be unwanted.

Explicit conversion:

The C++ language have ways to give you back control. This can be done with what is called an
explicit conversion.

Four typecast operators
The C++ language has four typecast operators:

* static_cast

* reinterpret_cast

= const_cast

* dynamic_cast
Type Conversion
The Type Conversion is that which automatically converts the one data type into another but
remember we can store a large data type into the other. For example we can't store a float into int
because a float is greater than int.

When a user can convert the one data type into another.then it is called as the type casting.

The type Conversion is performed by the compiler but a casting is done by the user for example
converting a float into int. When we use the Type Conversion then it is called the promotion. In the
type casting when we convert a large data type into another then it is called as the demotion. When
we use the type casting then we can loss some data.

Control Structures

Control structures allows to control the flow of program’s execution based on certain conditions
C++ supports following basic control structures:

1) Selection Control structure
2) Loop Control structure
1) Selection Control structure: Selection Control structures allows to control the flow of

program’s execution depending upon the state of a particular condition being true or false .C++
supports two types of selection statements :if and switch. Condition operator (?:) can also be used as

10

an alternative to the if statement.

A.l) If Statement:

The syntax of an if statement in C++ is:
if(condition)

{

// statement(s) will execute if the condition is true

}

If the condition evaluates to true, then the block of code inside the if statement will be executed. If it evaluates to false, then the first
set of code after the end of the if statement (after the closing curly brace) will be executed.

A.2) The if...else Statement

The syntax is shown as:

if(condition)

{

// statement(s) will execute if the condition is true

}

else

{

// statement(s) will execute if condition is false

}

If the condition evaluates to true, then the if block of code will be executed, otherwise else block of
code will be executed.

A.3) if..else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very useful to test
various conditions using single if...else if statement.

The Syntax is shown as:
11

if(condition 1)

{

// Executes when the condition 1 is true
} else if(condition 2)

{

// Executes when the condition 2 is true
}

else if(condition 3)

{

// Executes when the condition 3 is true

}

else

{

// executes when the none of the above condition is true.

}

A.4) Nested if Statement

It is always legal to nest if-else statements, which means you can use one if or
else if statement inside another if or else if statement(s).

The syntax for a nested if statement is as follows:

if(condition 1)

{

// Executes when the condition 1 is true

if(condition 2)

12

{

// Executes when the condition 2 is true

B) Switch
C++ has a built-in multiple-branch selection statement, called switch, which successively
tests the value of an expression against a list of integer or character constants. When a match is
found, the statements associated with that constant are executed. The general form of the switch
statement is:
switch (expression)
{

case constantl:
statement sequence
break;
case constant2:
statement sequence
break;
case constant3:
statement sequence
break;

default
statement sequence

}

The expression must evaluate to a character or integer value. Floating-point expressions, for
example, are not allowed. The value of expression is tested, in order, against the values of the
constants specified in the case statements. When a match is found, the statement sequence

13

associated with that case is executed until the break statement or the end of the switch statement is
reached. The default statement is executed if no matches are found. The default is optional and, if it
is not present, no action takes place if all matches fail.

The break statement is one of C++'s jump statements. You can use it in loops as well as in the
switch statement. When break is encountered in a switch, program execution "jumps"” to the line of
code following the switch statement.

2) Loop control structures A loop statement allows us to execute a statement or group of
statements multiple times. Loops or iterative statements tell the program to repeat a fragment of
code several times or as long as a certain condition holds. C++ provides three convenient iterative
statements: while, for, and do-while.

while loop A while loop statement repeatedly executes a target statement as long as a given
condition is true. It is an entry-controlled loop.

The syntax of a while loop in C++ is:
while(condition)
{

statement(s);

}

Here, statement(s) may be a single statement or a block of statements. The condition may be any
expression, and true is any non-zero value. The loop iterates while the condition is true. After each
execution of the loop, the value of test expression is changed. When the condition becomes false,
program control passes to the line immediately following the loop.

The do-while Loop The do-while loop differs from the while loop in that the condition is tested
after the body of the loop. This assures that the program goes through the iteration at least once. It is
an exit-controlled loop.

do

{

statement(s);

}

while(condition);

The conditional expression appears at the end of the loop, so the statement(s) in the loop execute
14

once before the condition is tested. If the condition is true, the flow of control jumps back up to do,
and the statement(s) in the loop execute again. This process repeats until the given condition
becomes false.

for Loop: A for loop is a repetition control structure that allows you to efficiently write a loop that
needs to execute a specific number of times. The syntax of a for loop in C++ is:

for (init; condition; increment)
{

statement(s);

}
Here is the flow of control in a for loop:

1. The init step is executed first, and only once. This step allows you to declare and initialize any
loop control variables. You are not required to put a statement here, as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the
body of the loop does not execute and flow of control jumps to the next statement just after the for
loop.

3. After the body of the for loop executes, the flow of control jumps back up to the increment
statement. This statement allows you to update any C++ loop control variables. This statement can
be left blank, as long as a semicolon appears after the condition.

4. The condition is now evaluated again. If it is true, the loop executes and the process repeats itself
(body of loop, then increment step, and then again condition). After the condition becomes false,
the for loop terminates.

Structure of A Simple C++ Program

#include<iostream.h>

#include<conio.h>

int main()

{

cout<< “Simple C++ program without using class”;

return O;

15

}

Lines beginning with a hash sign (#) are directives read and interpreted by what is known as the
preprocessor. They are special lines interpreted before the compilation of the program itself begins.
In this case, the directive #include <iostream.h>, instructs the preprocessor to include a section of
standard C++ code, known as header iostream that allows to perform standard input and output
operations, such as writing the output of this program to the screen.

The function named main 18 a special function in all C++ programs; it is the function called when
the program is run. The execution of all C++ programs begins with the main function, regardless of

where the function is actually located within the code.

The open brace ({) indicates the beginning of main's function definition, and the closing brace (})
indicates its end.

The statement :

cout<< “Simple C++ program without using class”;

causes the string in quotation marks to be displayed on the screen. The identifier cout (pronounced
as ¢ out) denotes an object. It points to the standard output device namely the console monitor. The
operator << is called insertion operator. It directs the string on its right to the object on its left.

The program ends with this statement:

return 0;

This causes zero to be returned to the calling process (which is usually the operating system).

Returning zero indicates that the program terminated normally. Abnormal program termination
should be signaled by returning a nonzero value.

The general structure of C++ program with classes is shown as:

1. Documentation Section

2. Preprocessor Directives or Compiler Directives Section
(i) Link Section

(i) Definition Section

3. Global Declaration Section

4. Class declaration or definition

5. Main C++ program function called main ()

16

UNIT-II: ARRAYS AND FUNCTIONS IN C++:

ARRAYS
Introduction:

An array is a collection of data items, all of the same type, accessed using a common
name. A one-dimensional array is like a list; A two dimensional array is like a table

An array is a collection of one or more values of the same type. Each value is called an
element of the array. The elements of the array share the same variable name but each element
has its own unique index number (also known as a subscript).

An array can be of any type, For example: int , float , char etc. An array is a variable
that can store multiple values. For example, if we want to store 100 integers, we can create an
array for it.

int data[100]

All arrays consist of contignous memory locations. The lowest address corresponds to
the first element and the highest address to the last element.

First Element Last Element

! !

Numbers[0] | Numbers[1] | Numbers[2] | Numbers[3] | -

Declaring Arrays:
To declare an array in C, a programmer specifies the type of the elements and the
number of elements required by an array as follows —
type arrayName [arraySize |[;

This is called a single-dimensional array. The arraySize must be an integer constant greater
than zero and type can be any valid C data type.

For example, to declare a 10-element array called balance of type double, use this
statement —

double balance[10];

17

Here balance is a variable array which is sufficient to hold up to 10 double numbers.
Initializing Arrays:

We can initialize an array in C either one by one or using a single statement as follows:
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the number of elements
that we declare for the array between square brackets [].

If we omit the size of the array, an array just big enough to hold the initialization is
created. Therefore, if we write —

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

We will create exactly the same array as we did in the previous example. Following is an
example to assign a single element of the array —

balance[4] = 50.0;
The above statement assigns the 5™ element in the array with a value of 50.0.

All arrays have 0 as the index of their first element which is also called the base
index and the last index of an array will be total size of the array minus 1.

Shown below is the pictorial representation of the array we discussed above —

balance 1000.0 2.0 3.4 7.0 50.0

#include <stdio.h>

int main ()

{

int n[10]; /* nis an array of 10 integers */
int 1ij;

/* initialize elements of array nto 0 */

for (1=0; 1< 10; i++)

n[i]=1+ 100; /* setelement at location i to1i+ 100 */

}

18

/* output each array element's value */
for j =0;j<10; j++)
{
printf("Element[%d] = %d\n", j, n[j]);
}

return O;

When the above code is compiled and executed, it produces the following result —

Element[0] = 100
Element[1] = 101
Element[2] = 102
Element[3] = 103
Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109

Two Dimensional Arrays

C supports multidimensional arrays. The simplest form of the multidimensional array is
the two-dimensional array.

An array of arrays is known as 2D array. The two dimensional (2D) arrayin C
programming is also known as matrix. A matrix can be represented as a table of rows and
columns.

This program demonstrates how to store the elements entered by user in a 2d array and how to
display the elements of a two dimensional array.

#include<stdio.h>
int main()
{
/* 2D array declaration®/
int disp[2][3];
/*Counter variables for the loop*/
int 1, j;
for(i=0; i<2; i++)
{
for(j=0;j<3;j++)

{
printf("Enter value for disp[%d][%d]:", 1,));

19

scanf("%d", &displi][j]);
}
}
//Displaying array elements
printf("Two Dimensional array elements:\n");
for(i=0; 1<2; 1++)
{
for(j=0;j<3;j++)
{
printf("%d ", disp[i][j]);
if(j==2)
{
printf("\n");

Output:

Enter value for disp[0][0]:1

Enter value for disp[O][1]:2

Enter value for disp[0][2]:3

Enter value for disp[1][0]:4

Enter value for disp[1][1]:5

Enter value for disp[1][2]:6

Two Dimensional array elements:
123

456

Initialization of 2D Array

There are two ways to initialize a two Dimensional arrays during declaration.

int disp[2][4] =
{
{10, 11, 12, 13},
{14, 15, 16, 17}
};

20

OR

int disp[2][4] = { 10, 11, 12, 13, 14, 15, 16, 17};

Although both the above declarations are valid, better to use the first method as it is more
readable, because we can visualize the rows and columns of 2D array in this method.

Things that you must consider while initializing a 2D array:

We already know, when we initialize a normal array (or one dimensional array) during
declaration, we need not to specify the size of it. However that’s not the case with 2D array, you
must always specify the second dimension even if we are specifying elements during the
declaration. Let’s understand this with the help of few examples —

/* Valid declaration®/

int abc[2][2] ={1, 2,3 4 }

/* Valid declaration®/

int abc[][2] = {1,2,3 4 }

/* Invalid declaration — you must specify second dimension*/
int abc[][1={1,2.3 .4}

/* Invalid because of the same reason mentioned above*/
int abc(2][1={1,2,3 4}

Arrays of Strings

Strings are actually one-dimensional array of characters terminated by a null character

‘\0'. Thus a null-terminated string contains the characters that comprise the string followed by
a null.

The following declaration and initialization create a string consisting of the word "Hello". To
hold the null character at the end of the array, the size of the character array containing the
string is one more than the number of characters in the word "Hello."

char greeting[6] = {'H','e','l, 'T, '0',"\0'};
If you follow the rule of array initialization then you can write the above statement as follows —
char greeting[] = "Hello";

Following is the memory presentation of the above defined string in C/CH++ —

21

Variable H e | | 0 \0

Address 0x23451 | 0x23452 0x23453 0x23454 ox23455 | 0x23456

Actually, you do not place the null character at the end of a string constant. The C

compiler automatically places the "\0' at the end of the string when it initializes the array. Let us
try to print the above mentioned string —

#include <stdio.h>

int main ()

{

char greeting[6] = {'H','e",'l, 'l, '0',"\0'};
printf("Greeting message: %s\n", greeting);
return 0O;

}

When the above code is compiled and executed, it produces the following result —

Greeting message: Hello

22

Functions
Introduction:

A function groups a number of program statements into a unit and gives it a
name. This unit can then be invoked (called) from other parts of the program. The
function’s code is stored in only one place in memory, even though the function is
executed many times in the course of the program’s execution. Functions help to
reduce the program size when same set of instructions are to be executed again and
again.

Thus, a function is a block of statements that performs a specific task. If we are
writing a C++ program and we need to perform a same task in that program more than
once. In such case we have two options:

a) Use the same set of statements every time we want to perform the task

b) Create a function to perform that task, and just call it every time we need to
perform that task. Using option (b) is a good practice and a good programmer always
uses functions while writing code in C++.

Why we need functions in C++:

Functions are used because of following reasons —

a) To improve the readability of code.

b) Improves the reusability of the code, same function can be used in any
program rather than writing the same code from scratch.

c) Debugging of the code would be easier if you use functions, as errors are
easy to be traced.

d) Reduces the size of the code, duplicate set of statements are replaced by
function calls.

Types of functions:

1) Predefined standard library functions

Standard library functions are also known as built-in functions. Functions such
as puts(), gets(), printf(), scanf() etc are standard library functions. These functions are
already defined in header files (files with .h extensions are called header files such as
stdio.h), so we just call them whenever there is a need to use them.

For example, printf() function is defined in <stdio.h> header file so in order to use
the printf() function, we need to include the <stdio.h> header file in our program using
#include <stdio.h>.

2) User Defined functions

The functions that we create in a program are known as user defined functions
or in other words you can say that a function created by user is known as user defined
function.

23

User Defined functions:

Now we will learn how to create user defined functions and how to use them in
C++ Programming.

A general function consists of three parts, namely, function declaration (or
prototype), function definition and function call.

Function declaration — prototype:

A function has to be declared before using it, in a manner similar to variables
and constants. A function declaration tells the compiler about a function's name,
return type, and parameters and how to call the function.

The general form of a C++ function declaration is as follows:
return-type function-name(argument-list);

The argument list contains the types and names of arguments that must be passed to
the functions.

Function definition:

The function definition is the actual body of the function. The function definition consists
of two parts namely, function header and function body.

The general form of a C++ function definition is as follows:

return-type function-name(argument-list)
{ body of the function }
Here
return-type: A function may return a value. The return-type is the data type of the

value the function returns. Some functions perform the desired operations without
returning a value. In this case, the return-type is the keyword void.

Function Name:
This is the actual name of the function.

Argument or Parameters:
A parameter is like a placeholder. When a function is invoked, we pass a value

24

to the parameter. This value is referred to as actual parameter or argument. The
parameter list refers to the type, order, and number of the parameters of a function.
Parameters are optional; that is, a function may contain no parameters.

Function Body:
The function body contains a collection of statements that define what the
function does.

Calling a Function :

To use a function, we will have to call or invoke that function. To call a function,
we simply need to pass the required parameters along with function name, and if
function returns a value, then we can store returned value.

Type of User-defined Functions in C++:

There can be 4 different types of user-defined functions, they are:
1. Function with no arguments and no return value

2. Function with no arguments and a return value

3. Function with arguments and no return value

4. Function with arguments and a return value

Below, we will discuss about all these types, along with program examples.
1.Function with no arguments and no return value:

Such functions can be used to display information or they are completely
dependent on user inputs. Below is an example of a function, which takes 2 numbers
as input from user, and display which is the greater number.

