COMPUTER ARCHITECTURE SYLLABUS

Objective: To gain knowledge about the architecture of computer and to understand the
concepts of CPU, ALU Design, /O Instruction format and different processors.

UNIT | Basic Computer Organisation And Design : Instruction codes - Computer
Registers - Computer Instructions - Timing and Control - Instruction Cycle - Control
Memory-Address Sequencing (12L)

UNIT II Central Processing Unit : General Register Organization — Stack Organization —
Instruction Formats — Addressing Modes — Data transfer and manipulation — Program
Control. (12L)

UNIT [l Computer Arithmetic : Hardware Implementation and Algorithm for Addition,
Subtraction, Multiplication, Division-Booth Multiplication Algorithm-Floating Point Arithmetic.
UNIT IV Input Output Organization : Input — Output Interface — Asynchronous data
transfer — Modes of transfer — Priority Interrupt — Direct Memory Access (DMA). (12L)

Unit V Memory Organisation: Memory Hierarchy - Main memory - Auxillary memory -
Associative memory - Cache memory - Virtual memory. (12L

Text Book: Computer system Architecture - by Morris Mano, Third Edition. P.H.I Private
Limited.

Reference Books:

1. Computer System Architecture P.V.S. Rao PHI

2. Nirmala Sharma, "Computer Architecture”, First Edition,2009,University Science Press

3. Nicholos Carter, "Computer Architecture” ,2006, TMH Publication.

Computer Architecture Page 1 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

1

COMPUTER ARCHITECTURE
INSTRUCTION CODES

The organisation of the computer is defined by its internal registers, timing and control structure
and the set of instructions that it uses.
The internal organization of a digital system is defined by the sequence of micro operations it
performs on data stored in its registers.
The general purpose digital computeris capable of executing various micro operations and also can
be instructed as to what specific sequence of operations it must perform.
The user of a a computer can control the process by means of a program. A program is a set of
instructions that specify the operations, operands and the sequence of the processing.
A computer instruction is a binary code that specifies a sequence of micro operations for the
computer.
Instruction codes together with data are stored in memory. The computer reads each instruction
from memory and places it in a control register.
The control interprets the binary code of the instruction and proceeds to execute it by issuing a
sequence of micro operations.
Every computer has its own unique instruction set.
The ability to store and execute instructions, the stored program concept is the most important
property of a general purpose computer.
Instruction Code: An instruction code is a group of bits that instructs the computerto performa
specific operation. It is usually divided into parts. The most basic part of an instruction code is its
operation part.
The operation code of an instructionisa group of bits that define such operations as add, subtract,
multiply, shift and complement.
The number of bits required for the operation code of aninstruction depends onthe total number
of operations availablein the computer. The operation code consist of atleast n bits for a given 2"
distinct operations
Eg. For ADD operation, the operation code consists of six bits 110010 when the operation code is
decodedinthe control unit. The computerissues control signals to read an operand from memory
and add the operand to a processor register.
An operationis part of an instruction stored in computer memory. It is a binary code that tells the
computer to perform an spcecific opration.
The control unit receives instruction from memory and interprets the operation code bits. It then
issuesasequence of control signal toinitial the micro operations in internal computer registers for
the hardware implementation. Soitis called as macro operations because it specifies a set of micro
instruction.
Instruction code not only specifies the operation but also the registers or the memory words where
the operands are to be found and also the register or memory word where the resultis stored.

Computer Architecture Page 2 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

a) Stored Program Organisation

>

Y

Simple way to organize a computeristo have one processorregisterand an instruction code format
with two parts. The first part specifies the operation to be performed and the second specifies an
address.

The memory address tells the control where to find an operand in memory. The operand is read
from memory and used as the data to be operation on together with the data stored in the
processor register.

Memory
4096 x 16

__’___...-'-"'_'__‘"-...___‘_h__’_

15 12 11 0

Opcode Address Instructions
(program)

Instruction format

15 0
. rands
Binary operand Oﬁam)

Processor register
(accumnulator or AC)

In the above figure, Instructions are stored in one section of memory and data in another.

For a memory unit with 4096 words, 12 bits specify an address 2'*=4096, if we store each instruction
code in one 16 bit memory word, 4 bits for operation code and 12 bits for address of an operand.
Computersthat have a single processor register usually assign toitthe name Accumulator and label
it AC. The operation is performed with the memory operand and the content of AC.

Ifan operationin an instruction code does not need an operand from memory, rest of the bits can
be used for other purposes. Eg. Operations such as Clear AC, complement AC and increment AC
operate on data stored in AC register.

It is convenient to use the address bits of an instruction code not as an address but as actual
operand.

When the second part of the instruction code specifies an operand, the instruction is called as
immediate operand.

When the second part of an instruction specifies the address of an operand, the instructionis said to
have a direct address.

When the second part of an instruction designate an address of a memory word in which the
address of the operand is found, this instruction is called as Indirect Address.

Computer Architecture Page 3 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

15 14 12 11 0
| 1 i Opeode Address

(a) Instruction format

Memory Memory
2 UlADDl as7 35 1|ADD| 300
300 1350
457 Operand
1350 Operand
—— e
| L]
(b) Direct address {c) Indirect address

In the above figure a, consists of a 3 bit operation code, a 12 bit address and an indirect address
mode bit designated by |. The mode bit is O for direct address and 1 for an indirect address.

In figure b, itis placed in address 22 in memory. The | bits is 0, so the instruction is direct address.
The opcode specifiedinan ADD instruction and the address part is the binary equivalent of 457. The
control finds the operand in memory at address 457 and adds it to the content of AC.

In figure c, the instruction in address 35 has a mode bit I=1, it is recognized as an indirect address.
The address part is the binary equivalent of 300.The control goes to address 300 to find the address
of the operand which is 1350 is then added to the content of AC. The indirect address instruction
needstwo references to memory to fetch an operand. First reference is to read the address of the
operand and the second is the operand itself.

Effective address is the address of the operand or the target addressina branch type instruction. So
effective address of figure b is 457 and figure cis 1350.

2. COMPUTER REGISTERS
> The computer needs processor registers for manipulating data and a register to hold the memory

address. The lists of registers for the basic computer are

Computer Architecture Page 4 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

Register Number

symbol of bits Register name Function

DR 16 Data register Holds memory operand

AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character

» The memory unit has a capacity of 4096 words and each word contains 16 bits. Twelve bits specify
the address of an operand. 3 bits for the operation part of the instruction and one bit to specify
direct orindirect address.

Data Register (DR) holds the operand read from memory

Accumulator register (AC) is a general purpose processing register.

The instruction read from memory is placed in the instruction register (IR)

The temporary register (TR) IS used for holding temporary data during the processing.

The Memory Address Register (AR) has 12 bits which is the memory address.

The program Counter (PC) has 12 bits and it holds the address of the next instruction to be read
from memory after the current instruction is executed.

Two registers used forinputand output. The input register(INPR) receives an 8 bit character from an
input devices. The output register (OUTR) holds an 8 bit character for an output device.