#include<stdio.h>

void greatNum(); // function declaration
int main()
{
greatNum(); // function call
return O;
}
void greatNum() /I function definition
{

int i, j;

printf("Enter 2 numbers that you want to compare...");
scanf("%d%d", &i, &j);

if(i > j)

{

printf("The greater number is: %d", i);

25

}

else

{

printf("The greater number is: %d", j);
}
}

2.Function with no arguments and a return value:
We have modified the above example to make the function greatNum() return
the number which is greater amongst the 2 input numbers.

#include<stdio.h>

int greatNum(); // function declaration

int main()

{
int result;
result = greatNum(); // function call
printf("The greater number is: %d", result);
return O;

}

int greatNum() /I function definition

{

int i, j, greaterNum;

printf("Enter 2 numbers that you want to compare...");
scanf("%d%d", &i, &j);

if(i > j)

greaterNum = i;

}

else

greaterNum = j;

}

// returning the result
return greaterNum;

}

3.Function with arguments and no return value:
We are using the same function as example again and again, to demonstrate
that to solve a problem there can be many different ways.

26

This time, we have modified the above example to make the function greatNum() take
two int values as arguments, but it will not be returning anything.

#include<stdio.h>

void greatNum(int a, int b); // function declaration

int main()

{
int i, j;
printf("Enter 2 numbers that you want to compare...");
scanf("%d%d", &i, &j);

greatNum(i, j); // function call
return O;
}
void greatNum(int x, int y) // function definition
{
if(x >y)
{
printf("The greater number is: %d", X);
}
else {
printf("The greater number is: %d", y);
}
}

4.Function with arguments and a return value:
This is the best type, as this makes the function completely independent of
inputs and outputs, and only the logic is defined inside the function body.

#include<stdio.h>

int greatNum(int a, int b); // function declaration

int main()

{
int i, j, result;
printf("Enter 2 numbers that you want to compare...");
scanf("%d%d", &i, &j);

result = greatNum(i, j); // function call
printf("The greater number is: %d", result);
return O;

27

int greatNum(int x, int y) // function definition

{
if(x >y)
{
return x;
}
else {
return vy;
}
}

1) Function — Call by value method — In the call by value method the actual
arguments are copied to the formal arguments, hence any operation performed by
function on arguments doesn't affect actual parameters.

2) Function - Call by reference method — Unlike call by value, in this method,
address of actual arguments (or parameters) is passed to the formal parameters, which
means any operation performed on formal parameters affects the value of actual
parameters.

Function call by value is the default way of calling a function in C programming.
Actual parameters: The parameters that appear in function calls.
Formal parameters: The parameters that appear in function declarations.

Inline Functions

An inline function is a function that is expanded inline at the point at which it is
invoked, instead of actually being called. The reason that inline functions are an
important addition to C++ is that they allow we to create very efficient code. Each time a

normal function is called, a significant amount of overhead is generated by the calling
and return mechanism.

A function can be defined as an inline function by prefixing the keyword inline to
the function header. If a function cannot be inlined, it will simply be called as a normal
function.

One of the advantage of using function is to save memory space by making
common block for the code we need to execute many times. When compiler invoke /
call a function, it takes extra time to execute such as jumping to the function definition,
saving registers, passing value to argument and returning value to calling function. This
extra time can be avoidable for large functions but for small functions we use inline
function to save extra time.

28

Example:

#include<iostream.h>

inline int Add(int x,int y)

{
return x+vy;

}

void main()

{
cout<<"\n\ftThe Sum is : " << Add(10,20);
cout<<"\n\ftThe Sum is : " << Add(45,83);
cout<<"\n\tThe Sum is : " << Add(27,48);

}
Output :

The Sum is : 30
The Sum is : 98
The Sum is : 75

Reference variable

A reference variable is an alias, that is, another name for an already existing
variable. Once a reference is initialized with a variable, either the variable name or the
reference name may be used to refer to the variable. To declare a reference variable
or parameter, precede the variable's name with the &.

The syntax for declaring a reference variable is:
datatype &Ref = variable name;
Example:

int main()

{

int var1=10; //declaring simple variable
int &var2=var1; //declaring reference variable
cout<<“\n value of var2 =" << var2;

return O;

}

29

var2 is a reference variable to var1.Hence, var2 is an alternate name to var1.This code
prints the value of var2 exactly as that of var1.

Call by reference

Arguments can be passed to functions in one of two ways: using call-by-value
or call-by-reference. When using call-by-value, a copy of the argument is passed to
the function. Call-by-reference passes the address of the argument to the function. By
default, C++ uses call-by-value.

Provision of the reference variables in c++ permits us to pass parameter to the
functions by reference. When we pass arguments by reference, the formal arguments
in the called function become aliases to the actual arguments in the calling function.
This means that when the function is working with its own arguments, it is actually
working on the original data.

Example

#include

<iostream.h>

#include<conio.h>

void swap(int &x, int &y); // function declaration
int main ()

{

int a=10, b=20;

cout << "Before swapping’<<endl;

cout<< “value of a:" << a<<"value of b " << b << endl;
swap(a, b); //calling a function to swap the values.
cout << "After swapping’<<end|;

cout<<” value of a:" << a<< “value of b " << b << endl;

return O;

}

void swap(int &x, int &y) //function definition to swap the values.

{

int temp;
temp = x;
X=Y,

y =temp;
}

Output:
Before swapping value of a:10 value of b:20
After swapping value of a:20 value of b:10

30

Function Overloading

Function overloading is the process of using the same name for two or more
functions. Each redefinition of the function must use either different types of parameters
or a different number of parameters. It is only through these differences that the
compiler knows which function to call in any given situation.

Overloaded functions can help to reduce the complexity of a program by
allowing related operations to be referred to by the same name. To overload a function,
simply declare and define all required versions. The compiler will automatically select
the correct version based upon the number and/or type of the arguments used to call
the function. Two functions differing only in their return types cannot be overloaded.
Example
#include<iostream.h>
#include<conio.h>
int sum(int p,int q,int r);
double sum(int I,double m);
float sum(float p,float q)

int main()
{
cout<<’sum="<< sum(11,22,33); /lcalls func1
cout<<’sum="<< sum(10,15.5); /[calls func2
cout<<”sum="<< sum(13.5,12.5); /lcalls func3
return O;
}
int sum(int p,int g,int r)
{ /ffunc1
return(a+b+c)
}
double sum(int I,double m)
{ /ffunc2
return(l+m);
}
float sum(float p,float q)
{ //func3
return(p+q);
}

Default arguments
C++ allows a function to assign a parameter as default value when no argument

31

corresponding to that parameter is specified in a call to that function. The default value
is specified in a manner syntactically similar to a variable initialization. All default
parameters must be to the right of any parameters that don't have defaults. We cannot
provide a default value to a particular argument in the middle of an argument list. When
we create a function that has one or more default arguments, those arguments must be
specified only once: either in the function's prototype or in the function's definition if the
definition precedes the function's first use.

Default arguments are useful if we don’t want to go to the trouble of writing
arguments that, for example, almost always have the same value. They are also useful
in cases where, after a program is written, the programmer decides to increase the
capability of a function by adding another argument. Using default arguments means
that the existing function calls can continue to use the old number of arguments, while
new function calls can use more.

Example

#include

<iostream.h>

#include<conio.h>

int sum(int a, int b=20)

{

return(a + b);

!

int main ()

{

int a = 100, b=200, result;

result = sum(a, b); //here a=100 , b=200
cout << "Total value is " << result << endl;

result = sum(a); //here a=100 , b=20(using default value)
cout << "Total value is :" << result << endl;

return O;

}

32

14.11 Math Library Functions

The standard C++ supports many math functions that can be used for performing certain
commonly used calculations. Most frequently used math library functions are summarized
in Table 4.1.

A a2 L g

Table 4.1 Commonly used math library functions

e e ¥ sl e GRS T Ny o e
ceilix) Rounds x to the smallest integer not less than x ceil(&8.1)
= 9.0 and ceil(-8.8) = 8.0
cos{x) Trigonometric cosine of x (x in radians)
expix) Exponential function e~
fabsix) Absolute value of x.

If x>0 then abs(x) is x
If x=0 then absi(x) is 0.0
If x<0 then abs(x) is —x

floor{x) Rounds x to the largest integer not greater than x
floor(8.2) = 8.0 and floor{-8.8 = -9.0

logix) Natural logarithm of x(base e)

log10(x) Logarithm of xtbase 10)

powix,y) x raised to power yi(x')

sin(x}) Trigonometric sine of x (x i radians)

sqreix) Square root of x

Trigonometric tangent of x (X in radians)

reote
The argument variables x and y are of type double and all the functions return the data '

double.

To use the math library functions, we must include the header file math.h in conventional
C++ and emath in ANSI C++.

33

Key Concepts

Using structures | Creating % class |
objects | Using objects | Inline mem
member functions | Arrays as class mem

Defining member functions | Creatin_g
ber functions | Nested member func?;ons | P
bers | Storage of objects | Static data

members | Static member functions | Using arrays of objgcts | Pas§|ng g!aje::ts as
parameters | Making functions friendly to classes | Functnons:: returning o 1ecLs | :
member functions | Pointers to members | Using dereferencing operators | Loca

classes

51 || Introduction

The most important feature of C++ is the “class”. Its significance is highlighted by the fact tha
Stroustrup initially gave the name “C with classes” to his new language. A class is an extension ofthe
idea of structure used in C. It is a new way of creating and implementing a user-defined data fype
We shall discuss, in this chapter, the concept of class by first reviewing the traditional structures
found in C and then the ways in which classes can be designed, implemented and applied.

Il 52 CStructures Revisited . |

packing together data of different types. A structure

cally related data items. It is user-defined data i |
| type with a te its 02%
properties. Once the structure type has been defi Pl i |

' ned, we can create vari o USiny
declarations that are similar to th ilt-i a'e variables of that type UsH
e built-in ; 1

declaration: type declarations. For e€xample, consider the followid

is a convenient tool for handling a group of 109"

struct student
{

;har name [20] ;
int roll number;
float total marks;

Scanned by TapScanner

Classes and Objects 94

. i | Jruclure name or s

tructure tag, can be used to create variables of type student

A;-“- a \'=”"t-‘:”‘“ of type student and has three member variables as defined by the template.
gamobper vanabiles

» Can be accessed using the dot or period operator as follows:

strepy (A name, “John G

A.T L number G9q .
a2

A.total marks = 595 5

Final total = A.total marks + &

- Structures can have arrays, pointers or structures as members.

itations of C Structure

Ihe standard C does not allow the struct data type to be treated like built-in types. For example,
gonsider the following structure:

Struct complex
{
float x;
float y;
b
struct complex cl, c2, e3;

The complex numbers c1, ¢ 2, and ¢ 3 can easily be assigned values uéing the dot operator, but
e cannot add two complex numbers or subtract one from the other. For example,

illegal in C.

other important limitation of C structures is that they do not permit data hiding. Structure mem-
's can be directly accessed by the structure variables by any function anywhere in their scope. In
¥er words, the structure members are public members.

ensions to Structures

+ supports all the features of structures as defined in C. But C++ has expanded its capabilities
her to suit its OOP philosophy. It attempts to bring the user-defined types as close as possible to

uilt-in data types, and also provides a facility to hide the data which is one of the main principles
OP. Inheritance, a mechanism by which one type can inherit characteristics from other types, is
) | UppC ed by G,

n C++, a structure can have both variables and functions as members. It can also declare some
’ rs as ‘private’ so that they cannot be accessed directly by the external functions.

C++. the structure names are stand-alone and can be used like any other type names. In other
‘ -”ﬁ;"kB! word struct can be omitted in the declaration of structure variables. For example, we
eclare the student variable A as

-1

4

Scanned by TapScanner

02 Object Onented Programming with G

Remember, this is an error in Ci

S|
little syntactical difference between structureg anddcal::s;)
interchangeably with minor modifications. Smcet e 5 ol

st of the C++ programmers tend to use tﬁe struc! hias el b,
r::th the data and functions. Therefore, we will not discuss

“ 5.3 Specifying a Class .

A class is a way to bind the data and its associated functions tggether. It allows th:, i?tzt(iand fl!'ll'
tions) to be hidden, if necessary, from external use. When defining a class, we a eating a ney

abstract data type that can be treated like any other built-in data type. Generally, a class specification
has two parts:

1. Class declaration
2. Class function definitions

The class declaration describes the type and scope of its members. The class function 44
describe how the class functions are implemented.

The general form of a class declaration is:

class class _name
{
pPrivate:
variable declarations;
function declarations;
public:
variable declarations;
function declaration;

n C++ and, therefore, they can be u“@’
specially introduced data type in C“g.
ding only data, and classes to holg

i that wm m _ e i
NOTE: Theonlydlﬂemncebetwmutmfurnnﬂmlg‘énOﬂilh‘tlf.by fe Mm‘
o private, whie, by defaull the members of a siructure are public.

Scanned by TapScanner

| Classes and Objects 93

missing, then, by default, all the members are private. Such a class is completely hidden from the
putside world and does not serve any purpose.

The variables declared inside the class are known as data members and the functions are known

as member functions. Only the member functions can have access to the private data members and
private functions. However, the public members (both functions and data) can be accessed from

outside the class. This is illustrated in Fig. 5.1. The binding of data and functions together into a
single class-type variable is referred to as encapsulation.

CLASS
No entry to i[5
private area | :
x| Coe
1} | Functions E~—--f
etk e W S '
"BE =
Public area i
I
Entry allowed to —-—[Data_J«- i
public area | : i
e e = [Functions I-’—-----
REBERN Data hiding in classes
A Simple Class Example
A typical class declaration would look like:
class item
{
int number; // variables declaraticn
float cost; // private by default
public:
void getdata(int a, float b); // functions declaraticn
void putdata (void); // using prototype
}; // ends with semicolon

We usually give a class some meaningful name, such as item. This name now becomes a new
ipe identifier that can be used to declare instances of that class type. The class item contains two

ta members and two function members. The data members are private by default while both the
ictions are public by declaration. The function getdata() can be used to assign values to the
mber variables number and cost, and putdata() for displaying their values. These functions pro-
e the only access to the data members from outside the class. This means that the data cannot be
cessed by any function that is not a member of the class item. Note that the functions are declared,
t defined. Actual function definitions will appear later in the program. The data members are usu-
f declared as private and the member functions as public. Figure 5.2 shows two different nota-
s used by the OOP analysts to represent a class.

mber that the declaration of item as shown above does not define any objects of item but only
s what they will contain. Once a class has been declared, we can create variables of that type
ising the class name (like any other built-in type variable). For example,

Scanned by TapScanner

94 Object Oriented Programming with C*+*

[—
B Class : ITEM) |

= DATA

i number ; i
t [= .
cos putdata()

FUNCTIONS | — . !
geldata() '
putdata() ‘

(b)

Representation of a class

item x; // memory for x 1S created

creates a variable x of type item. In C++, the class variables are known as objects. .
called an object of type item. We may also declare more than one object in one statement. Exz

item X, Y, Z7

The declaration of an object is similar to that of a variable of any basic type. The necessan
memory space is allocated to an object at this stage. Note that class specification, like a structu
provides only a template and does not create any memory space for the objects. .