YV VYV VY

Y

1 0
[« |
Memory
4096 words

15 0 16 bits per word
E——
15 0 15 0
[TR | | DR |
7 0 7 0 15 0
[oure | | mer | | AC |

a) Common Bus System

» The basic computer has 8 registers, a memory unit and a control unit. Paths must be provided to
transfer information from one register to another and between memory and registers.

» The outputs of 7 registers and memory are connected to the common bus.

» The specificoutputisselected forthe bus lines at any given using the binary value of the selection
variables S,, S, So. The output of DR is 3, then the 16 bit outputs of DR on the bus lines S,5,5,=011.

Computer Architecture Page 5 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

el s - %
Al res
| T
Wrise Read
] AR | 3
|1 S
LD INR L& B 3
I C —t——— |2
| 8) INR (& B s
—- oR Al + -2
1
LD INR CLR
wed = { A ;— a
oS
I" b | | R
Lo INR CLR
| o]
r 1
| i Al 3
I [
L
-
Chock

> Four Registers DR, AC, IR and TR have 16 bits each. Two registers AR and PC have 12 bits. The input
register INPR and output register OUTR have 8 bits each.

» 16 lines of the common bus receive information from 6 registers and the memory unit. The bus

lines are connected to the inputs of 6 registersand memory.

Five registers have 3 control inputs LD(load), INR(increment) and CLR(clear).

The input data and output data of the memory are connected to the common bus, but the memory

Y VYV

addressisconnected to AR.

Any register can receive the datafrom memory aftera read operation except AC.

The 16 inputs of ACcome from an adderand logiccircuit.

One setof 16 bitinputs come fromthe outputs of AC.

Second setof 16 bitsinputs come from data register DR. Theyare used for arithmeticand logic
micro operations such as ADD DR to AC or ANDDR to AC. The result of additionis transferred to AC
and end carry out of additionistransferredtoflip flop E.

» Thirdset of 8 bitinputscome fromthe inputregister INPR.

YV V V

Eg. DR < ACand AC < DR.

> Thiscan be done by placingthe content of ACon the bus enablingthe LD input of Dr, transferring
the content of DR through the adderand logiccircuitinto AC and enablingthe LDinput of AC, all
during the same clock cycle.

Computer Architecture Page 6 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

3. COMPUTER INSTRUCTIONS

e The basic computerhasthreeinstruction code formats. Each format has 16 bits. The operation code
part of the instruction contains three bits and the remaining 13 bits depends on operation code.

e A memory reference instruction uses 12 bits to specify an address and one bit to specify the
addressing mode |. 1=0 for direct address and |=1for indirect address.

15 14 12 11 0
I Opcode Address (Opcode = 000 through 110)

(a) Memory - reference instruction

The register reference instruction specifies an operation on ora test of the AC register. An operand
from memory is not needed. The other 12 bits are used to specify the operation or test to be

executed.
15 12 11 0
01 1 1 Register operation (Opcode =111, [=0)

(b) Register - reference instruction

e Similarly an Input Output instruction does not need a reference to memory andis recognized by the
operation code 111 with a 1in the leftmost bit of the instruction. Remaining 12 bits are used to
specify the type of input-output operation or test performed.

15 12 11 0

1 1 1 1 1/0 operation (Opcode =111, [=1)

(c) Input - output instruction

e If the three opcode bits in positions 12 through 14 are not equal to 111, the instruction is a
memory-reference type and the bit in position 15 is taken as the addressing mode I.

e Ifthe three bitopcodeis equal to 111, control theninspectsthe bitin position 15. If this bitis O, the
instruction is a register-reference type. IF the bitis 1, the instruction is an input-output type.

e Only three bits of the instruction are used for the operation code.

e The basic computer instructions are listed in table below.

Computer Architecture Page 7 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

Hexadecimal code

Symbol I=0 I=1 Description

AND Oxxx 8xxx AND memory word to AC
ADD 1xxx Ixxx Add memory word to AC

LDA 2xxx Axxx Load memory word to AC
STA 3xxx Bxxx Store content of AC in memory
BUN 4xxx Cxxx Branch unconditionally

BSA Sxox Dxxx Branch and save return address
ISZ 6XXX Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

e The hexadecimal code is equal to the equivalent hexa decimal number of the binary code used for
the instruction.

e A memoryreference instruction hasanaddress part of 12 bits. The address part isdenoted by three
xxx’s and stand for the 3 hexadecimal digits of 12 bit address. Last bit is designated by symbol I.

e When I=0the last four bits of an instruction have a hexadecimal digit equivalent from 0to 6, since
the last bitis 0. WhenI=1. The lastfour bits of the instruction ranges from 8 to E, since the last bit is
1.

Instruction Set Completeness

The set of instructions are said to be complete if the computer includes a sufficient number of
instructions in each of the following categories.

1. Arithmetic, logical and shift instructions
2. Instructions for moving information to and from memory and processor registers
3. Program control instructions together with instructions that check status conditions

4. Input and output instructions.

Computer Architecture Page 8 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

There is one arithmetic instruction ADD and two related instructions complement AC(CMA) and
increment AC(INC).

Circulate instructions CIR and CIL used for arithmetic shifts . Multiplication and division can be
performed using addition subtraction and shifting.

There are 3 logicoperations AND, Complement AC(CMA) and clear AC(CLA), AND and complement
provides a NAND operation.

Moving information from memory to ACis AC(LDA) instruction

Storing information from AC into memory is done with the store AC(STA) instruction.

Branch instructions BUN, BSA and ISZ together with the four skip instructions.

Input (INP) and Output(OUT) instructions cause information to be transferred between the
computer and external devices.

. TIMING AND CONTROL

The timing for all registers in the basic computer is controlled by a master clock generator. The
clock pulses are applied to all flip-flops and registers in the system, including the flip-flips and
registers in the control unit.

The control signals are generated in the control unit and provide control inputs for the multiplexers
inthe common bus, control inputs in processorregisters and micro operations for the accumulator.
There are two major types control organization: hardwired control and micro programmed control.
In the hardwired organization, control informationis storedin flip-flops, decoders and other digital
circuits. It required changes in the wiring among the various components if the design has been
modified or changed.

In the microprogrammed organization, the control information is stored in a control memory. The
control memory is programmed to initiate the required sequence of microoperations.

The block diagram of the control unitis showninthe figure. It consists of two decoders, a sequence
counter and a number of control logic gates.
An instruction read from memory is placed in the instruction register(IR). The position of this

registeris divided into three parts: the | bit, the operation code and bits 0 through 11.

The operation code in bits 12 through 14 are decoded with 3x8 decoder. The eight outputs of the
decoder are designated by D, through D,.

Bit 15 of the instruction is transferred to flipflop designated by the symbol I. Bits O through 11are
applied to the control logic gates.

The 4 bit sequence counter can count in binary from 0through 15. The outputs of the counter are
decoded into 16 timing signals T, through Ts.