Objects can also be created when a class is defined by placing their names immed| ately after th
closing brace, as we do in the case of structures. That is to say, the definition

class item

.....

would create the pbjects X, y and z of type item. This practice is seldom followed because
to declare the objects close to the place where they are used and not at the time of class

Accessing Class Members

As pointed out earlier, the private data ' ' ‘

i3 arlier, data of a class can be accessed only through the
of t!;at class. The main() cannot contain statements that access :uﬂlybu maﬁ
'il@wmg is the format for calling a member function: o' pl oy l?x.g jr;,— g

=8 I§ r] :‘

= .@;ect—name.fu—nction-name (actuaﬁ*&-ngnlme'nts')f; iy

For example, the function call statement ! .~

-

_ X.getdata (100,75.5) ;

nd assigns the value 100 to nu \ object x | |
e mber and 75.5 to cost of the obiect x by
. The assignments occur in the actual function, P&

PR et . .

Scanned by T;pcaner

Classes and Objects 95

Similarly, the statement

Xx.putdata () ;

would display the values of data members. Remember, a member function can be invoked only by
using an object (of the same class). The statement like

gecdata(100,75.5);
has no meaning. Similarly, the statement

x.number = 100;

is also illegal. Although x is an object of the type item to which number belongs, the number (declared
private) can be accessed only through a member function and not by the object directly.

It may be recalled that objects communicate by sending and receiving messages. This is achieved
through the member functions. For example,

X.putdata();
sends a message to the object x requesting it to display its contents.
A variable declared as public can be accessed by the objects directly. Example:
clags Xyz

_int Xx;
int y;

public:
int Zz

Xyz p:
p.x =
p.z = 10

0; // error, x 1s private
// OK, z is public

/g OTE: The use of data in this manner defeats the very idea of data hiding and therefore should be avoided.

l'i 9.4 Defining Member Functions ili

Member functions can be defined in two places:

* Qutside the class definition.
 Inside the class definition.

Scanned by TapScanner

96 Object Oriented Programming With G _ » thé SR
Object Onie g — definition, the function should perform the same ¢
e

L ontical i th the cases. However, tr

e identical in bO b

od;r;‘ wc;tg:’i: " ofined. Both these approaches are discuss
ea

vious that, irrespective Of th
ore, the code for the function b
difference in the way the function
il in this section.

Outside the Class Definition . gefined separately outside the g

insi s have to b ~) :
Member functions that aré declared inside a clas y should have a function header ang

i e
Their definitions are very much like the nor;n::; f;}lr;cx;?(.):l’;f St —
. o

function body. Since C++ does not supp

form must be used for defining the function header. |

member function and a normal function is thatar 7
tity label’ in the header. This ‘label _tells‘the COME
| form of a member function definition is:

An important difference between a
tion incorporates a membership ‘iden
class the function belongs to. The genera

i t z < iony
return-type class-name :: function-name (argument declaration) -

Function body

L

The membership label class-name :: tells the compiler that the function function-name belong
the class class-name. That is, the scope of the function is restricted to the class-name specifie
the header line. The symbol :: is called the scope resolution operator. w

For instance, consider the member functions getdata() and putdata() as discussed above.

may be coded as follows: i

void item :: getdatalint a, float b)
{

number = a;

cost = b;

}
void item :: putdata(void)
{

co << ™ o
Ut << "Number :” << pumber << -M\p# .

cout << “Copst :” << gost << “\n#; L
Ihesefunctionsdonotremm i
o 1 aﬂvvalm.,marrahm-thm i

0. (However 1 access the private data of fhe .
- m’] *ﬂnmp tion to this rule “’m,:hm“ -
ﬂcﬁonean call 8n°th.r ‘ fu m mﬂ , ~ v

Scanned apScannr

Classes and Objects 97

Inside the Class Definition

Another me‘th'o‘d of df:'afining a@ member function is to replace the function declaration by the actual
function definition inside the class. For example, we could define the item class as follows:

]

21ass 1tem

o

int number;
float cost:;
public:

void getdata (int a, float b); // declaration

// inline function
void putdata (void) // definition inside the class
{

cout << number << “\n”;

cout << cost << “\n”;

)i
When a function is defined inside a class, it is treated as an inline function. Therefore, all the

restrictions and limitations that apply to an inline function are also applicable here. Normally, only
small functions are defined inside the class definition.

%I; 5.5 A C++ Program with Class I]

All the details discussed so far are implemented in Program 5.1.

I‘ Program 5.1 Cl'asg'lmplementation s

#include <iostream>
using namespace std;

class item
{
int number; // private by default .

float cost; // private by default

public:

void getdata(int a, float b); // prototype declaration,

// to be defined
// Function defined inside class
void putdata(void)

{ -
cout << “number :” << number << “\n";

~ W ",
cout << “cost :” << cost << \n”;

/7 Member Function DefTnition ssesvicssns ey
T agin s .. getdata(int a, fleoat k) // use membership lapel]

(Contd.)

Scanned by TapScanner

8 Obyeot Oriented Programming with €+ 4

Py (N ¢ -, /! privare variables

L main ()
- i'.h n

item x; // create object x

cout << “\nobject x “ << "\n”;

x.gerdata (100, 299.95); // call member funetia
X.putdata(); // call member :
item y; // ereate another w C

cout << “\nobject y” << “\n~; * .
AR b Al ol m el
y.getdata (200, 175.50); et o e RS et
Y.putdata(); s

= ﬂ_ﬁ'ﬁ'; a9 ‘i‘j I_.', !;lf .'I-.'I“"'I""B_!.. : ' -..' .

return 0

——

functions. The member function g

to both the variables. Note the use of statements such as

Jn
1

_'_lll

Scanned by Tapcanner

Classes and Objects 99

For the sake of illustration we have shown one member function as inline and the other as an
ernal’ member function. Both can be defined as inline or external functions.

5.6 Making an Outside Function Iﬂiine_ T m

ne of the objectives of OOP is to separate the details of implementation from the class definition. It

3 therefore good practice to define the member functions outside the class.
[

‘We can define a member function outside the class definition and still make it inline by just using
he qualifier inline in the header line of function definition. Example:

class item

public:
void getdata(int a, float b); // declaration

N ,

inline void item :: getdata(int a, float b) // definition

{

number = a;

dot operator. However, there is an exception to this. A member function can be called by
\g its name inside another member function of the same class. This is known as nesting of
“functions. Program 5.2 illustrates this feature.

A Nesting of Member Functions

| -
1
L = el

} Gk | (ontd.)l

Scanned by TapScanner

getch U F
exit(0);

1

ﬂeallmg member function
7 i<s mlmfah ()zi+s)

m 5.2 would be:

_ § 2 binary number: 110101 -
' 1's compliment of the above binsre .. .

Scanned by TapScanner

Scanned by Tapcanner

102 Obyect Orlented Programming with C++
The amay variable a[] declared as a private member of the class array can be used e

@r functions, like any other array vaniable. We can perform any operations on it For mw‘
- g above class definition, the member function setval() sets the values of elements of the arre.

.L-..; display() function displays the values Similarly, we may use 0
perform any other operations on the array values.

ther member functions 1

Let us consider a shopping list of items for which we place an order with a dealer every month. The

list includes details such as the code number and price of each item. We would like to perform operationg
such as adding an item to the list, deleting an item from the list and printing the total value of the orde
Program 5.3 shows how these operations are implemented using a class with arrays as data memb i

—

l 202l kY Processing Shopping List i

07} // initializes count to 0
' R L

e, >

Scanned by canner

Classes and Objects 103

.l |
void ITEMS 1 meaasieib iy et el ol
" void) // delete a specified item
int a; ' 3 ; .
cout <<

:ﬂ_;" A) i —

b

Scanned b TapScnner

sgramming with C++

: number
n do the following; Enter appropriate

Entel;fﬁ appro

is E‘Eﬂlr option?1 ¥ = T
r item code :222 u-r
Cem cost .2@9'

do the f@ll@wingr Enter
an a.:!hem

'Hw.'
H_

_| J,*

Scanned by TapScanner

Classes and Objects 105

can do the following; Enter appropriate number
1 + Add an 1tem
fisplay total value
3 :; Delete an item
4 : Display all items
5 : Quit

What 1s your option?4

Code Price

111 100

o Rw e D

333 300

You can do the following; Enter appropriate number
X Add an item

Z Display toctal wvalue

3 Delete an item

4 Display all items

=

Myyny =
WYult

What 1is your option?5

/N OTE: The program uses two arrays, namely itemCode][] to hold the code number of items and itemPrice(]
lo hold the pnces. A third data member count is used ta keep a record of items in the list The program uses a tofas of
four functions to implement the operations to be performed on the list. The statement

const int m = 50;
defines the size of the array members.

The first function CNT() simply sets the variable count to zero. The second function getitem)
gets the item code and the item price interactively and assigns them lo the array members
itemCode[count] and itemPrice[count]. Note that inside this function count is incremented after
the assignment operation is over. The function displaySum() first evaluates the total vaiue of the
order and then prints the value. The fourth function remove() deletes a given item from tne list. It
uses the item code to locate it in the list and sets the price to zero indicatng that the item s not
‘active’ in the list. Lastly, the function displayltems() displays all the items in the list.

The program implements all the tasks using a menu-based user interface.

m 5.10 Memory Allocation for Objects E

We have stated that the memory space for objects is allocated when they are declared and not when
the class is specified. This statement is only partly true. Actually. the member functions are created
fif‘-d placed in the memory space only once when they are defined as a part of a class specification
Since all the objects belonging to that class use the same member functions. no separate space is
allocated for member functions when the objects are created. Only space for member vanables is
allocateg separately for each object. Separate memory locations for the objects are essential, beca

he member variables will hold different data values for different objects. This is shown in F;g 5 3“se

Scanned by TapScanner

06 Objeol Onented Programming with C++

Common for all objects
member function 1

I

member function 2

‘__’_'j memory created when
’ functions defined

Object 1 Object 2 Object 3
member variable 1 member variabie 1 member variable 1
member variable 2 member variable 2 member variable 2

memory created
when objects defined

Object of memory
m 5.11 Static Data Members g r"

similar to that of a C static variable. A stati
. atic memb i .] N
R dricoa: er variable has certain special characteristics:

Itis initialized to zero when the first ob

* Only one copy of that member
that class, no matter how man

ject of its class is created. No other initialization is permitied

is created for the entire class and i
. and __
y objects are created. 'S shared by all the objects o

Scanned by TapScanner

Scanned by TapScanner

108 Objest Oriented Programming with C++

i fined outside the olae,
. .- member variable must be de Clagg
' type and scope of each static m
Mﬁz r:h?h i“;?s :zcessafy because the static data mem bers are stored sep:ralely lrr;nlhe;rh:t.han asa
part of an. object. Since they are associated with the class itself rather than with any class object, thby

are also known as class variables.

s initialized to zero when the objects are created. The count is ingre.

mented whenever the data is read into an object. Since the data is read into objects three time’s,'m‘
variable count is incremented three times. Because there is only one cop)r of count §hared by all the
three objects, all the three output statements cause the value 3 to be displayed. Figure 5.4 shoyg S

how a static variable is used by the objects.

The static variable count I

Object 1 Object 2 Object 3
number number number
100 200 300
~ ~ | 1 - -
~ ~ .
\\\ \\\ : : ,”/ I,’,
N \\ I] ,, ,’
S~ Rl | I - -
S Ny I | 7 7
N S | | 57 i
~ ol 2 i
B =1l -1 -
\\ 1 \\ = ’,
\\\ : Ny ,’/ : ,,1
~
\\\ | \’<’ | ,,/
~ | L \\ | &
~2 | ” ~ | e
\\ gt \\ | ,/ i
rd \‘ ”

3 '

.

{ count 1

(common to all three objects)

WEIKERY Sharing of a static data member

Véjstatic variables are like non-inline member fu
wd ’gl_eﬁned in the source file. While defi
0 the variable. For instance, the follow

' n'ction§ as they are declared in a class dec
ining a sfa}nc variable, some initial value can also be 2
Ing definition gives count the initial value 10.

int item :: count = 10;

tatic member variable, we can af
) ' so have stat , , o=
d static has the following properties: ic member functions. A member fu

i function can have access to only other static members (function /
| S or vai

function can be calleg using the class name (instead of its obie

2 functj on-name;

Scanned by TapScaner

Classes and Objects ﬁ

llustrates the implementation of these characteristics. The static function show-

t() displays the number of objects created
til th
ainiaincd by the statie variable count at moment. A count of number of objects created

> % s 5 5

=

funct
i unction showcode() displays the code number of each object.

'E!T"'rT_-

7__'_‘
n
- e
ST . g
\ n
1

Scanned by TapScanner

Programmng with C++

Program 5 5 would be!

gbiject number:
gbject number: Z
abject number: 3

oy '-mdl{)hmmn vsmvokedandlmmmg’f”’
s own copy of code, the value contained in code re

Remember. the following function definition will not work:
static void showcount{)

cout << code; // code is not static

We know that an array can be of any data type including struct. Similarly, we can also have aif:
of variables that are of the type class. Such variables are called arrays of objects. Consider the
lowing class definition: nsider the

class employee

ehar name(30];
float age;

public:
void getdata (void):
veld putdata (void);

_ ¥i

The identifier employee is a user-defin '
g . . ed data type and can b create ob
erent categories of the employees. Example: Pusedivena

ployee ;anaqer!?:] ; // array of manager
L‘;?;iéanglﬁl: // array of foreman
1j,er175]i /1 array of worker

) M
: »,“a’, %J;’B |

Jual elements, and then]
ple, the statement m@

1] .putdata();

Scanned byapScanner

Classes and Objects W

wil display the data of the ith element of the array manager. That is, this statement requests the
phject manager[i] to invoke the member function putdata().

fray manager is represented in Fig. 5.5. Note that only the space for data items of the obj

. . L o = el u, 200 :
An array of objects is stored inside the memory in the same way as a multi-dimensional array -ﬁg
sreated. Member functions are stored separately and will be used by all the objects. [

name ,
manager{0]
age
name)
' ; manager{1]
age) ’ b !)
name A .-:'1{
- manager{2]

BCRCR Storage of data items of an object array

rogram 5.6 illustrates the use of object arrays.

8 (C‘:(.mtd \
Scanned by TapScanner

| This being an interactive program, the input data and the program outp-;tam shown t
. Interacti

o '-1_'7‘."1*'!*

P zzz
~ Enter age: 5

sanager?2

me: yyy
e: 37

n
et

Scanned by TapScanner

» any other data type, an object may be used as a function argument. This can be done in

A copy of the entire object is pgﬁsedto the function.
Only the address of the object is transferred to the function.

ed in the call. This meéné t'hat any changes made ta
n will .naﬂect ln the actual abjeet The pass-by reference method is more

illustrates the use of objects as functlon arguments. It performs the addition of time
‘and minutes format.

Objects as Arguments

Scanned by TapScanner

W1 .gettine (2,45); // get i
M2 .gettime (3,300 1/ get Té

1 mo 3 - L R . i
'r?,.&_;ufflfrl.', T2) ¢ 14 Ta=11l+1<) ‘ :'||‘-

cout << “Ti = ”; Tl.puttimef)s [/ disp.zay
cout << “T2 = 7; T2.puttime()7 -4 A/ d_:wg

-\fl

Cout SE WPt T3.putrtime{j.‘§ A
'] =l -

The output of Program 5.7 would bg:

T1

2 hours and 45 minutes
3 hours and 30 minutes
% ﬂT3 = 5 hours aﬁd l& mlﬂutes

1 : o M = 2 /. w il _-_‘ J.— " # 5 - ,‘_ £ \ ﬁ :.
- ~;;,; 2 L o g

=
8]
Il

T1.hours

| mi 45
; minutes P

* Scanned by TapScanner

Classes and Objects 115

? 5.15 Friendly Functions

We have been emphasizing throughout this chapter that the private members cannot be accessed
from outside the class. That is, a nonmember function cannot have an access to the private data of
a class nguver, there could be a situation where we would like two classes to share a particular
function. For exampl.e, consider a case where two classes, manager and scientist, have been
defined. We would' like to use a function income_tax() to operate on the objects of both these
classes. [n such situations, C++ allows the common function to be made friendly with both the
classes, thereby allowing the function to have access to the private data of these classes. Such a
function need not be a member of any of these classes.

To make an outside function “friendly” to a class, we have to simply declare this function as a
friend of the class as shown below:

class ABC

..... .
friend void xyz(void); // declaration

The function declaration should be preceded by the keyword friend. The function is defined else-
where in the program like a normal C++ function. The function defihition does not use either the key-
word friend or the scope operator ::. The functions that are declared with the keyword friend are
known as friend functions. A function can be declared as a friend in any number of classes. A friend
function, although not a member function, has full access rights to the private members of the class.

A friend function possesses certain special characteristics:

. ltis not in the scope of the class to which it has been declared as friend.
Since it is not in the scope of the class, it cannot be called using the object of that class.

+ It can be invoked like a normal function without the help of any object.

Unlike member functions, it cannot access the member names directly and has to use an
object name and dot membership operator with each member name.(e.g. A.x).

either in the public or the private part of a class without affecting its meaning.

« It can be declared
* Usually, it has the objects as arguments.

The friend functions are often used in operator overloading which will be discussed later.

Program 5.8 illustrates the use of a friend function.

4‘ Program 5.8

. < iApstream>
std;

namespace

(Contd.)

Scanned by TapScanner

116 Objec! Oriented Programming with C++

void setvalue() {a=25; b=40; J
yO1d SEeT

friend float mean (sample s);

-

I
float mean (sample s)

| sturn float(s.a + s.b)/2.0z

int maini()
!l N ’
sample X; // object X

X.setvalue () :
. A "o,
cout << “Mean value = ” << mean(¥) << s

return 0;

e —— e e L T

The output of Program 5.8 would be:

Mean value = 32.5

M The fiiend function accesses the class variables a and b by us
passed to it. The furiction call mean(X) passes the object X by value to the friend

defined using the Scope resolution operator as shown below:

.....

// member Ffunctj on of X

Scanned by TapScanner

Scanned by TapScanner

Programming with O

18

of Program 5.9 would be:

MPR: The function max() has arguments from both XYZ and ABC. When the fur_{dﬁﬂﬂ ﬂw dac
M e \;ﬁim:farfhe first time, the compiler will not acknowiedge the presence of ABG uriluss its nami s de
the beginning as L

¢lass ABCE;

i Wil

This is known as ‘forward' declaration. -

As pointed out earlier, a friend ﬁ;nctiqn’.eaﬁ.jpe..callgd by reference. In this case, local copies of
objects are not made. Instead, a p Jinter fo the address of the object is passed and the called

directly works on the actual object used in the call.

This method can be used to alter the values of the private members of a class. Re. 1ember,
ing the values of private members is against the basic principles of data hiding. It should be usex i

when absolutely necessary.

Program 5.10 shows how to use a common friend function to exchange the private values ¢
classes. The function is called by reference.

Swapping Private Data of Classes

<iostream>
amespace std;
8 class 2;

3ss class 1

int wvaluel;

indata(int a) {valuel = a;}
(void) {cout << valuel

o,

Scanned by TapScaner

Scanned by TapScanner

Scanned by TpSéaBner

Scanned by TapScanner

ning with C++ "'”

ymul tint, int) const;
leé get _balance() const;

ualifier const is appended to the function prototypes (in both declaration and definition). T§
will generate an error message if such functions try to alter the data values. -

Pointers to Members

It is possible to take the address of a member of a class and assign it to a pointer. The -:a. rese
member can be obtained by applying the operator & to a “fully qualified” class member narne s
member pointer can be declared using the operator ::* with the class name. For example, given thy

class .
class A
{
private:
int m;
public:
void show();
b2

j We can define a pointer to the member m as follows:

int A::* ip = EA ¢ m;

The ip pointer created thus acts ﬁke a class member in that it must be invoked with a cle
In the statement above, the phrase A::* means “pointer-to-member of A class”. The
the “address of the m member of A class” '

following statement is not valid:

// won’t work

is is because m is not simp|

y an int type data. It has meaning only when it
s 1o which it belongs, T aning only when it

he scope i :
pe operator must be applied to both the p

Scanned byapScanner

) r , demfammamg Qpetator S Igugadwm 3‘ “ember when we

pointer—to-nmnber fumctiah.] (-!DM
sl¥e jm — 5% pgjn’&#—tm unction)

jence of () is higher than that of * and ->*, so the parentheses are necess

L TR E:-. ol
~ Scanned by TapScanner

124 Objeat Oriented Programming with C++

The output of Program 5.12 would be

w sum = 30
10

sum
E 519 Local Classes

Classes can be defined and used inside a function or a block. Such classes are called loca] Class

Examples:
[

id test (int a) // function

class student // local class ‘-i

{]
..... !
..... // eclass definition i'.
..... o

bi 1

o '

student sl (a):; // create student object

----- // use student object

Scanned by TapScanner

Classes and Objects 125

J The memory space for the objects is allocated when they are declared. Space for member

vanabies 1s allocated Separately for each object, but no separate space IS allocated for mem-
ber functions.

() A data member of a ciass can be declared as a static and is normally used to malmain va
ues commaon to the entire class.

] The slatic member variables must be defined outside the class.

(] A static member function can have access to the static members declared in the same class
and can be called using the class name.

(] C++ allows us to have arrays of objects.
J We may use objects as function arguments.

J A function declared as a friend is not in the scope of the class to which it has been declared
as friend. It has full access to the private members of the class.

(A function can also return an object.

W if a member function does not alter any data in the class, then we may declare it as a const
member function. The keyword const is appended to the function prototype.

U itis also possible to define and use a class inside a function. Such a class is called a local class

Key Terms

abstract data type | arrays of objects | class | class declaration | class

members | class variables | const member functions | data hiding | data members |
dereferencing operator | dot operator | elements | encapsulation | friend functions

| inheritance | inline functions | local class | member functions | nesting of member
functions | objects | pass-by-reference | pass-by-value | period operator | private

| prototype | public | scope operator | scope resolution |- static data members | static
member functions | static variables | struct | structure | structure members | structure

name | structure tag | template

——

Review Questions slg

1 How do structures in C and C++ differ?

%2 Whatis a class? How does it accomplish data hiding?
53 How does a C++ structure differ from a C++ class?
%4 What are objects? How are they created?

%5 How is a member function of a class defined?

Scanned by TapScanner

126 Object Orlented Programming with Ct++

: ar functi al
56 Can we use the same function hame for a m""‘_b‘(r I11r1_c:t1c)r(1’ ;)f” o g
in the same program file? If yes, how are they distinguished 5 §

§7 Describe the mechanism of accessing data members and member func
cases:
(a) Inside the main program.
(b) Inside a member function of the same class.
(c) Inside a member function of another class.

58 When do we declare a member of a class static?

59 What is a friend function? What are the merits and demerits of using friend functions?
540 Can we pass class objects as function arguments? Explain with the help of an example.

511 State whether the following statements are TRUE or FALSE.

(a) Dataitems in a class must always be private.

(b) A function designed as private is accessible only to member functions of that class.
(c) A function designed as public can be accessed like any other ordinary functions.

(d Member functions defined inside a class specifier become inline functions by default.

(e) Classes can bring together all aspects of an entity in one place.
() Class members are public by default.

(g) Friend functions have access to only public members of a class.
(h) An entire class can be made a friend of another class.

(i) Functions cannot return class objécts.

() Data members can be initialized inside class specifier.

Debugging Exercises ﬂi

-lass and an outside functigp

tions in the follcwing

e S il
5.1 Identify the error in the following program.

tinclude <iostream.h>
struct Room
{

int width;

int length;

Yoid setValue(int w, int 1)
width = w;
length =];
}
354
void main ()
{

Room objRoom;

} objRoom.setValue(l2, 1,4);

5 . -
2 Identify the error in the following program.

#1nclude <iostream.h>
class Room

{

Scanned by TapScanﬁer

5.3

54

int width; height;

volid setValue (int W, int h)

width = w;
height = h;

P

)¢

void main ()

{
Room objRoom;
ocbjRoom.width = 12;

}

Identify the error in the following program.

#include <iostream.h>
class Item
{
private:
static int count;
public:
Item()
{
count++;
}
int getCount ()
{
return count;
}
int* getCountAddress ()
{
.return count;:
1
i

int Item::count = 0;
void main ()
{
Item objIteml;
Item objItem2;
cout << objIteml.getCount() << Yoty
L T A
cout << objItem2.getCount() << ;
cout << obtheml_getCountAddress()
cout << obthemz.getCountAddress() << ;

}

Identify the error in the following program.

clude <iostream.h>
§s staticFunction

Classes and Objoct

g2 N
1 I .

Scanned by TapScanner

{ o

cout << count;

L)
}e
int staticFunction::count = 10;
void main ()

5.5

class Length
¥

K Phir 1
int feet,‘. ‘I* -E-__'- 1" —H. L=
float J_nches; =
public: |
Length ()

Scanned by TapScanner

Classes and Objects 1,

-‘_‘]f get In\\'lt'.‘_-:()

return inches;

void main ()
Length objLengthi;
Length objLengthl (5, 6.5);
objLengthl = objLengthl.addLength (objLength2) ;
cout << objLengthl.getFeet () << ° "i
cout << objLengthl.getInches() << *:

’

l

|

56 Identify the error in the following program.

#include <iostream.h>
class Room;
void Area()
{ _
int width, height;
class Room
{
int width, height;
public:
void setValue (int w, int h)
{
width = w;
height = h;
}
void displayValues ()
{
cout << (float)width << ' ' << (float)height;
}
}:
Room objRooml;
objRooml.setValue (12, 8);
objRooml.displayValues();
}

void main ()
{
Area () ;
Room objRoom2;

1
]
i

Programming Exercises m

31 Define a class to represent a bank account. Include the following members:

Data members
1. Name of the depositor
2. Account number

Scanned by TapScanner

130 Otyeot Oriented Programming with C++

5.2

5.3
5.4

5.5

5.6

3. Type of account
4. Balance amount in the account

Member functions

1. To assign initial values
2. To deposit an amount
3. To withdraw an amount
4 To display name and balance B

Write a main program to test the program.

a series of float values). Include member functions 1 par.

after checking the balance

Write a class to represent a vector (
form the following tasks:

(a) To create the vector

(b) To modify the value of a given element

() To multiply by a scalar value

(d) To display the vector in the form (10, 20, 30, ...)
Write a program to test your class.

Modify the class and the program of Exercise 5.11 for handling 10 customers.

Modify the class and program of Exercise 5.12 such that the program would be zbie 10 2do e

vectors and display the resultant vector. (Note that we can pass objects as function amu
ments.)

Create two classes DM and DB which store the value of distances. DM stores distances &= |
metres and centimetres and DB in feet and inches. Write a program that can read values i
the class objects and add one object of DM with another object of DB. |

Use a frienq function to carry out the addition operation. The object that stores the resulis ™y
be a DM object or DB object, depending on the units in which the results are required :

The display should be in the format of feet and inch .)
the object on display. €S or metres and centimetres depending an

Refer Program 5.11 and write a function th

at recej i -
relums a new matrix object containing thep IVes two matrix objects as arguments and

multiplication result. [Wieka

Scanned by TapScanner

ilsell when It 18 Cremoeu. e TR

85 r Ih'" (“ = § wy
| member function called the dostruclto | L
| /o mstrucml"’
?
'; 6.2 o Initialize the objects of j,

Clije
onstructor is invoke)
| h“ el)kf_(] ‘Hhr,r". i

r because it constructg g, . @
- 184
* VA,

. " ””| ”ill
P”'”'mlmu'1 |hntnn,mnm'

gamo as 10
(hoe B) {J““”‘(”pluu i
(41 itod, s s,

A conslructor Is
lhllHll‘ﬂ name 1s
uulﬂ(d(|1~~h

spect
el
1\[‘“‘\ { Of I8 ass !

\Lﬂ.uhﬂuﬂwﬂ'\ﬂihﬂtbudm

as [(l”nw‘c‘:
\rnnﬁhurhnusrhw%uvd;uu!dﬂ“””” A

nat ,”L‘ft‘l

L I constructor declared
integer (void)/

'/ constructor defined

When 2 class contains a constructor like the one defined above, it is guaranteed that an gy
by the class will be initialized automatically. For example, the declaration

er intl; ' // object intl created

not only create he object int1 of type integer but also initializes its data members m and ntozn
_ need to write any statement to invoke the constructor function (as we do with the nome
member ‘unctions). If 2 ‘normal’ member function is defined for zero initialization, we would need?

nvoke this function for each of the objects separately. This would be very inconvenient, if there &
a large number of objects.

A constructor that accepts no parameters is called the default construct'o,- The default constructy

rr a8s CA A I ()-‘U|1l(|Sde |n8d '

IVOKES | J(J ’-‘ C s e, (Eate ' e | t
J [y "F = (‘if 9] UII.JIUbh)I ()l “ ((JOIHI)H(I lo C' (: a
g ¥ l] Ob e -

i

Constructors and Destruclors 133
1he constrocior iunclions have some special characteristica. These are

.+ Thay should be declared in (he pbilic soction

[hey aro invokad attomatically when the objocts are crontad.

; t ralurn values,
[hey donol have mtum types, nol even vold and therefors, and they canno

| — asa construclor
et be inheritod, though o derived clags can call the base tlass cor

They C
e othel Hetions they can have defaull arguments
i " s ater in Chapter 9.
Constmidiars cannot be virtual. (Meaning of virlual will be discussed later in Chag /
e wireler 1o thei addresses,

An obrect with a consltiuctor (or destructor) cannol be used as a member of a union.
ation is required.
They make Tmplicit calls’ to the operators new and delete when memaory allocation 1s redu

emaen when a conslructor is declared for a class, inilialization of the class objects becomes

1 ' ‘
5.3 V/Parameterized Constructors 1

“ne constructor integer(). defined above, initializes the data members of all the objects to zero.
JrEcice hmay be necessary to initialize the various data elements of differept objects
: erent values when they are created. C++ permits us to achieve this objective by passing
S 2-TENE 10 e constructor function when the objects are created. The constructors that can take
‘meterized constructors.