The sequence counterSCcan be incremented or cleared synchronously. The counterisincremented
to provide the sequence of timing signals out of the 4x16 decoder.

Computer Architecture Page 9 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

e Onceinawhile the counteris cleared to 0,causing the next active timing signal to be T,.

e SCisincrementedto provide timing signals Ty, T4, T,, T; and T, in sequence. At time T,, SCis cleared
to 0, if decoder output D; is active. D;T,; SC & 0.

Instruction register (IR)
[15] 14 13 12 | 1-0 |
1 | omlm
Ly n e g S
& Comrat | s
2 -

Tis e
Ty
15 14 210
4% 16
decoder
* 4
4bit - j—t—— Increment (INR)
sequence |t Clear (CLR)
counter
[la] <—=—— Clock

e Thetimingdiagram shows the time relationship of the control signals.

Clock _-|

Ty Ty Ty Ts N Ty

T hhnnhnihn i
)
n \

T

r \

T

Dy

3=
]

Computer Architecture Page 10 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

The sequence counter SCresponds to the positive transition of the clock. Initially the CLR input of SC
is active.

The first positive clock transition clears SCto 0, whichin turn activates the timingsignal T, out of the
decoder.

To is active during one clock cycle. SC is incremented with every positive clock transition signals
To,T1,T,, T3, T4 and so on. The timing signals will continue with Ts,Ts upto T;5 and back to T,.

A memory read or write cycle will be initiated with the rising edge of a timing signal.

For example the register transfer statement. To: ARé PC specifies a transfer of the content of PC
into AR if timing signal T, is active.

During this time the content of PCis placed onto the bus with §,5,5,=010 and the LD input of AR is
enabled.

The actual transfer does not occur until the end of the clock cycle when the clock goes through a
positive transition.

This same clock transition increments the sequence counter SC from 0000 to 0001, The next clock
cycle has T, active an Ty inactive.

5. INSTRUCTION CYCLE:

A program residing in the memory unit of the computer consists of a sequence of instructions.
The program is executed in the computer by going through a cycle for each instruction.
Each instruction cycle is subdivided into a sequence of sub cycles or phases. The phases are

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory, if the instruction has an indirect address
4. Execute the instruction

1. Fetch and Decode

Initially the program Counter PCis loaded with the address of the firstinstructionin the program. SC
is cleared to 0 with timing signal T,.

Aftereach clock pulse, SCis incremented by one, so timing signals go through a sequence T,, T, T>.
Ty AR« PC

Ty IR<—MI[AR], PC<PC +1
Ty Dy,..., D;<Decode IR(12-14), AR < IR(0-11), I« IR(15)

Since ARis connected tothe addressinputs of memory, it is necessary to transfer the address from
PCto ARatT,.

The instruction read from memoryis placed inthe Instruction Register IR at T,. At the same time PC
isincremented by one for the next instruction.

AT time T, operation code in IRis decoded, the indirect bitis transferred to flipflop | and the address
part of the instruction is transferred to AR.

The figure shows how the first two register transfer statements are implemented in the bus system.

Computer Architecture Page 11 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

1. Place the content of PC onto the bus by making the bus selection inputs S,S,S, equal to 010.

2. Transfer the content of the bus to AR by enabling the LD input of AR.

T 5
Ty] 51 Bus
Sa
_—
Memary unit T
" Address
4
E Read
| - | a
L al
E LD
J o 1 .
L ol
= o—a
[|
1 - Al ;
LD
Clock
Common bus

Ti: IR<M[AR], PC«<PC +1

To use the timing signal T,, provide the following connections in the bus system.
1. Enable the read input of memory.

2. Place the content of memory on to the bus by making S,5,5,=111

3. Transfer the content of the bus to IR by enabling the LD input of IR.

4. Increment PC by enabling the INR input of PC.

Determine the type of instruction

> Decoder output D7=1, if the operation code is equal tol11,the instruction must be a register
reference instruction or input output type.

» IF D7=0, the operation code must be one of the seven values 000 to 110 specifying a memory
reference instruction. If D7=0 and I=1 we have a memory reference instruction with an indirect
address.

Computer Architecture Page 12 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

Seart
SC «— 0

‘I’ Ta

I AR — PC 1

! .

| IR e— M [AR], PC +— PC 41

]

Drecode operation code in IR (12 —
AR = IR (00— 1103, F IR (15)

14) |

!

(Register or O} =1

=0 (Memory-reference)

D5

(L) =1/L=D (register)
1

(indirect) =I/k=0 {direct)
[|

T T

Ty Ty

Execute
imput-output
instruction
5C «— 0O

Execure
register-reference
instrection
5C «— O

AR — M[AR]

Execute
memaory-reference
instruction
5C+— 0

!

» The micro operation forthe indirect address condition is AR&MI[AR]. Initially AR holds the address
part of the instruction. This address is used for memory read operation.
» The three instruction types are subdivided into four seaparate paths at timing T3.

D3 ITs: AR «— M[AR]
D;1'T3: Nothing
D;I'T;: Execute a registe
.D7 IT;;:

Register-Reference Instructions

r-reference instruction

Execute an input—output instruction

» This has D7=1 and I=0. These instructions use bits 0 through 11 of the instruction code to specify
one of 12 instructions. These 12 bits are available in IR(0-11).

> The first seven register-reference instructions perform clear, complement, circular shift and
increment microoperations onthe ACor E registers. the HLT instruction clears a start stop flip flop S
and stops the sequence counter from counting.
TABLE 5.3 Execution of Regisrer-Reference Insrructions
Dol "y = r {common to all register-reference instructions)
IR(i) = B, [bit in JR(0-11) that specifies the operation]
r: SC+—0 Clear §C
CLA rB,;: AC«0 Clear AC
CLE rB,y E<0 Clear E
CMA rBy: AC—AC Complement AC
CME rBy: E<—E Complement E
CIR rB;: AC<shr AC, AC(15) «— E, E «+ AC(0) Circulate right
CIL rBs: AC<—shl AC, AC(0)—E, E«—.AC(15) Circulate left
INC rBs: AC—AC + 1 Increment AC
SPA rB.: If (AC(15) = D) then (PC«—PC + 1) Skip if positive
SNA rB,: If (AC(15) = 1) then (PC«— PC + 1) Skip if negative
SZA rB;: If (AC = 0) then PC <« PC + 1) Skip if AC zero
SZE rB,: If(E = 0) then (PC«—PC + 1) Skip if E zero
HLT rB,: 5+« 0(5is astart—stop flip-flop) Halt computer
Computer Architecture Page 13 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