72 conslrucior integer() may be modified to take arguments as shown below:
integer ¢ hoe) /! parameterized constru ~tor
J8r . lnteger(int x, int y)
x i = /:
/ connitetr fas ben parametorzed, (he object declaration sltatement such as
Mz 06t work, Wi o] patt the nlal values as arguments to the conslructor funclion when an
Object is declared. This can be done in two wiys'

By calling the: conslruclor exphcitly,

By calling the construcior irmplicitly.

134 Oh}OC[Onented Pn]!.n‘,””””-”!_? with G+

. 1ol
. alo firsl metho
The following declaration ilustrates the ,

f'.‘f[k‘l!’(ﬁ}'f "f'P.’}
100) 7

inteager intl m(u'li“'(”'

Lint1 and passes the values 0:and 100 to j

",

I i il .
This statement creates an integer objec

1s implemented as follows: ; Rori
f // implicit eal]
fteger intl(0,100) 7

is used very often as it i
This method, sometimes called the shorthahd method, 1 Yy Itis Shortg, o

better and is easy to implement.

we must provide appropriate arg

. ized
Remember, when the constructor IS parameterl .
of arguments to the constructor

umfﬁﬁl’#
the constructor. Program 6.1 demonstrates the passing

fUnc;um

' Program 6.1 @FEEERT I MO0 Elegile (o

N—— N e TR T M B MY T T Ay P na —_
s ~lude <iostream> Z
ing namespace std;
S teger T———
M
iy
= (A['\ ’ 1T }
Cy IBED
// constructor declarec
play(void)
L]
2 n - " el mm -~ - “\f”
] i ! ’
1 I W\ o,
r
§ ot L .
E{int :
- S Ay v)
/ constructor ael
/ /’-
{
!
r ’it{lalfl"ij-
ol . /
i AN i 1yl -/ Ry [y
v =0Tl vy il S . , . w b £y ’ vl
MGy (2, 195 4 4 : Called implicitl) il
it k! 3 ll W [L/ o . ,\,p ‘t
AL Popalay (), MR ~MNstryctor called €
ij;lf_ \
| T3 B "'J"."!.l_"p' " N
£ (1] p’f}"/(); “”’.
return 0

136 oc
Object Onented Programming with €4

\ 64 "‘/Icill]ﬁplt' C()nslrucl()l'ﬁ in a Class

20 (@ oty Thay are’
b“‘“'““““:1wvdleknnhtﬂrﬂwJ“"ﬁ“- rhey

// Nit g hime s
hY / f)J|W‘ Y

/
TS B N

arcament s

\

as (he data values and no values are Passe
: \ =
all passes lhe appropriate values from by .,

In the Wrs\‘:zsn‘1:u~L\snslnrr|0ritﬁeH suppll
function €

calima program In the second case, the
Q prog! ¢ {he same class. For example, we coyy . il
Uﬁnr-.

C++ permits us to use both these construclors N

Y — s
clagss as follows

_ l Qs 1 // constructor 1
- F: T = ;i // constructor 2

// constructor 3

seclares three constructors for an integer object. The first constructor receives ng any

ments. the second receives two integer arguments and the third receives one integer object as 3
. |

"""" L4 L&)y 2R ¢

oid 2l the second constructor which will initialize the data members m and n of 12 to 20 and40

pectively. Finaily, the statement

=1 ¥

conslructor which copies the values of 12 into 13. In other words, it sets the valié

third
ement of 13 o the value of the corresponding data element of 12. As mentioned earié!

;-’ S .'Uc’fr s czlled the copy constructor. We leamed in Chapter 4 that the process of shar?
ne zrme name by wo or more functions is referred to as function overloading. Similarly, when m*

..-.-_:- i £ .0 'rr;"‘_;"_‘gf_(ne R . o .)
| netrucior function is defined in a class, we say that the constructor is overloaded-

'] P
figd invokKe tne

(%3
(1Al

]
a
o
(4}
W

0

Frogram & 2 chows the use of overloaded constructors

.f{i_—-:ﬂvetlpadﬂd Constructors

1) 1D UEHTITU juwe

N e

' 6.5 *"C'onstructors with Default Arguments

define constructors with default arguments. For example, the constructor Comp,
ed as follows:

plex(float real, float imag=0) ;

of the argument imag is zero. Then, the statement

{
n
n

20 ;
~~= the value 5.0 fo the real variable and 0.0 to imag (by default). However, the statement

ey

oA Bl

ant to distinguish between the default constructor A::A() and the default argument®”
£:Alint = 0). The default argument constructor can be called with either one argument or¥

. 508 the Q@TEUN Ve
nQ i
] ‘

7 V'Copy Constructor ”

oy mentioned about the copy constructor in Sec. 6.3. We used the copy constructor

W = RYEreTeNCe Now, oy (.
& o oonteger &1 ‘bD@,f’iV\Q-
sne of the overloaded constructors.

,:\\.\

v -~

-5 earlier, a copy constructor is used to declare and initialize an object from another object.

~le the statement '
s — N Seivid coll

= g =g

a4 unction:

- ~z7ne the object 12 and at the same time initialize it to the values of I11. Another form of this

<

142

Object Onented Programming with Ot

A= Ll ! A "'V*q 4)) |

e s St e e

' I“ ,
(k) o &2

natrictol is known as copy l'r)/'/i;J///al/r);
a ~onv Cons {3 "
he process of intializing through @ ¢ Oy | ’ H!jrﬁ

r Vo by,
LA [,'

1

o
the statement
¢ WA Yyl {

Al Al (\
N P T LA L.! :

and 12 are objects, this Staterme,
M jn

wever, if 11 ,)
Howe This is the task of th

WAL ™Y em VIRE the “‘.\"i'\\. \‘L”‘L\‘ill“‘f()[
el —lw-l‘nmnl)m.

SIMDIYy BaSSIgNSs ihe values \‘: '1 T8 l? HI(‘IHI*
more about this lat

“ (‘p/r”.;rl:;”‘ B
Y We shall see er.
men! aperaton = We shall se
S5C ; 55 7 ite Tt e e
n object of the same class as itself as an .
) >

using a copy constructor as shown ir) p,, e
‘_ 3 a,

2.4

4 copy constructor takes a reference to a

s simple example of constructing and

9, . e

' Program 6.4 ERETURELT N

 anind e S

$include <iostream>

UNIT IV - OPERATOR OVERLOADING, INHERITANCE AND POINTERS
OPERATOR OVERLOADING
Introduction:
We canredefine or overload most of the built-in operators in C++.

Overloaded operators are functions with special function name, with keyword operator
followed by the symbol for the operator already exist

.Defining Operator overloading
The general form of an operator function is :

Return type class name :: operator op (arg list)

{
Function body

}

Here return type is the type of value returned by the specified operation and op is the operator
being overloaded. The op is preceded by the keyword operator. Operator is the function
name.

Operator functions must be either member functions or friend functions.

A basic difference between them is that a friend function will have only one argument for
unary operators and two for binary operators, while a member function has no arguments for
unary operators and only one for binary operators .

Arguments may be passed either by value or by reference.

Operator functions are declared in the class using prototypes as follows:

vector operator+(vector); /{ vector addition
vector operator- (); //" unary minus

friend vector operator+(vector, vector); //vector addition
friend vector operator- (vector); /funary minus

vector operator- (vector &a); //subtraction

int operator==(vector); //comparision

friend int operator==(vector, vector) //comparision

The process of overloading mvolve the following steps:
1. Create a class that defines the data type that is to be used in the overloading operation.
2. Declare the operator function operator op() in the public part of the class. It may be either a
member function or a friend function.
3. Define the operator function to implement the required operations.
Overloaded operator functions can be invoked by expressions such as
opx for unary operators -x

86

and x op y for binary operators X-y
op x would be interpreted as operator op (x) for friend functions.

Overloading unary operators:

Operators that operates with single operand (values or expressions) are unary operators.

eg: +, -

Let us consider the unary minus operator. A minus operator when used as a unary, takes just
one operand.. This operator changes the sign of an operand when applied to a basic data item.
The unary minus when applied to an object should change the sign of each of its data items.

Program for Overloading unary minus
#include<iostream.h>

class space

{

int x;

int y;

int z;

public:

void getdata(int a, int b, int c);

void display();

void operator —(); //overload unary minus
b

void space :: getdata(int a, int b, int c)

{

Xx=a,
y="b;
Z=1C;

}
void space :: display()
{

cout<s< x << 7.

2

G "M

cout<< y << ;
cout<< z << *“\n” ;

}

void space @ operator — ()
{

X = -X;

y=-Y;

z=-7

}

int main()

{

space S;

S. getdata(10, -20, 30);

87

cout<< “S :

S. display();

-S; // activates operator — () function
cout<< “-§ :

S . display();

return 0;

}

Output
S : 10, -20, 30
S : -10, 20, -30

Overloading Binary Operators:
The functional notation canbe expressed as
C=A+B; // arithmetic notation
by overloading the + operator using an operator+() function.
Overloading + operator

#include<iostream.h>
class complex

{

float x; // real part
float y; // imaginary part
public:

complex() // constructor 1

{
}

complex (float real, float imag) // contructor 2

{

X =real;

y =1imag;

}

complex operator +(complex);
void display();

I

complex complex :: operator +(complex c)

{

complex temp; // temporary
temp. X = X+cC.X; //float additions
temp. y = y+C.y;

return (temp);

}

88

void complex :: display()
{
cout<< x <<+ << y << *“\n”;
}
int main()
{
complex C1,C2,C3; //invokes constructor 1
Cl = complex(2.5, 3.5); //mvokes constructor 2
C2 =complex(1.6, 2.7);
C3=C1+C2;
cout<< “Cl =
C1. display();
C2. display();
C3. display();

return O;

}

QOutput

C1=2.5+j3.5
C2=1.6+j2.7
C3=4.1+j6.2

The function is expected to add two complex values and return a complex value as the result
but receives only one value as argument.
The statement

C3=C1+C2;
invokes the operator function.
In the operator function, the data members of C1 are accessed directly and the data members
of C2 are accessed using the dot operator.

In the statement,
temp.x =X + C.X;
c.x refers to the object C2 and x refers to the object C1.
temp.x is the real part of temp that has been created specially to hold the results of addition
of C1 and C2.

The function returns the complex temp to be assigned to C3.

This is explained in the following diagram.

89

¥

Complex operator+(complex ¢)

d
Complex temp;
temp
4.1 «—++— Temp.x =
62 | «—— Tempy =
Return (temp);
j
return I——
C3 = C1 + C2;
t 1 ?
4.1 x 2.5I X 1.6 x
—>6.2 vy 3.5 y 2.7 vy

90

INHERITANCE

Introduction

* Inheritance is the mechanism by which one class can inherit the properties of another.

« The old class is referred to as the base class and the new one is called the derived
class or sub class.

¢ The derived class inherits some or all of the traits from the base class. A class can
also inherit properties from more than one class or from more than one level

* Aderived class with only one base class, is called single inheritance and one with
several base classes is called multiple inheritance.

* The traits of one class may be inherited by more than one class. This process is
known as hierarchical inheritance.

* The mechanism of deriving a class from another derived class is known as multilevel

inheritance.

n “ Single inheritance ?
v v
KN o

Multiple inheritance Hierarchical inheritance

v W

I
n

Hybrid inheritance

Multilevel inheritance
Forms of inheritance

91

Defining Derived Classes:
A derived class can be defined by specifying its relationship with the base class in
addition to its own details. The general form of defining a derived class is:

class derived-class-name : vis mode base-class-name

...... /{ members of derived class
A

}

The colon indicates that the derived-class-name is derived from the base-class-name. The
visibility- mode is optional and, if present, may be either private or public. The default
visibility mode is private.

Visibility mode specifies whether the features of the base class are privately derived or
publicly derived.
Examples:

1. class ABC :private XYZ // private derivation

{
members of ABC

};

2. class ABC : public XYZ // public derivation
{
members of ABC

n

3. class ABC : XYZ /lprivate derivation by default
{
members of ABC
b

ie., The default visibility mode is private.

When a base class is privately inherited, by a derived class, public members of the base
class become private members of the derived class and therefore the public members of the
base class can only be accessed by the member functions of the derived class. They are
inaccessible to the objects of the derived class. A public member of a class can be accessed
by its own objects using the dot
operator.

When the base class is publicly inherited, public members of the base class become
public members of the derived class and therefore they are accessible to the objects of the
derived class.

92

In both the cases, the private members are not inherited and therefore, the private
members of a base class will never become the members of its derived class.

Single inheritance:
Program shows a base class B and a derived class D. The class B contains one
private data member, and one public data member and three public member functions.

#include <iostream.h>

class B
{

int a; //private, not inheritance
public:

int b; // public, ready for inheritance

void set_ab();
int get_a(void);
void show_a(void);
1
class D : public B //public derivation
{
int c;
public:
void mul(void);
void display(void);
15
void B :: set_ab(void)

int B :: get_a()
{

return a;

}

void B :: show_a()
{
cout<<“a = “<<a<<“\n”;
}
void D :: mul()
{
c=b*get_a();
}
void D :: display()
{

93

cout<<“a=*“<<get_a()<<*\n";
cout<<“p=*“<<b<<*\n”;
cout<<“e=*“<<c<<“\n\n”;

}

int main()

{
Dd;
d.et_ab();
d.mul();
d.show_a();
d.display();
d.b=20;
d.mul();
d.display();
return 0;

}

Output
a=5
a=5
b=10
c=50

a=5
b=20
c=100

The class D is a public derivation of the base class B. Therefore, D inherits all the
public members of B and retains their visibility. Thus a public member of the base class B is
also a public member of the derived class D. The private members of B cannot be inherited
by D.

94

Class D
Private section

C

Public derivation

Public section_

b
get_ab()

get_a()

show_a()

mul()

display()

Inherited |
fromB

95

Class D

Private section

C

b Inherited P
from B

get ab()

get a()

show_a()

Public section

mul()

display()

Private derivation

In private derivation, the public members of the base class become private members of the
derived class. Therefore, the objects of D cannot have direct access to the public member
functions of B.

#include<iostream.h>
class B
{
nt a; //private, not inheritance
public:
int b; // public, ready for inheritance

96

void get_ab();
int get_a(void);
void show_a(void);

b
class D : private B //private inheritance
{
int c;
public:
void mul(void);
void dis play(void)
b
void B :: get_ab(void)
{

cout<<“Enter values for a and b:”;
cin>>a>>b;

}
int B :: get_a()
{
return a;

}
void B :: show_a()
{

cout<<®g = “<<a<<"‘\n”;
}
void D :: mul()
{

get_ab();

¢ =b*get_a(); /I’a’ cannot be used directly
}
void D :: display()
{

show_a(); // outputs value of ‘a’

cout<<“ bZGG<<b<<€‘ \n‘” ;
cout<<® c=“<<c<<“\n\n” :

}

int main()
{
Dd;
// d.get_ab(); won’t work

d.mul();
//d.show_a(); won’t work

d.display();

97

//d.b=20; won’t work,
d.mul();

d.display();

return 0;

}

Enter values for aandb: 5 8

Enter values for a and b: 10 20
a=10

b=20

¢ =200

Single Inheritance

Class B

Class D : private B

Class C : publicD

Multilevel Inheritance

The class A serves as a base class for the derived class B, which in turn serves as a base class
for the derived class C. The class B is known as intermediate base class since it provides a
link for the inheritance between A and C.