6. Control Memory

e The function of the control unitina digital computer istoinitiate sequences of microoperations.
e The number of differenttypes of microoperations that are available inagiven systemis finite.
e The control function that specifies amicrooperationisabinary variable.
e Whenitisin one binary state the corresponding binary operationis executed.
e The activate state of a control variable may be eitherthe 1 state or the O state.
e The control unitinitiates aseries of sequential steps of microoperations.
e The control variable atany giventime canbe represented by astring of 1s and Os called a control
word.
e The control unitinitiates aseries of sequential steps of microoperations.
e The control words can be programmed to performvarious operations on the components of the
system.
e Each word in control memory contains within a microinstruction.
e The microinstruction specifies one or more microoperations forthe system.\
e A sequence of microinstructions constitutes a microprogram.
e Control memory can be a read only memory(ROM)
e The content of the wordsin ROM are fixed and cannot be altered by simple programming.
e ROM words are made permanentduringthe hardware production of the unit.
e Dynamicmicroprogramming permitsamicroprogramto be loaded initially from an auxiliary
memory such as a magneticdisk.
e A memorythatis part of a control unitisreferredtoas a control memory.
e A microprogrammed control unit willhave two separate memories: amain me mory and a control
unit.
e The main memoryisavailable tothe userforstoringthe programs. The contents of main memory
may alterwhenthe data are manipulatied.
e The control memory holds afixed microprogram and cannot be altered by user.
e Each microprogram consists of microinstructions that specify various internal control signals for
execution of register microoperations.
e These microinstrucitons generate the microoperations to fetch the instruction from main memory;
to evaluate the effective address to execute the operations specified by the instruction.The block
diagram of the microprogrammed control organisation is shown below.

Computer Architecture Page 14 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

e The control address register holds the address of the next microinstruction and the control data

Figure 7-1 Microprogrammed control organization.

E,'“emtal aljg.: ts-s Control Control Control ng“r;)l
tnpu © ¢ . address > memory - data
(sgee;:;alcc:;) register (ROM) register

Next-address information

e Registerholdsthe microinstruction read from memory. The microinstruction contains a control
word that specifiesone ormore microoperations forthe dataprocessor. Once these operations are
executed, the control must determinethe nextaddress.

e Thenextaddressgeneratoris called amicroprogramsequencerasitdeterminesthe address
sequene thatisread from control memory.

e The control data register holds the present microinstruction while the next address is computed and
read from memory. The data registeris called a pipeline register.

7. ADDRESS SEQUENCING

e Microinstructions are storedin control memoryin groups.

e Each computerinstruction hasits own microprogram routine in control memory to generate the
microoperations that execute the instruction

e The hardware that controls the address sequencing of the control memory must be capable of
sequencing the microinstructions within aroutine and be able to branch from one routine to
another.

e Aninitial addressisloadedinto the control address registerwhen poweristurnedoninthe
computer.

e Thefetchroutine maybe sequenced by incrementing the control address registerthrough the
rest of its microinstructions.

e Attheendof the fetchroutine, the instructionisinthe instruction register of the computer.

e Thenextstepisto generate the microoperations that execute the instruction fetched from
memory.

e The microoperation stepsto be generated in processorregisters depend on the operation code
part of the instruction.

e The mappingprocedureisa rule that transforms the instruction code into a control memory
address.

e Oncetherequiredroutineisreached, the microinstructions that executethe instruction may be
sequenced by incrementing the control address register.

Computer Architecture Page 15 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

Microprogram that employ subroutines requirean external register for storing the return
address.

The address sequencing capabilities required in control memory are

1. Incrementing the control address register

2. Unconditional branch or conditional branch depending on status bit conditions

3. A mapping process fromthe bits of the instruction to an address fro control memory

4. A facility forsubroutine call and return.

Conditional Branching:

The branch logic provides decision making capabilities in the control unit.

The status conditions are special bitsin the systems that provide parameterinformation such as
carry-out of an adder, sign bit of a number, mode bits, input output status conditions.

The branch logicis test the specified condition and branch to the indicated address if the
conditionis met, otherwise the address registerisincremented.

I Instruction code |

1

Starus
bits

Mapping
logic
Y ;
Branch MUX .
logic pr Multiplexers
Subroutine
register
(SBR)
A
Control address register
Clock B £
o (CAR)
, Incrementer
i
Control memory
Select a status |
bit
Microoperations
Branch address

Three bitsinthe microinstruction are used to specify any one of eight status bit conditions.

Computer Architecture Page 16 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

e Thesethree bits provide the selection variables for the multiplexer.
e Ifthe selectedstatusbitisinthe 1 state, the output of the multiplexeris 1; otherwise itisO.

e A1l outputinthe multiplexergeneratesacontrol signal to transferthe branch address from the
microinstructioninto the CAR.

e A0 outputinthe multiplexercausesthe addressregisterto be incremented.

Mapping of instruction:

Opcode
Computer instruction; 1011 address _|

Mapping bits: D= x x x|0 0

Microinstruction address: |D L0110 DI

One simple mapping process that converts the 4 bit operation code to a 7 bit address of control
memory.

This mapping consists of placing a 0 in the MSB of the address, transferring the 4 operation code bits
and clearing the two LSB of the CAR.

Subroutines:

e Subroutines are programs that are used by other routines to accomplish a particular task.
e Asubroutine can be called from any point within the main body of the microprogram.

e Microprogram that uses subroutine have provision for storing the return address during a
subroutine call and restoring the address during a subroutine return,

e Avregisterfilethatstoresaddresses forsubroutineisto organize the registersinalastin first out
stack.

&&&&&&EZ&E R &R E L& EE&EE & E&EE&E & &E & & &R &R E & E & & & & & & & &R & &R & &

Computer Architecture Page 17 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

UNIT -2

Central Processing Unit : General Register Organization — Stack Organization -

Instruction Formats — Addressing Modes — Data transfer and manipulation — Program

Control. (12L)

1. GENERAL REGISTER ORGANISATION

e When a large number of registers are included in the CPU, it is most efficient to connect
them through a common bus system.

e The registers communicate with each other not only for direct data transfers, but also for
various microoperations.

e The bus organization for seven CPU registers is shown in figure. The output of each register
IS connected to two multiplexers to form the two buses A and B.

e The selection lines in each multiplexer select one register or the input data for the particular

bus.

General Register Organization

Register

* Memory locations are needed for storing °[“‘ g
pointers, counters, return address, temporary
results, and partial products during multiplication
(

e Memory access is the most time-consuming
operation in a computer

* More convenient and efficient way is to store -
intermediate values in processor registers 17 iems m{ﬂ MUX | | MUX E}“E”’

Bus organization for 7 CPU registers : Fig. 8-2
e 2 MUX : select one of 7 register or external data —

P S S
n
=

input by SELA and SELB 1T
» BUS A and BUS B : form the inputs to a TR -
common ALU B L
o ALU : OPR determine the arithmetic or logic
microoperation
» The result of the microoperation is available for e_,m_of_:“
external data output and also goes into the inputs B q 0 5
of all the reqgisters [SELA [sELB [sED] oOPR |
¢ 3 X 8 Decoder : select the register (by SELD) e i mert

that receives the information from ALU

e The operation selected in the ALU determines the arithmetic or logic microoperation that is
performed.

e The result of the microoperation is available for output data and also goes into the inputs of
all the registers.

e The register that receives the information from the output bus is selected by a 3x8 decoder.