98

A derived class with multilevel inheritance is declared as follows:

class A //Base class
{

b

class B: public A //' B derived from A
{

b

Class C : public B //C derived from B

{

}s

This process can be extended to any number of levels.

Base class Astud Grandfather

Intermediate Btest Father
base class l

Derived class Cresult Child

Multilevel Inheritance

Let us consider a simple example. Assume that the test results of a batch of students are
stored in three different classes. Class student stores the roll-number, class test stores the
marks obtained in two subjects and class result contains the total marks obtained in the test.

99

The class result can inherit the details of the marks obtained in the test and the roll-number
of students through multilevel inheritance.

#include <iostream.h>
class student
{
protected:
int rollnumber;
public:
void ge tnumber(int);
void putnumber();
b
void student :: ge tnumber(int a)
{

rollnumber = a;

}

void student :: putnumbe ()

{

cout<<“Roll Number: “<<rollnumber<<“\n”;
}
class test : public student //first level derivation
{
protected:
float subl;
float sub2;
public:
void getmarks(float, float);
void putmarks();

b

void test :: getmarks(float x, float y)

{

subl =x;

sub2 =y;

}

void test :: putmarks()

{

cout<<*“marks in subl = “<<subl<<“\n”;
cout<<“marks in sub2 = “<<sub2<<“\n”;

}

class result : public test //second level derivation

{
float total;

public:

100

void display();

)5

void result :: display()

{

total = subl+sub2;

putnumber();

putmarks();

cout<<*“Total = “<< total<<*“\n”;
}

int main()

{

result studentl; // obj student] created
studentl.getnumber(10011);
studentl.getmarks(75.0, 68.0);
studentl.display();

return (;

}

Output

Roll Number : 10011
Marks in subl =75.0
Marks in sub2 = 68.0
Total = 143.0

Multiple Inheritance

Multiple inheritance allows to combine the features of several existing classes as
starting pointing for defining new classes. A class can inherit the attribution of two or more
classes as shown in Fig. This is known as multiple inheritance.

|
Ll

Multiple Inheritance

The syntax of a derived class with multiple base classes is

101

where,visibility may be either public or private. The base classes are separated by commas.

Program to Multiply two numbers:

#include<iostream.h>
class M
{
protected:
int m;

public:
void getm(int);
k
class N
{
protected:

int n;
public:

void getn(int);
15
class P : public M, public N
{
public:
void display();
}
void M :: getm(int x)
{
m=Xx;
}
void N :: getn(int y)
{
n=y;

}

102

Void P :: display()

{

cout<<® m=“<<m<<¢¢\n99 :
cout<<“p=“<<p<<*“\n”;
cout<<“m x n=“<<m*n<<“\n”;
}

in 0

int main()

{

P p;

p-getm(50);

p.getn(10);

p.display();

return 0;

}

Output

m = 50
n=10

m x n = 500

Hierarchical Inheritance

In Hierarchical Inheritance, certain features of one level are shared by many others
below that level. As an example, Fig shows a Hierarchical classification of students in a
university. Another example could be the classification of accounts in a commercial bank as
shown in Fig. All the students have certain things in common and, similarly, all the accounts
possess certain common features.

STUDENTS
ARTS ENGINEERING MEDICAL

Hierarchical classification of students

103

ACCOUNTS

Fixed deposit account

Classification of bank accounts

The base class will include all the features that are common to the subclasses. A subclass can
be constructed by inheriting the properties of the base class. A subclass can serve as a base
class for the lower level classes and so on.

Hybrid Inheritance

Hybrid inheritance is a combination of multiple inheritance and multilevel
inheritance. A class Result is derived from two classes Test, Sports as in
multiple inheritance.

Student
Test Sports
1 /
Result

Multilevel, Multiple Inheritance

104

#include <iostream.h>
class student
{
protected:
int rollnumber;
public:
void ge tnumbe r(int);
void putnumber();
b
void student :: getnumber(int a)

{

rollnumber = a;

}

void student :: putnumber()

{

cout<<“Roll Number: “<<rollnumber<<“\n”;

}

class test : public student
{
protected:
float subl;
float sub2;
public:
void getmarks(float, float);
void putmarks();

K

void test :: getmarks(float x, float y)

{

subl = x;

sub2 =y;

}

void test :: putmarks()

{

cout<<“marks in subl = “<<subl1<<“\n”;
cout<<“marks in sub2 = “<<sub2<<‘“\n”;
}

class sports

{

protected:

float score;

public:

105

void getscore(float s)
{

score =S§;

}

void putscore()

{

cout<<*“Sports wt: "<<score<<“\n";
}

b

class result : public test, public sports
{

float total;

public:

void dis play();

b

void result :: display()

{

total = subl+sub2+score;
putnumber();

putmarks();

putscore();

cout<<*“Total = “<< total<<*\n”;
}

int main()

{

result student1;
studentl.getnumber(10011);
studentl.getmarks(75.0, 59.5);
studentl. getscore(6.0);
student1.display();

return 0;

}

Output

Roll Number : 10011
Marks in subl =75.0
Marks in sub2 = 59.5
Sports wt: 6.0

Total = 140.5

Virtual Base Class

Consider a situation where all the three kinds of inheritance, namely, multilevel,
multiple and hierarchical inheritance, are involved. This is illustrated in Fig. The child has

106

two direct base classes parent 1 and parent 2 which themselves have a common base class
grandparent. The child inherits the traits(quality or character) of grandparent via two separate
paths. It can also inherit directly as shown by the vertical line. The grandparent is sometimes
referred to as indirect base class.

Multipath Inheritance

PARENT 1 PARENT 2

CHILD

All the public and protected members of grandparent are inherited into child twice, first via
parent 1 and again via parent 2. The duplication of inherited members due to these multiple
paths can be avoided by making the common base class as virtual base class while declaring
the direct or intermediate base classes which is shown as follow:

class A //grandparent
{

b

class B1: virtual public A // parentl

{

b

Class B2 : public virtual A //parent2

{

};

class C : public B1, public B2 /fchild

............ //fonly one copy of A

107

............ // will be inherited
b

For example, consider the student results processing system. The class sports derives the
rollnumber from the class student.

#include <iostream.h>
class student
{
protected:
int rollnumber;
public:
void getnumber(int);
void putnumber();
b
void student :: getnumber(int a)

{

rollnumber = a;

}

void student :: putnumber()
{

cout<<“Roll Number: “<<rollnumber<<“\n";

}
class test : virtual public student

{
protected:

float subl;
float sub2;
public:
void getmarks (float, float);
void putmarks();

b

void test :: getmarks(float x, float y)

{
subl =x;
sub2 =y;
}

void test :: putmarks()

{

cout<<“marks in subl = “<<subl<<*“\n”;
cout<<“marks in sub2 = “<<sub2<<“\n”;

}
class sports :: public virtual student

{

108

protected:
float score;
public:

void getscore(float s)
{

score =S;

}

void putscore()

{

cout<<“Sports wt: "<<score<<“\n”;
}

|5

class result : public test, public sports
{

float total;

public:

void display();

15

void result :: display()

{

total = subl+sub2+score;
putnumber();

putmarks();

putscore();

cout<<“Total = “<< total<<*“\n”;
}

int main()

{

result studentl;
studentl.getnumber(10011);
studentl.getmarks(75.0, 59.5);
studentl. getscore(6.0);
student1.display();

return 0;

}

Output

Roll Number : 10011
Marks in subl =75.0
Marks in sub2 =59.5
Sports wt: 6.0

Total = 140.5

109

Abstract Classes

An abstract class is one that is not used to create objects. An abstract class is designed
only to actas a base class. It is a design concept in program development and provides a base
upon which other classes may be built. The student class is an abstract class since it was not
used to create any objects.

POINTERS

What Is A Pointer?
A pointer is a variable that holds the address of a memory location. All the variables we
declare, have a specific address in memory. We declare a pointer variable to point to these
addresses in memory.
The general syntax for declaring a pointer variable is:
datatype * variable_name;
For Example, the declaration

int* ptr;
This means ptr is a pointer that points to a variable of type int. Hence a pointer variable
always contains a memory location or address.

Consider we have the following declarations:
int p, *ptr; //declare variable p and pointer
variable ptr

p=4; //assign value 4 to variable p
ptr = &p; //assign address of p to pointer
variable ptr
As ptr has an address of variable p, *ptr will give the value of variable p.

In memory, these declarations will be represented as follows:

P ptr

&p

This is the internal representation of pointer in memory. When we assign the address variable
to the pointer variable, it points to the variable as shown in the representation above.

110

Pointer Arithmetic

A pointer variable always points to the address in memory. Among the operations that
we can perform, the following arithmetic operations that are carried out on pointers.
Increment operator (++)

Decrement operator (--)
Addition (+)
Subtraction (-)

#include <iostream.h>
#include <string.h>
int main()
{
int myarray([5] = {2, 4,6, 8,10};
int* myptr;
myptr = myarray;
cout<<"First element in the array:" <<*myptr <<endl
myptr ++;

cout<<"next element in the array :"<<*myptr<<endl;

myptr +=1;

cout<<"next element in the array :"<<*myptr<<endl;
myptr--;

cout<<"next element in the array :"<<*myptr<<endl;
myptr -= 1;

cout<<"next element in the array :"<<*myptr<<endl;

return 0;

}

Output:

First element in the array :2
next element in the array 4
next element in the array :6
next element in the array 4
next element in the array :2

The increment operator ++ increments the pointer and points to the next element in the
array. Similarly, the decrement operator decrements the pointer variable by 1 so that it points
to the previous element in the array.

We also use + and — operators. First, we have added 1 to the pointer variable. The result
shows that it points to the next element in the array. Similarly, — operator makes the pointer
variable to point to the previous element in the array.

Apart from these arithmetic operators, we can also use comparison operators like =, < and
>,

111

UNIT V - MANAGING CONSOLE I/O OPERATIONS

C++ Streams

A stream is a sequence of bytes. It acts either as a source from which the input data
can be obtained or as a destination to which the output data can be sent. The source stream
that provides data to the program is called the input stream and the destination stream that
receives output from the program is called the output stream. A program extracts the bytes
from an input stream and inserts bytes into an output stream as illustrated in Fig.

INPUT STREAM Extraction from

input stream
| reoco: e o lo oo T o

OUTPUT STREAM

-

Insertion into
output stream

Data streams

The data in the input stream can come from the keyboard or any other storage device.
Similarly, the data in the output stream can go to the screen or any other storage device. A
stream acts as an interface between the program and the input/ output device. Cin represents
the input stream connected to the standard input device(keyboard) and cout represents the
output stream connected to the standard output device(screen)

C++ Stream classes
The C++ I/O system contains a hierarchy of classes that are used to define various

streams to deal with both the console and disk files. These classes are called stream classes.
Fig shows the hierarchy of the stream classes used for input and output operations with the
console unit. These classes are declared in the header file iostream. This file should be
included in all the programs that communicate with the console unit

112

Stream classes for console I/0 operations

108

Vv
Y

OSTREAM

input — output

¥

IOSTREAM

¥
v |
¥

ISTREAM _WITHASSIGN IOSTREAM _WITHASSIGN OSTREAM_WITHASSIGN

IOS is the base class for istream(input stream) and ostream(output stream) which are inturn,
base classes for iostream(input/output stream). The class IOS is declared as the virtual base
class so that only one copy of its members are inherited by the stream.

Unformatted I/O operations
Overloaded operators >> and <<

The >> operator is overloaded in the istream class and << is overloaded in the ostream
class. The following is the general format for reading data from the keyboard.

cin>>variable 1>>variable2>>....>>variableN;

variablel, variable2.... are valid C++ variable names that have been declared already. This
statement will cause the computer to stop the execution and look for input data from the
keyboard. The input data for this statement would be
datal data2 datan

113

The input data are separated by white spaces and should match the type of variable in the cin
list.

The operator >> reads the data character by character and assigns it to the indicated
location. The reading for a variable will be terminated at the encounter of a white space or a
character that does not match the destination type. For eg.

Int code;

cin>>code;
Suppose the following datais given as input:

4258D
The operator will read the characters upto 8 and the value 4258 is assigned to code. The
character D remains in the input streamand will be input to the next cin statement.

The general form for displaying data on the screen is

cout<< iteml <<item2<<......... <<itemN;
The items iteml through itemN may be variables or constants of any basic type.

put() and get() functions

The classes istream and ostream define two member functions get() and put()
respectively to handle the single character input/output operations. There are two types of
get() functions. We can use both get(char®) and get() prototypes to fetch a character
including the blank space, tab and the newline character. The get(char®) version assigns the
mput character to its argument and the get() version returns the input character.

Since these functions are members of the input/output stream classes, we must invoke these
functions using an appropriate object.
Example
char c;
cin.get(c); //get a character from keyboard
//and assign it to ¢
while (c!=%\n")

{

cout<<c; //display the character on screen
cin.get(c); //get another character

}

This code reads and displays a line of text(terminated by a newline character).
The get() version is used as follows:
char c;
c=cin.get(); // for cin.get(c)

The value returned by the function get() is assigned to the variable c.

114

The function put(), a member of ostream class, can be used to output a line of text,
character by character.

For example
cout.put(‘x’);

displays the character x and
cout.put(ch);

displays the value of variable ch.

#include (iostream.h>

int main()

{

int count=0;

char c;

cout<<“INPUT TEXT\n”;
cin.get(c);

while(c!=*\n")
{
cout.put(c); not equal to
count++;
cin.get(c);
}
cout<<“\nNumber of characters=“<<count<<“\n”;
return 0;
}
input
INPUT TEXT
Object Oriented Programming
Output
Object Oriented Programming
Number of characters=27

getline() and write() Functions
The getline() function reads a whole line of text that ends with a newline character.
This function can be invoked by using the object as follows:

cin.getline (line, size);

This function call invokes the function getline() whichreads character input into the
variable line. The reading is terminated as soon as either the newlne character “\n’ is
encountered or size-1 characters are read. The newline character is read but not saved.
Consider the following code

char name[20];
cin.getline (name, 20);

115

Assume that we have given the following input through the keyboard:

Bjarne Stroustrup <press RETURN>

This input will be read correctly and assigned to the character array name. Let us

suppose the input is as follows.

Object Oriented Programming

<press RETURN>

In this case, the input will be terminated after reading the following 19 characters.

Object Oriented Pro
The two blank spaces contained in the string are also taken into account.

#include <iostream.h>

int main()

{

int size=20;

char city[20];

cout<<“Enter city name: \n”;

cin>>city; New Delhi

cout<<“city name:”<<city<<“\n\n”; New

cout<<“Enter city name again:\n”;

cin.getline (city, size);

cout<<“city name now:”<<city<<“\n\n”; Delhi

cout<<“Enter another city name:\n”;

cin.getline (city,size); Greater Bombay

cout<<*“New city name :”<<city<<*“\n\n”; Greater
Bombay

return 0;

}

Output

Enter city name:

New Delhi

City name: New

Enter city name again:

city name now: Delhi

Enter another city name:
Greater Bombay

New city name: Greater Bombay

The write() function displays an entire line and has the following form:

cout.write (line, size);
The first argument line represents the name of the string to be displayed and the second
argument size indicates the number of characters to display. If the size is greater than the
length of line, then it displays beyond the bounds of line.