Computer Architecture Page 1 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

The control unit that operates the CPU bus system directs the information flow through the
registers and ALU by selecting the various components in the system.
For eg. R1+—R2+R3

1. MUX A selector (SELA) to place the content of R2 into bus A.

2. MUX B selector (SELB) to place the content of R3 into bus B.

3. ALU operation selector (OPR) to provide arithmetic addition A+B

4. Decoder destination selector(SELD) to transfer the content of the output bus into R1.

e The four control selection variables are generated in the control unit must be available at the
beginning of a clock cycle.

e The data from the two source registers propagate through the gates in the multiplexers and
the ALU to output bus and into the inputs of the destination register all during the clock cycle
interval.

e Control word: There are 14 selection inputs in the unit and their combined values specify a
control word.

e Three fields contain three bits each and one field five bits.

e The three bits of SELA select a source register for the A input of ALU.

e The three bits of SELB select a register for the B input of the ALU.

e Three bits of SELD select a destination register using the decoder

4 Binary selector input | Rl<— R2+R3
e 1) MUX A selector () : to place the content of R2 into BUS A
e 2) MUX B selector () : to place the content of R3 into BUS B
e 3) ALU operation selector () : to provide the arithmetic addition R2 + R3
e 4) Decoder selector () : to transfer the content of the output bus into R1

4 Control Word
e 14 bit control word (4 fields) : Fig. 8-2(b)
» SELA (3 bits) : select a source register for the A input of the ALU
» SELB (3 bhits) : select a source register for the B input of the ALU } Tab. §-1
» SELD (3 bits) : select a destination register using the 3 X 8 decoder
» OPR (5 hits) - select one of the operations in the AL e | g, §-2
e Encoding of Register Selection Fields : Tab. 8-1
» SELA or SELB = 000 (Input) : MUX selects the external input data

» SELD =000 (None) - no destination register is selected but the contents of the output
bus are available in the external output

¢ Encoding of ALU Operation (OPR) : Tab. 8-2 _

4 Examples of Microoperations : Tab. 8-3 —
e TSFA (Transfer A) : R7 « R1. External Outpur < R2. External Output < External Input
® XOR ! R5<« 0(XOR R5@ R5)

Computer Architecture Page 2 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

TABLE 8-1 Encoding of Register Selection Fields

Binary
Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

e Theregisterselected byfields SELA, SELB and SELD is the one whose decimal number is equivalent

to the binary number in the code.

e When SELA or SELB is 000, the corresponding multiplexer selects the external input data.

e When SELD=000, no destinationregisteris selected butthe contents of the output bus are available

in the external output.

e ALU provides arithmetic and logic operations and CPU must provide shift operations.

e The OPRfield has five bits and each operation is designated with a symbolic name.

TABLE 8-2 Encoding of ALU Operations

OPR
Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A — B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR Aand B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA
Computer Architecture Page 3 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

TABLE 8-3 Examples of Microoperations for the CPU

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

R1«<R2 - R3 R2 R3 R1 SUB 010 011 001 00101
R4<—R4\/R5 R4 R5 R4 OR 100 101 100 01010
R6<—R6 +1 R6 — R6 INCA 110 000 110 00001
R7«<R1 R1 — R7 TSFA 001 000 111 00000
Output < R2 R2 — None TSFA 010 000 000 00000
Output —Input Input — None TSFA 000 000 000 00000
R4 <shl R4 R4 — R4 SHLA 100 000 100 11000
R5«0 R5 R5 R5 XOR 101 101 101 01100

2. STACK ORGANISATION:

A stack is a storage device that stores information in such a manner that the item stored
last is the first item retrieved. The stack in digital computer is a memory unit with an address
register that can count only after an initial value is loaded into it. The register that holds the

address for the stack is called a stack pointer SP because its value always points at the top item in

the stack. The two operations of the stack are the insertion(push) and deletion(pop) of items.

1. Register Stack,
2. Memory Stack

Stack or LIFO(Last-in, Firsi-Out)

e A storage device that stores information
» The item stored last is the first item retrieved = a stack of tray

e Stack Pointer (SP)

» The register that holds the address for the stack
* 3P always points at the top item in the stack

» Two QOperations of a stack : (nserfion and Deletion of ffems

® PUSH : Pugh-Down = Insertion Rttt
» POP - Pop-Up = Deletion L
s StackZl EF
= 1) Register Stack (Sfack Depth 3¢ 5 =)
= 3 finite number of memory words or registensisnd slone) [(Eu] (o]
®» 2) Memory Stack (Stack Depth 7! 253
= @ portion of 3 large memony i
Register Stack : Fig. 8-3 LI :
] 1
* PUSH sP « 5P +1 - Increment SP .
M[5P]+ DR : Wnte to the stack
IF (5P =0) then (FULL + 1} : Check if stack 1= full
EMTY « 0 : Mark not empiy
Computer Architecture Page 4 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

1. Register Stack:

* A stack can be placed in a portion of a large memory or it can be organized as a
collection of a finite number of memory words or registers.

» The stack pointer register SP contains a binary number whose value is equal to the
address of the word that is currently on top of the stack.

» Three items are placed in the stack: A, B and C . Item C is on top of the stack so that the
content of SP is now 3.

* To remove the top item, the stack is popped by reading the memory word at address 3
and decrementing the content of SP.

* Item B is now on top of the stack since SP holds address 2.

« In a 64-word stack, 2°=64, the stack pointer contains 6 bits because has only six bits it
cannot exceed a number greater than 63.

* When 63 is incremented by 1, the result is 0.

« The one bit register FULL is set to 1 when the stack is full and the one bit register EMTY
is setto 1 when the stack is empty.
PUSH operation and POP operation are given in the figures.

2. Memory Stack:

* A portion of the computer memory partitioned into three segments: program, data and
stack.

» The program counter PC points at the address of the next instruction in the program.

» The address register AR points at an array of data.

» The three registers are connected to a common address bus and either one can provide
address for memory.

» PCis used during the fetch phase to read an instruction.

* AR s used during the execute phase to read an operand.

» SPis used to push or pop items into or from the stack.

» The push and pop operation is shown in figure below.

Also the stack limits is given in the figure below.