116

#include <iostream.h>
#include <string.h>
int main()
{
char® string1=“C++";
char® string2=“Programming”;
int m=strlen(stringl); string length ofstrl 3
int n=strlen(string2);
for(int i=1; i<n; i++)
{
cout.write (string2, i);
cout<<“\n”;

}

for(i=n; i>0; i--)

{

cout.write (string2,i);

cout<<*“\n”;

}

//concatenating strings

cout.write (string1,m).write (string2, n);
cout<<*“\n”;

return (;

}

p

pr
pro
prog
progr
progra
program
programm
programm
programmin
programming
programmin
programmi
programm
program
progra
progr

prog

pro

117

pr
P
C++ Programming

Formatted console I/O operations

C++ supports a number of features that could be used for formatting the output. These
features include:

* jos class functions and flags

* Manipulators

* User-defined output functions

The ios class contains a large number of member functions that would help us to
format the output in a number of ways.

I10s format functions

Function Task

width() To specify the required field size for
displaying an output value

precision() | To specify the number of digits to be
displayed afier the decimal point of a float
value

fill() To specify a character that is used to fill the
unused portion of a field

setf() To specify format flags that can control the
form of output display (such as lefi-
justification and right-justification)

unsetf{) To clear the flags specified

Manipulators are special functions that can be included in the I/O statements to alter the
format parameters of a stream. Table shows some important manipulator functions that are
frequently used. To access these manipulators, the file iomanip should be included in the
program.

Manipulators
Manipulators Equivalent ios function
Setwi() Width()
Setprecision() Precision()
Setfill() Fill()
Setiosflags() Setfi)
Resetiosflags() Unsetf()

118

Defining Field Width: width()
The width() function can be used to define the width of a field necessary for the

output of an item. Since, it is a member function, an object can be used to invoke it, as shown
below:

cout.width(w);

where w is the field width(number of columns). The output will be printed in a field of w
characters wide at the right end of the field. The width() function can specify the field width
for only one item. After printing one item, it will revert back to the default. For eg, the
statements

cout.width(5);

cout<<543<<12<<“\n”;

will produce the following output:

S 4 (3 |1 |2

The value 543 is printed right justified in the first five columns. The specification width(5)
does not retain the setting for printing the number 12.

cout.width(5);
cout<<543;
cout.width(5);
cout<<12>>>"\n";

This produce the following output:

5 (4 |3 1 |2

C-++ never truncates the values and therefore, if the specified field width is smaller than the
size of the value to be printed, C++ expands the field to fit the value.

#include<dostream h>

int main()

{

int items[4]={10,8,12,15};
int cost[4]={75,100,60,99};
cout.width(5);

cout<< “ITEMS”;
cout.width(8);

119

cout<< “COST™:

cout.width(15);

cout<< “TOTAL VALUE” <<*\n”;
int sum=0;

for(int i=0; i<4; i++)

{

cout, width(5);

cout<< items[i];
cout.width(8);

cout<< cost[i];

mt value=items|i]*cost[1i];
cout.width(15);
cout<<value<<“\n”;
sum=sum-+value;

}

cout<<\n Grand Total=";

cout. width(2);

cout<<sum<<*\n"’;

return 0;

}

Output

1TEMs dds|T TAdTAL UE
110 7|5 7150

8 100 800

112 60 70210
15 | 9/9 4 85

Grand Total = 3755

Output

I TENS COST
10 75
8 100
12 60
15 99

Grand Total = 3755

TOTAL VALUE

750
800
720
1485

120

Setting Precision: precision()

By default, the floating numbers are printed with six digits after the decimal point. We
can specify the number of digits to be displayed after the decimal point while printing the
floating point numbers. This canbe done by using the precision() member function as
follows:

cout.precision(d);

where d is the number of digits to the right of the decimal point. For example, the statements
cout.precision(3);
cout<<sqrt(2)<<*“\n”;
cout<<3.14159<<*\n”;
cout<<2.50032<<*\n";

will produce the following output:
1.414 (truncated)
3.142 (rounded to the nearest cent)
2.5 (no trailing zeros)
The precision() function retains the setting in effect until it is reset.
cout.precision(3);
cout<<sqrt(2)<<“\n”;
cout.precision(3); //Reset the precision
cout<<3.14159<<*“\n”;
we can also combine the field specification with the precision writing. Example:
cout.precision(2);
cout.width(5);
cout<<1.2345;

The first two statements instruct: “print two digits after the decimal point in a field of
five character width”. Thus, the output will be

1 : 2 3

#include <iostream.h>
#include <cmath.h>
int main()

{

cout<<“Precision set to 3 digits \n\n”;

cout.precision(3);

121

cout.width(10);

cout<<“Value”;

cout.width(15);
cout<<“SQRT_OF_VALUE”<<*“\n”;

for(int n=1: n<=5: n++)

{
cout.width(8);
cout<<n;
cout.width(13);
cout<<sqrt(n)<<“\n”;
}

cout<<“\n Precision set to 5 digits”;
cout.precision(5); //precision parameter changed
cout<<“sqrt(10)="*<<sqrt(10)<<“\n\n”;
cout.precision(0); //precisionset to default
cout<<“sqrt(10)="<<sqrt(10)<<“default setting\n”;
return (:

}

The output of the program
Precision set to 3 digits

VIALIUE SIQR|T

N PP WINEP |

AN WL RL|<

Precision setto 5 digits
Sqrt(10) =3.1623
Sqrt(10) =3.162278 default setting

The output of the program
Precision set to 3 digits

122

VAL UE SQRT_OF_VALUE

1 1
2 41
3 1.73
- 2
5 2. 24

Precision setto 5 digits
Sqrt(10) =3.1623

Sqrt(10) =3.162278 default setting

Filling and Padding: fill()

The unused positions of the field are filled with white spaces, by default. We canuse
the fill() function to fill the unused positions by any desired character. It is used in the
following form:

cout.fill(ch);

where ch represents the character which is used for filling the unused positions. Example:
cout.fill(**”);

cout.width(10);

cout<<5250<<*\n™";

The output would be

Financial institutions and banks use this kind of padding while printing cheques so that no
one can change the amount easily.

#include <iostream.h>
int main()

{
cout.fill(‘<*);

123

cout.precision(3);

for(int n=1; n<=6; n++)

{

cout.width(5);
cout<<n;

cout.width(10);
cout<<1.0/float(n)<<*“\n”;

if(n==3)
cout.fill(‘>");

}

cout<<“\nPadding changed \n\n";

cout. fill(*#);

cout.width(15);

/ll() reset

cout<<12.145678<<*“\n”;
return 0;

}

The output of the program

VIVIVIVIA]A
VIVIVIVI[IA]|A
VIVIVIVIA]A
VIVIVIVIA]|A

DN DN B W N -

VIVIVIVIAIA
VIVIVIVIAIA
VIVIVIVIALIA
VIVIVIVIA|IA
VIVIVIVIA|IA
S|V IVIS|A|A

~l /|| W || —

Padding changed

H

i

4

124

The output of the program

< <€ € €1 < € € <€ < < < < 1
€2 € € € 2 € € € € € € < 5
> > > > 3 > > > > >0 3 3
> > > > 4 > > > > > >0 5
> > > > 5 > > > > > > 0 2
> > > > 6 > > > > >0 1 6 7

Padding changed

HHHHHHBHHAHAHRL 2. 3

Formatting Flags, Bit-fields and setf()

When the function width() is used, the value is printed right-justified in the field
width created. The setf(), a member function of the ios class, can be used to print the text left-
justified . The setf() (set flags) function can be used as follows:

cout.setf(argl, arg2);

The argl is one of the formatting flags defined in the class ios. The formatting flag
specifies the format action required for the output. Another ios constant, arg2, known as bit
field specifies the group to which the formatting flag belongs. 3004.5732
/3.0045732x10"3 /3.0045732e+03

Flags and bit fields for setf() function

125

Format reqguired Flag(argl) Bit field(arg 2)
Left justified output los :: lef Tos :: adjustfield
Right justified output los :: right los :: adjustiield

Padding after sign(+##20) los :: internal los :: adjustfield

Scientific notation los :: scientific Tos :: Noatficld
Fixed point notation los :: fixed los :: flontficld
Decimal base los :: dec los :: basefield
Octal base los :: oct los :: basefield
Hexadecimal base los :: hex los :: basefield

Table shows the bit fields, flags and their format actions. There are three bit fields and each
has a group of format flags.
cout.setf(ios :: left, ios :: adjustfield);
cout.setf(ios :: scientific, ios :: floatfield);
Consider the following segment of code:
cout.fill(**’);
cout.setf(ios :: left, ios :: adjustfield);
cout.width(15);
cout<<“TABLE 1”<<*\N”;
This will produce the following output:

A[BILIE| 1 [*[* = [* |* = |*
The statements

cout. fill(“*");

cout.precision(3);

cout.setf(ios :: internal, ios :: adjustfield);

cout.setf(ios = scientific, ios :: floatfield);

cout.width(15);

cout<<-12.34567<<\n";
will produce the following output:

-2 305 e[+ UL

The sign is left-justified and the value is right justified. The space between them is padded
with stars. The value is printed accurate to three decimal places in the scientific notation.

126

Displaying Trailing zeros and plus sign
If we print the numbers 10.75, 25.00 and15.50 using a field width of eight positions,
with two digits precision, then the output will be as follows:

10 L7 5
2 5

1 1> . |3

The trailing zeros in the second and third items have been truncated. Certain situations, such
as a list of prices of items or the salary statement of employees, require trailing zeros to be
shown. The above output would look better if they are printed as follows:

10.75
25.00
15.50

The setf() can be used with the flag ios :: showpoint as a single argument to achieve this
form of output. For example,
cout.setf(ios :: showpoint); //display trailing zeros
would cause cout to display trailing zeros and trailing decimal point.
Similarly, a plus sign can be printed before a positive number using the following

statement:

cout.setf(ios :: showpos);
For example, the statements

cout.setf(ios :: showpoint);

cout.setf(ios :: showpos);

cout.precision(3);

cout.setflios :: fixed, ios :: floatfield);
cout.setflios :: internal, ios :: adjustfield);
cout.width(10);

cout<<275.5<<*\n”;

will produce the following output:

+ 275 50 0

127

The flags such as showpoint and showpos do not have any bitfields and are used as single
arguments in setf().

Formatting with flags in setf()
#include<iostream.h>

#include <cmath.h>

int main()

{

cout.fill(**”);

cout.setf(ios :: left, ios :: adjustfield);
cout.width(10);

cout<<“VALUE”:

cout.setf(ios :: right, ios :: adjustfield);
cout.width(15);

cout<<“SQRT OF VALUE”<<%“\n”;
cout.fill(“.”);

cout.precision(4);

cout.setf(ios :: showpoint);

cout.setf(ios :: showpos);

cout.setf(ios :: fixed, ios :: floatfield);
for(int n=1; n<=10; n++)

{

cout.setf(ios :: internal, ios :: adjustfield);
cout.width(5);

cout<<n;

cout.setf(ios :: right, ios :: adjustfield);
cout.width(20);

cout<<sqrt(n)<<“\n”;

}

cout.setf(ios :: scientific, ios :: floatfield);
cout<<“\nSQRT(100) = “<<sqrt(100)<<“\n”;
return 0;

}

The output of program would be

128

VA LIUJE[*|*|*|*[*|*[*|S|Q|R|T O|F VIA|L|U|E
+ 1 + 11 o|0|0]|O
+ 2 +11 41142
+ 3 +11 713|211
+ 4 + 12 0o(0|0]|0O
+ 5 + |2 213|161
+ 6. +|2 41495
+ 71. +12 6(4(5(8
+ 8. + |2 812|814
+ 2. +13 ojofofo
+ 1|0 +13|-(1]6]2|3

SQRT(100) =+1.0000E+001

Working with files

Introduction
The data is stored in some devices such as floppy disk or hard disk, using the concept
of files. A file is a collection of related data stored in a particular area on the disk. Programs
can be designed to perform the read and write operations on these files.
A program typically involves either or both of the following kinds of data
communication:
l. Data transfer between the console unit and the program
2. Data transfer between the program and a disk file.

129

External Memory

Data files
Write data(to l;{gagﬁm-ﬁle interaction
ﬁ]ﬁs’ d l-
Internel memory Aln
Program+Data
T l
Cout<<
. Console Unit ‘(put Console-program
‘in==(get ‘data interaction
data from < to
keyboard) - sereen)

Keyboard

The I/O system of C++ handles file operations which are very much similar to the console
input and output operations. It uses file streams as an interface between the programs and the
files. The stream that supplies data to the program is known as input stream and the one
that receives data from the program is known as output stream. The input stream extracts
data from the file and the output stream inserts data to the file.

Read data
Input stream -
| g] iupt
Disk files Prgram
. EEEEEEEE |
write data Output stream Data output

The input operation involves the creation of an input stream and linking it with the program
and the input file. Similarly, the output operation involves establishing an output stream
with the necessary links with the program and the output file.

130

Classes for file stream operations

The I/O stream of C++ contains a set of classes that define the file handling methods.
These include ifstream, ofstream and fstream. These classes are derived from fstreambase
and from the corresponding iostream class as shown in Fig. These classes, designed to
manage the disk files, are declared in fstream and include this file in any program that uses
files.

Stream classes for file operations

losrafy TP .
e
t

| T L]

ftream Shicbur

Fstrea
file T

Fstream base

Details offile stream classes

Class Contents

fstreambase Provides operations common to the file streams. Serves
as a base for fstream, ifstream and ofstream class.
Contains open() and close() functions

ifstream Provides input operations. Contains open() with
default input mode. Inherits the functions get(),
getline(), read(), seekg() and tellg() functions from
istream.

ofstream Provides output operations. Contains open() with
default output mode. Inherits the functions put(),
seekp() and tellp() and write() functions from
ostream.

fstream Provides support for simultaneous input and output
operations. Contains open() with default input mode.
Inherits all the functions from istream and ostream
classes through iostream.

131

Opening and closing a file
If we want to use disk file, we need to describe the following things about the

file:

1. Suitable name for the file.

2. Data type and structure

3. Purpose

4. Opening method
The file name is a string of characters that make up a valid filename for the operating
system. It may contain two parts, a primary name and an optional period with
extension.

Input. Data student
Test. Doc salary
INVENT.ORY OuUTPUT

For opening a file, we must first create a file stream and then link it to the filename.

A file stream can be defined using the classes ifstream, ofstream, and fstream that are
contained in the header file fstream. The class to be used de pends upon the purpose,
that is, whether we want to read data from the file or write data to it. A file can be
opened in two ways:

1. Using the constructor function of the class

2. Using the member function open() of the class

The first method is useful when we use only one file in the stream. The second

method is used when we want to manage multiple files using one stream.

Opening files using constructor

A constructor is used to initialize an object, while it is being created. Here, a
filename is used to initialize the file stream object. This involves the following ste ps:

1. Create afile stream object to manage the stream using the appropriate class. That
is , the class ofstream is used to create the output stream and the class ifstream to create
the input stream.

2. Initialize the file object with the desired filename.

For example, the following state ment opens a file named “results” for output:
ofstream outfile(“results™); // output only

This create outfile as an ofstream object that manages the output stream. This
object can be any valid C++ name such as o_file, myfile or fout. This statement also
opens the file results and attaches it to the output stream outfile. This is illustrated in
Fig.