Computer Architecture Page 5 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

= The first item is stored at agdress 71, and the last item is stored at address O

POP: DR+ M[5F] : Feead item from the top of stack
5P 5P-1 : Dacrement Stack Pomter
If (SP = 0) then (EMTY « 1) - Check if stack is empty
FULL « 0 - Mark not full -
- [4]] it
& Memory Stack : Fig. 8-4 e m———_
- = Pr
= FUSH: 3F « 3F -1 instructions)
M[5P]« DR
» The first item is stored at address 4000 - Lo
« POP: DR — H[SP] [ooarands)
p SP+1 = Em::[Condition
= j PUSH when FULL = 1 s
Stack Limits —=——, POP when EMTY =1 Btack
« Check for sta::I-; overflow(fuifunder c-w{emp:’y} BT
» Checked by using two register 008
= Upper Limit and Lower Limit Register m
» After PUSH Operation Start Hi # 2001
= SP compared with the upper limit register
» After POP Operation
= 5P compared with the lower lmit register

3. Reverse Polish Notation(RPN)
+ Stack organisation is very effective for evaluating arithmetic expressions.
« Common arithmetic expressions are written in infix notation with each operator written
between the operands. A*B+C*D
» Polish mathematician Lukasiewicz showed that arithmetic expressions represented in
prefix notation is referred to as polish notation.
» Postfix notation is referred to as Reverse Polish Notation(RPN) AB*CD*+

RPN (Reverse Folish Notation)
» The common mathematical method of writing arithmetic expressions imposes
difficulties when evaluated by a computer
» A stack organization is very effective for evaluating arithmetic expressions
« HHVA*B+C*D—=AB*CD*+: Fig. §-5
B (374)+ (576)334756% +

—u 4 —™ 5 5 —d 30
— 3 3 — 12 12 12 12 | — a2
3 4 L 5 6 - +

The procedure for RPN is

» Scan the expression from left to right.

Computer Architecture Page 6 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

* When an operator is reached, perform the operation with two operands found on the left
side of the operator.

* Remove the two operands and the operator and replace them by the number obtained
from the result of the operation.

« Continue to scan the expression and repeat the procedure for every operator until there
are no more operators.

3. INSTRUCTION FORMATS

A Computer will have a variety of instruction code formats. The bits of the instruction are
divided into groups called fields.

The most common fields found in instruction formats are

Fields in Instruction Formats

» 1) Operation Code Field : specify the operation to be performed
¢ 2 Address Field : designate a memaory address or a processaor register
1) Mode Field : specify the operand or the effective address (Addressing Mode)

The operation code field of an instruction is a group of bits that define various processor
operations such as add, subtract, complement and shit.
Computers may have instructions of several different lengths containing varying number of

addresses. Most computers fall into three types of CPU organizations:

3types of CPU organizations ?@
1) Single ACOrg. : ADD X AC « AC+ M|

e) General Register Org. - ADD R1, R2, R} Rl+« R2+E3
» 3) Stack Org. : PUSH X TOS « M[X]
4+ The influence of the number of addresses on computer instruction
X=(A+B)(C+D)

- 4 arithmetic operations : ADD, SUB, MUL, DIV
- 1 transfer operation to and from and : MOV
- 2 transfer operation to and from and : STORE, LOAD
- Operand memory addresses : A, B, C, D
- Result memory address : X

Instructions may have three address, two address, one address, zero address and RISC
instructions.

Computer Architecture Page 7 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

1. Three-Address Instructions:
Computers with three address instruction formats can use each address field to specify either a

processor register or a memory operand.

¢ 1) Three-Address Instruction
ADD ELAB Rl « M[A]+ M[F]
ADD RyLC,D R M[C]+M[D]
MUL AELER! M[X]+— Rl+*R2
» Each address fields specify either a processor register or a memony operand
#» E Short program
[Require too many bit to specify 3 address

2. Two-address instructions: are common in commercial computers.
Eg. To evaluate X=(A+B)*(C+D) is as follows:

¢ 2) Two-Address Instruction
MOV Rl A Rl M[A]
ADD R1, B Rl « Rl1+ M[E]
MOV R, C R2 ¢« M[C]
ADD R, D R2 ¢« R2+ M[D]
MUL El E? Kl+«— Rl*R2
MOV iRl M[X]« Rl

¥ The most common in commercial computers
» Each address fields specify either a processor register or a memory operand

3. One-Address instruction: use an implied Accumulator Register(AC) for all data

manipulation. The program to evaluate X=(A+B)*(C+D) is as follows:

LOAD A AC & M[A]
ADD B AC &« A[C]+ M[B]
STORE T M[T]+ AC

LOAD C AC « M[C]

ADD D AC &« AC + M[D]
MUL T AC &« AC *M[T]
STORE X M[X]+ AC

= All operations are done between the AC register and memory operand

4. Zero-Address Instruction: A stack organized computer does not use an address field for the

instruction Add and MUL. The PUSH and POP instructions need an address to specify the

Computer Architecture Page 8 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

operand that communicates with the stack. The program to evaluate X=(A+B)*(C+D) is as
follows:

PUSH A TOS «— 4
PUSH B TOS «+— B
ADD TOS « (4 + B)
PUSH C TOS « C
PUSH D TOS « D

ADD TOS « (C+ D)
MUL TOS « (C +D)*(4 + B)
POP X M[X]« TOS

» Stack-organized computer does not use an address field for the instructions ADD, and
MUL

= PUSH, and POP instructiions nesd an address field to specify the operand
® Zero-Address | absence of address (ADD, MUL)

4. RISC instructions: The advantages of a reduced instruction set computer architecture is
restricted to the use of load and store instructions when communicating within the registers of
the CPU without referring to memory.

« Only use LOAD and STORE instruction when communicating between memony
and CPU

¢ All other instructions are executed within the registers of the CPLU without
referring to memony

* Programtoevaluate X =(A+B)*(C+ D)

LOAD Rl A Rl « M[4]
LOAD R.LB R2 « M[B]
LOAD R3,C R3 & M[C]
LOAD R4,D R4 « M[D]
ADD R1,R1,R2 Rle R1+R2
ADD R3,R3,R4 Ri« R3+R4
MUL R1,R1,R3 Rle R1=R3
STORE X Rl M[X]+« Rl

4. ADDRESSING MODES

The way the operands are chosen during program execution is dependent on the addressing mode
of the instruction. The addressing mode specifies a rule for interpreting or modifying the address
field of the instruction before the operand is actually referenced. Computers use addressing mode

technique for the purpose of the following provisions:

Computer Architecture Page 9 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

+ Addressing Mode.
» 1) To give programming versatility fo the user
» pointers to memory, counters for loop control, indexing of data, ...
¢ Z) To reduce the number of bits in the addressing field of the instruction

The control unit of a computer is designed to go through an instruction cycle that is divided into

three major phases:

Insiruction Cycle
+ 1) Fetch the instruction from memory and PC + 1
» 2) Decode the instruction
+ 3) Execute the instruction

There is one register in the computer called the program counter or PC that has the following
functions.

Program Counter (PC)
+ PC keeps track of the instructions in the program stored in memonry
« PC holds the address of the instruction to be executed next
+ PC is incremented each time an instruction is fetched from memory

The addressing mode is shown in figure. The operation code specifies the operation to be
performed. The mode field is used to locate the operands needed for the operation. There may or

may not be an address field in the instruction. It may designate memory address or a processor
register.

Addressing Mode of the Instruction
+ 1) Distinct Binary Code
» Instruction Format 0l Opcode T &0 @ =M Addressing Mode Field
+ Z) Single Binary Code
® Instruction Formatlfl Opcode 2 Addressing Mode FieldJt | 21 S
Instruction Format with mode field : Fig. §-6

Opcode Mode Address

There are two modes that need no address field at all. These are the implied and immediate

modes.

Computer Architecture Page 10 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

1. Implied Mode:

» Operands are specified implicitly in definition of the instruction
o Examples

 COM : Complement Accumulator

= Operand in AC is mplied in the definition of the instruction
» PUSH : Stack push

= Operand is mplied to be on top of the stack

2. Immediate Mode:

» Operand field contains the actual operand
» Liseful for initializing registers to a constant value
» Example : LD #NBR

3. Register Mode:

« Operands are in registers

» Register is selected from a register field in the instruction
» k-bit register field can specify any one of 2F registers

e Example LD R1 AC « RI

4. Register Indirect Mode:

Selected register contains the address of the operand rather than the operand
itself
» K Address field of the instruction uses fewer bits to select a memory address
» Register 8 select ot= 20| bit <=t 2 H 423
o Example:LD (R1) A4AC « M[RI]

5. Autoincrement or Autodecrement Mode:
 Similar fo the register indirect mode except that

» the register is incremented affer its value is used to access memory
¢ the register iz decrement before its value is used to access memaory

6. Direct Address Mode

» Effective address is equal to the address field of the instruction (Operand)
» Address field specifies the actual branch address in a branch-type instruction

o Example: LD ADR AC&M[.@R]M FPPS——
= 5 [}

)
Computer Architecture Page 11 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

7. Indirect Addressing Mode

» Address field of instruction gives the address where the effective address is
stored in memory

o Example: LD @ADR AC « M[M[4DR]]

Effective address=address part of the instruction+content of CPU register

8. Relative Addressing Mode

¢ PC 5 added to the address part of the instruction to obtain the effective address
o Example: LD $ADR AC « M[PC + 4ADR]

9. Indexed Addressing Mode

¢ XR (Index register) is added to the address part of the instruction to obtain the
effective address

¢ Example: LD ADR(XR) 4C « M[ADR +iR]

10. Base Register Addressing Mode;

e the contentof a %&ji’s@ is added to the address part of the instruction fo
obiain the effecfive address

o Similar fo the indexed addressing mode except that the reqister is now called a
base register instead of an index register
v index register () : LD ADR(XR] AC &« M[4DR + IR] < ADRJIE
w ey register hold an ndex number that is relative to e address part of the mstruction

v baseregisier (BR): LD ADR(BR] AC « M[BR+ 4DR] <} BRII®
w Dase register hold 3 base address
o e address field of the nstruction gives 3 displacement relatve to this base address

)
Computer Architecture Page 12 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

Numerical Example

Adcreesing Moce Effective Addees Content of AC

rrrrediste Addess Mods
Diract Acdrass Mods
Indirect Addrees Mods
Register Mode

Register Indirect Mods
Relstie Address Mods
Indexad Address Mods
Futcancrernemt Mode
Sutodecrasment Mods

1 =400 (after)
R1 =400 -1 {prior)

5. DATA TRANSFER AND MANIPULATION

| (pc-ao) |
201 500
600 BOOD | R1 = 200 |
800 200
400
400 700 | A = Ve |
T2 %
B0 200 | AC |
400 00
200 450
El=400
500 + 202 (PC)
500+ 100 (XF)

Most computer instructions can be classified into three categories:

1. Data Transfer
2. Data Manipulation
3. Program Control instructions

1. Data Transfer instructions:

Name Mnemonic
Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output OouT
Push PUSH
Pop POP

Address

Mamory
200 Loadt AC |Mode
201 Addrass = 500
203 Maxt instructon

305 450

mu-| 700
|

500 B0

00| Boo
|

o2 325

00| 300

Computer Architecture Page 13

Prepared by V.Betcy Thanga Shoba, Asst. Prof in CS, GASC, Ngl.

o Typical Data Transfer Instruction : Tah, 85
» Load : fransfer from memory to a processor register, usually an AC (memory read)

» Store : franser from a processor register info memory (memory wite)

3 Move : ranser from one register to another register

» Exchange : swap information hetween two reqisters or a register and a memory word
3 InputiQutput fransfer data among processor registers and inputfoutput device

» PushiPop : franster data between processar reqiaters and a memory stack

The eight addressing modes of the Load instruction are

TABLE 8-6 Eight Addressing Modes for the Load Instruction

Assembly

Mode Convention Register Transfer
Direct address LD ADR AC «— M[ADR)]
Indirect address LD @ADR AC «— M[M[ADR]]
Relative address LD $ADR AC «— M[PC + ADR]
Immediate operand LD #NBR AC «— NBR
Index addressing LD ADRX) AC «— M[ADR + XR]
Register LD RI1 AC «— R1
Register indirect LD (R1) AC «— MI[R1]
Autoincrement LD (R1)+ AC «— MI[R1], R1 «— R1 + 1

2. Data Manipulation Instruction
a) Arithmetic b) Logical and bit manipulation c) shift instruction

a) Arithmetic Instructions:

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB
Negate (2’s complement) NEG

-
Computer Architecture Page 14 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

b) Logical and bit manipulation Instructions

Name Mnemonic
Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

c) Shift Instructions:

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL

Rotate right through carry RORC
Rotate left through carry ROLC

6. PROGRAM CONTROL

Program Control instructions are the branch and jump instructions.

Name Mnemonic
Branch BR
Jump IJMP
Skip SKP
Call CALL
Return RET
Compare (by subtraction) CMP
Test (by ANDing) TST

a) Status Bit conditions: Status bits are called condition code bits or flag bits. The block
diagram of an 8 bit ALU with a 4 bit status register. The four status bits are symbolized by C,
S,Z and V. The bits are set or cleared as a result of an operation performed in the ALU.

Computer Architecture Page 15 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

ya Cs
_G(8-bit ALU
X
\ § ; Cs
(v Tz <] o
A A 7o
F5
Check for zero output ~
18
4
Output F

Condition code bit or flag bit. The bits are set or cleared as a result of an operation performed in
the ALU.