132

Output stream

- —

file

outfile

Input stream Data
-i--‘_ fle

infile

Two file streams working on separate files

Similarly, the following state ment declares infile as an ifstream object and attaches it to
the file data for reading:
ifstream infile(“data”); //input only
The program may contain statements like:
outfile<<“Total”;
outfile<<sum;
infile>>number;
infile>>string;
We can also use the same file for both reading and writing data as shown in Fig. The
Programs would contain the following state ments:

Two file streams working on one file

Program 1

-_. ------—\
outfile Salary
Program 2 file
B =esm——

infile

Program 1

oooooooooooooooooo

ofstream outfile (“salary”); //creates outfile and

.................. //connects “salary” to it

133

Program 2

ifstream infile (“salary”); // creates infile and
............. // connects “salary” to it

The connection with a file is closed automatically when the stream object
expires(when the program terminates). In the above statement, when the program 1 is
terminated, the salary file is disconnected from the outfile stream. Similar action takes place
when the program 2 terminates.

Instead of using two programs, one for writing data(output) and another for reading
data(input), we canuse a single program to do both the operations on a file. Example,
ofstream outfile(“‘salary”);

outfile.close(); //disconnect salary from
ifstream infile(“salary”); //outfile and connect
............ // to infile
infile.close(); //disconnect salary from infile

We created two file stream objects, outfile(to put data to the file) and infile (to get
data from the file). The statement outfile.close(); disconnects the file salary from the output
stream outfile and connecting the salary file to infile stream to read data.

Following program uses a single file for both writing and reading the data. First, it takes data
from the keyboard and writes it to the file. After the writing is completed, the file is closed.
The program again opens the same file, reads the information already written to it and
displays the same on the screen.
// Creating files with constructor function
#include<iostream.h>
#include <fstream.h>
int main()
{

ofstream outf(“ITEM™); //connect ITEM file to outf

cout<<“Enteritem name:”;

char name [30];

cin>>name; //get name from keyboard and
Outf<<pame<<*“\n”; /I write to file ITEM
cout<<* Enter item cost:”;
float cost;
cin>>cost; //get cost from keyboard and
outf<<cost<<*\n”; /fwrite to file ITEM
outf.close();

ifstream inf(“ITEM”); //connect ITEM file to inf

134

inf>>name; /lread name from file ITEM
inf>>cost; /lread cost from file ITEM
cout<<*“\n”;

cout<<“Item name:”<<name<<“\n”;

cout<<*“Item cost:’<<cost<<*\n”;

inf.close(); // Disconnect ITEM from inf
return 0;

H

Output of the program
Enter item name : CD-ROM
Enter item cost : 250
Item name : CD-ROM
Item cost : 250

Opening Files using open()

The function open() canbe used to open multiple files that use the same stream
object. For example, we may want to process a set of files sequentially. In such cases, we
may create a single stream object and use it to open each file in turn.

File-stream-class stream-object;
Stream-object. open(“filename”);

Example
ofstream outfile; // Create stream (for output)
outfile .Open(“DATA1”); //connect streamto DATA

Outfile.close(); //Disconnect stream from DATA1
outfile.open(“DATA2”); //connect streamto DATA?2

..........

Outfile.close(); //Disconnect stream from DATA2

The above program segment opens two files in sequence for writing the data. The first file is
closed before opening the second one.

// Creating files with open() function
#include <iostream.h>
#include <fsream.h>

135

int main()

{

ofstream fout; /I create output stream
fout.open(“country”); //connect country to it
fout<<*“United States of America\n”;
fout<<“United Kingdom\n”;
fout<<“South Korea\n”
fout . close(); // disconnect “country” and

Fout.open(“capital”); //connect “capital”
fout<<“Washington\n”;

fout<<*“London\n”;

fout<<“Seoul\n”;

fout . close(); // disconnect “capital”
// Reading the files

const int N = 80; // size of line
ifstream fin; // create input stream

fin.open(“country”); //connect “country” to it
cout<<“contents of country file\n”;

while (fin) // check end-of-file

{

fin.getline (line, N); //read a line
cout<<line; /[display it

Fin . close(); //disconnect “country” and

fin . open(“capital”); //connect “capital”
cout<<‘“\ncontents of capital file \n”;
while (fin)
{
fin.ge tline (line, N);
cout<<line;
}
fin.close();
return 0;

}

contents of country file
United States of America
United Kingdom

South Korea

contents of capital file
Was hington

London

Seoul

136

DEPARTMENT OF PHYSICS
GOVERNMENT ARTS AND SCIENCE COLLEGE, NAGERCOIL
Internal Test 1 (12.10.2020)

SMPHS2 — Computer Programming in C++
Time: 1 hour Total: 20 marks

Submit before 10.45am

Part A(2x1=2)
Answer all the Questions

1. The first character of ---------- must be an alphabet or underscore.
2. The --------- is an entry control loop.

Part B(2x5=10)
Answer all the Questions

3. Write about Type casting and its types.
4. Discuss the declaration and initialisation of a strings in Arrays.

Part C(1x8=8)
Answer any one
5. (1) What are operators. (2)
(i1) Describe the Arithmetic, Relational and Logical operators in C++
language with examples.(6)
[OR]
6. Explain in detail the declaration and initialisation of one dimensional
Array with one example.

DEPARTMENT OF PHYSICS

GOVERNMENT ARTS AND SCIENCE COLLEGE, NAGERCOIL

Time :

10.

11.

12.

Internal Test 1 (27.10.2020)
SMPHS2 — Computer Programming in C++
1 hour Total: 20 marks
Submit before 10.45am

Part A(2x1=2)

Answer all the Questions

The purpose of math library function log(x) is -.
To declare a reference variable or parameter, precede the variable's name with the --

Part B(2x5=10)
Answer all the Questions

Explain inline function with example.
Explain function overloading with example.

Part C(1x8=8)
Answer any one
With an example, explain the types of user defined functions in detail.

[OR]

(i). Write the difference between structure and class in C++.
(i)). Explain in detail specifying a class in C++.

DEPARTMENT OF PHY SICS
GOVERNMENT ARTS AND SCIENCE COLLEGE, NAGERCOIL

Unit Test 1 (17.09.2020)

Submit before 11am

Time : 1 hr Total: 20 marks
Computer Programming in C++
Part A(2x1=2)

1. Every C++ program must include
header file
(a) stdio.h (b) conio.h
(¢) 1ostream.h (d) math.h
2.What will be the output of this program

#include <iostream>
int main()

{
std::cout<< "Welcome!”;
return(;

Part B(2x5=10)
3.Explain the Hierarchy of Arithmetic Operators using One example.
4. Write about variables and constants in C++.

Part C(1x8=8)
Answer Any one
5. Explain the following control statements
a. Nested if
b. do — while loop

(OR)

6. Explain the structure of a simple C++ program and write a program to add two numbers
with output.

DEPARTMENT OF PHYSICS
GOVERNMENT ARTS AND SCIENCE COLLEGE, NAGERCOIL
MODEL EXAMINATION (16.11.2020)

SMPHS52 — Computer Programming in C++
Time :3 hours Total: 75 marks
Submit before 6pm
Part A(10x1=10)

Answer all the questions
Choose the correct answer

1. Identifiers are -------------
a) user defined name b) keywords
¢) predefined name d) reserve words

2. OOPs give more importance to

(a) Class (b) Object

(c) Data (d) Algorithm

3. The ---------- statement reads all types of data values

a)scanf() b) printf()

c)puts() d)abs()

4. Default arguments are useful in situation when some argument always have------ value
(a) same (b)smaller

(c) higher (d) different

5. Which of the following feature of C++ is operator overloading

(a) polymorphism (b) inheritance
(c) datahiding (d) encapsulation
6. A ——-mmmmmme is defined as a block of statements which are repeatedly executed for a certain

number of times

a) if b) switch

c) loop d) break

7.A Derived class with only one base class called
(a)single inheritance (b) multiple

(¢) multilevel (d) friend function

8. The stream that supplies data to the program is known as

(a) input stream (b) output stream

(c) Data steam (d) Both (a) and (b)
9. The ----------- function specifies the the number of digits to be displayed after a
decimal point of a float value
(a) setw() (b)setprecision()
(c)setfill() (d) endl
10. A class containing pure virtual function is are known as
(a) Abstract class (b) Base class
(c¢) Derived class (d) Private class

Part B (5x5=25)

Answer all questions choosing either (a) or (b)
Each answer should not exit 250 words

11. (a)Explain the various user defined data types. (OR)
(b)Discribe declaration of variables
12. (a)Write about function prototyping with suitable example. (OR)
(b) Write a C++ program that the function without arguments and no return value and
explain
13. (a)Explain defining member function (OR)
(b)Explain parametrized construction
14. (a)Describe how unary and binary operators are overloaded (OR)
(b)Explain hybrid inheritance
15. (a)Explain the overview of stream in C++ (OR)
(b)Explain file pointers
Part C (5x8=40)

Answer all questions choosing either (a) (OR) (b)
Each answer should not exit 600 words

16.(a) Explain the following control statements
(i). Nested if
(ii). do — while loop
(OR)

(b) Explain the structure of a simple C-++ program and write a program to add two
numbers with output.

17. (a) Explain one dimensional and two dimensional arrays in C++ with example program

(OR)
(b) Describe the usage of main () function in C++ program
18.(a) Describe the concept of nesting of Member function with example (OR)
(b)Interpret the usage of multiple constructors in a class
19. (a)lllustrate the concept of multilevel inheritance (OR)
(b)Briefly explain the term arithmetic operation in pointers
20. (a)Describe unformatted and formatted 1/O operations (OR)

(b)Explain opening and closing a file.

(6 Pages)

Code No. : 40561 E

Time : Three hours

13

10.

11.

Reg. No. i

B.Sc. (CBCS) DEGREE EXAMINATION,
NOVEMBER 2019.

Fifth Semester
Physics — Main
COMPUTER PROGRAMMING IN C++

(For those who joined in July 2017 onwards)

PART A — (10 X 1 = 10 marks)
Answer ALL questions.
Choose the correct answer :

The smallest individual units in a program are
known as

(a) System () Token

(©) Array (d) Bytes

ANSI C++ all character in a mname are
(a) Significant () Insignificant

(¢) Identical (d) None

A class an inherit properties form more than one

class which is known a inheritance.
(a) Multiple (b) Single

(¢) Multilevel (d) None

A stream is a sequence of

(a) Unit (b) System

(c) Bytes (d) Token

To clear specified flags related function

(b) Istream

Main()

(a) Unsetf()
(¢) Ostream (d)

PART B — (5 % 5 = 25 marks)
Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

(a) Describe the various user defined data types,
such as structure and classes.
Or
(b) Discuss declaring variables.

Page 3 Code No.: 405661 K

Sub. Code : SMPH 62

Maximum : 76 marks

12.

13.

15,

In C++ the main() returns o value of type
to the operating systom,

(n) Istream (b) Ostream

(¢) int () None

Default argumonts are useful in wituation when
some nrgument nlways have ——————— value.
(n) same (b) smaller

(©) higher () different

Class function describe how the class function are
(a) activated (b) increane

() implemented (d) decrease

A private function object cannot invoke using a
Operator.

(b) Dot

Program

(a) System
(c) Point (d)

The unary minus when applied to an object should

change the of each of its data item.
(a) Sign (b) Length
(c) Bytes (d) Character

Page2 Code No.:40561 E

(a) Explain function with no argument and no

return values.
Or

() Demonstrate how function overloading is

used in a C++ program.
(a) Explain the term of static class member.
Or
(b) Explain the parameterized constructor.

(a) Demonstrate how unary and binary operator

are overloaded.
Or
(1) Explain the term virtual base class,
(n) lixplain the overview of stream in CH+,
Or

(b) Hlustrate the use of manipulatars for
minaging outpul,

Code No. : 10661 E
(P.T.0]

Page 4

20. (a) Describe unformatted and formatted I/O

PART C — (5 x 8 = 40 marks)
Answer ALL questions, choosing either (a) or (b). operations.
Each answer should not exceed 600 words. Or
16. (a) Outline the various types of expression used (b) E:m.s.mﬁm the use of file pointers and their
Pl At manipulators. :
Or
(b) Explain the various variables used in C++
program.
17. (a) Briefly explain term calling by reference and
return by reference.
Or
(b) Describe the usage of Main() function in a
C++ program.
18. (a) Describe the concept of nesting of member
function.
Or
(b) Interpret the usage of multiple constructors
in a class.
19. (a) Ilustrate the concept of multilevel
inheritance.
Or
(b) Briefly explain the term arithmetic operation
Page 6 Code No. : 40561 E

on pointer.

Page 5 Code No.: 40561 E

(6 pages) Reg. No.:

Code No.:41123 E Sub. Code : JMPH 41
B.Se. (CBCS) DEGREE EXAMINATION,
NOVEMBER 2018.

Fourth Semester
PhYéics' — Main

COMPUTER PROGRAMMING IN G+
(For those who joined in July 2016 and afterwards)
~ Time : Three hours - Maximurn : 75 marks
| PARTA —({(10x 1=10 marké)
2 Answer ALL questions.

- Choose the correct answer :

I - are primary run time entities in an
object oriented programming.

(a) Classes
(b) Objects
(¢) Variables
(d) Members:

L

The . statement .cause skipping of the

stateﬁents till the end of a loop.
(a) Stop ~ (b) Change
(c) .Conﬁnue_ | (d) Run

In C++ manipulators are used to format the

display
@) Screen - (b) Data

() Character (d) String

A Non-member function that can access the
private data of class is known as |

(a) Friend function

(b) Static function

(¢) Member function

(d) Library function

Tem-plates are skeleton to
(a) Objects |

(b) Conétructo_rs

(¢) Classes

(d) Member variables

Page 2 Code No.: 41123 E

11.

12.

13.

14.

PARTB = (6 x5 =25 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 250 words.

(a)

(b)
(a)

(b)

(a)

(b)

- example.

What are the datatypes in C++7?
Or °
Define C++ operator.

Write a program to implement function
cverloading.

Or

Discuss the inline function.
Briefly explain the objects and classes in C++.

Or '

Discuss about dynamic constructors with
example. 'z

Define polymorphism and virtual function.

Or--

Explaiﬁ Multiple inheritance with suitable

Page 4 Code No.:41123E
SE=HE o

16.

g

. 18.

| (a)

(b)

Write a progran to create a file of characters.

Or

Write short notes on: formatted console /O
Operation.

PART C — (5 x 8 = 40 marks)

Answer ALL questions, choosing either (a) or (b).

Each answer should not exceed 600 wards.

(2)

)

(a)

(b)

(a) |

(h)

Write a C++'program to find all possible roots
of a Quadratic equation Ax*+Bx+C =0.

Or

Explain the basic concepts of object oriented
programming. '

Write a C++ program to find the area of circle,
triangle using function overloading.

Or
Explain about friend functions with examples.
[lustrate the rule for Copy constructors.

Or

What are nesting member functions? Explain
with suitable program segments.

Page5 Code No, : 41 123 E

9.

20.

(b)

_- (a)

(b)

Explain hierarchical ' Inheritance with a

‘program

Or
Write a C++ program to implement ‘this’

pointers.

Explain Varioué formatted 1/0.
Or

What are data files? Explain the functions
used for different operations on data files in
CH++. | -

Page 6 Code No.: 41123 E