+ 4-bit status register

Bit C (carry) : set to 1 if the end camy Gy is 1

Bit S (sign) :setto1ifF;is 1

Bit £ (zero) - set to 1 if the output of the ALU contains all 0's

Bit V {(overfiow) - set to 1 if the exclusive-OR of the last two carries (C; and C;) is

equal fo 1
o Flag Example :A-B=A+(2's Comp. OfB): A=11110000, B = 00010100
11110000
+ 11101100 (s comp. of B) ~==, C=1,8=1 F=0,Z=0 |
1 1104100

b) Conditional Branch Instructions

TABLE 8-11 Conditional Branch Instructions

Mnemonic Branch condition Tested condit
BZ Branch if zero Z =1
BNZ Branch if not zero Z=0
BC Branch if carry C=1
BNC Branch if no carry C=0
BP Branch if plus S=0
BM Branch if minus S =1
BY Branch if overflow V=1
BNV Branch if no overflow V=0

Computer Architecture Page 16 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

Unsigned compare conditions (4 — B)

BHI Branch if higher A>B
BHE Branch if higher or equal A>B
BLO Branch if lower A<B
BLOE Branch if lower or equal A<B
BE Branch if equal =B
BNE Branch if not equal A*B
Signed compare conditions (4 — B)
BGT Branch if greater than A>B
BGE Branch if greater or equal A>B
BLT Branch if less than A<B
BLE Branch if less or equal A<B
BE Branch if equal =B
BNE Branch if not equal A+ B

c) Subroutine call and Return:

e CALL - &P« SP -1 : Decrement stack point
M[5P]« PC : Push content of PC onto the stack
PC « Effactive Addresz : Transfer control to the subroutine

» RETURN : PC + M[SP] : Pop stack and transfer to PC
aPf ¢ 5P +1 :Increment stack pointer

d) Program Interrupt

« Program Interrupt
[ransfer program control from a curmently running program to ancther service program
as a rezult of an extemnal or intemal generated request
» Confrol retumns to the onginal program after the service program is executed

e Interrupt Service Program 2 Subroutine Call = =~
1) Aninterrupt is initiated by an intemal or exteem swyen (cxcept for soffware infermupd)
= A subroutine call is initiated from the execution of an instruction (CALL)
¢ 2) The address of the interrupt service program is determined by the hardware
» The address of the subroutine call s determined from the address field of an instrection
¥ 3) An interrupt procedure stores all the information necessary to define the state of the
CPU

» A subroutine call stores only the program counter (Refumn address)

Computer Architecture Page 17 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

» Program Status Word (PSW)
» 1he collection of all status bit conditions in the CPU

» Two CPU Operating Modes
» Supervisor (Sysfem) Mode : Privileged Instruction & %
= When the CPU is executing a program that is part of
the operating system
» User Mode : User program

f

CPU operanng mode 15 determaned from special bues in the PS lFJ

\
e) Types of Interrupt:

There are three major types of interrupts that cause a break in the normal execution of a program.
They can be classified as

1. External interrupts

2. Internal Interrupts

3. Software Interrupts

o 1) Extemal Intermupts
v come from IfQ device, from a iming device, from a circuit
monitoring the power supply, or from any other extemal source

o 2)Intemal Interrupts or TRAP
v caused by register overflow, attempt to divide by zero,
an invalid operation code, stack overflow, and protection violaBion
o J) Software Intermupts
v initiated by executing an instruction (INT or RST)

w Used by the programmer fo initiate an intemupt procadure at any desired point in the
program

-
Computer Architecture Page 18 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

External Int. e
Intermal Int, —e
Software L, =

Lpid gy B] =y
C=te=ct

Crmfemrmiine= the=

m sodress of 1EH

Etocr= Imforrmation

FAmim body of 12R

ISR <4

Festogre Informaticn

Ik e=rru ok
S Fe=furm

Computer Architecture Page 19 Prepared by V.Betcy Thanga Shoba, Asst Prof in CS, GASC, Ngl.

COMPUTER ARCHITECTURE

UNIT Il Computer Arithmetic : Hardware Implementation and Algorithm for Addition,

Subtraction, Multiplication, Division-Booth Multiplication Algorithm-Floating Point Arithmetic.
P.NO 342

1. ADDITION AND SUBTRACTION ALGORTIHM:

Most computers use the signed 2’s complement representation when performing arithmetic
operations with integers.

ADDITION AND SUBTRACTION WITH SIGNED-MAGNITUDE DATA

The magnitude of two numbers be A and B, when the signed numbers are added or subtracted,
there are 8 different conditions depending on the sign of the numbers and the operation
performed. The conditions are listed in the first column of the table.

The other columns show the actual operation to be performed with the magnitude of the
numbers. Last column is needed to prevent negative zero. When two equal numbers are

subtracted the result should be +0 not -0.

TABLE 10-1 Addition and Subtraction of Signed-Magnitude Numbers

Subtract Magnitudes

Add
Operation Magnitudes When A >B WhenA<B WhenA =B
(+A) + (+B) +(A + B)
(+A) + (—B) +(A - B) —(B — A) +(A — B)
(—A) + (+B) —(A - B) +(B — A) +(A - B)
(-A)+(-B) —-(A+B)
(+A) - (+B) +(A - B) —-(B - A) +(A - B)
(+A)-(-B) +(A + B)
(-A)-(+B) —(A+B)
(-A) - (-8B) —(A - B) +(B - A) +(A - B)
Computer Architecture Page 1 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Addition (subtraction) algorithm:

» When the signs of A and B are identical, add the two magnitudes and attach the sign of A to
the result.

» When the signs of A and B are different, compare the magnitudes and subtract the smaller
number from the larger. Choose the sign of the result to be same as A, if A>B or the
complement of the sign of A if A<B.

» If the two magnitudes are equal, subtract B from A and make the sign of the result positive.

» The procedure to be followed for identical signs in the addition algorithm is the same as for
different signs in the subtraction algorithm.

HARDWARE IMPLEMENTATION:

To implement the two arithmetic operations with hardware, the two numbers be stored in
registers. Let A and B be two registers that hold the magnitudes of the numbers and A and B be
two flipflops that hold the corresponding signs. The result of the operation may be transferred to
a third register, if the result is transferred into A and As together form accumulator register.

First a parallel adder is needed to perform the microoperation A+B. Second a
comparator circuit is needed to establish if A>B, A=B or A<B. Third two parallel-subtractor
circuits are needed to perform the microoperations A-B and B-A. The sign relationship can be
determined from an XOR with As and Bs as inputs.

This procedure requires a magnitude comparator, an adder and two subtractors.
Different procedure can be used with less equipment. First subtraction can be accomplished by
means of complement and add. Second the result of the comparison can be determined from the

end carry after the subtraction. So only complementer and adder is needed.

Computer Architecture Page 2 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

The block diagram for implementing addition and subtraction operation is shown in figure.

G [

|
AVF Complementer }-4—|'—— M (Mode control)

\
G T -

Input carry

st
E I A register i-‘-—— Load sum

Figure 10-1 Hardware for signed-magnitude addition and subtraction.

It consists of registers A and B and sign flipflops As and Bs. Subtraction is done by adding A to
the 2°s complement of B. The output carry is transferred to flip-flop E. The add-overflow flipflop
AVF holds the overflow bit when A and B are added.
The addition of A plus B is done through the parallel adder. The S(sum) output of the adder is
applied to the input of the A register. The complementer provides an output of B or the
complement of B depending on mode control. The complementer consists of XOR gates and the
parallel adder consists of full-adder circuits.
M signal is applied to the input carry of the adder.
» When M=0, the output of B is transferred to the adder, the input carry is 0, and the output
of the adder is equal to the sum A+B.
» When M=1, the 1’s complement of B is applied to the adder, the input carry is 1, the
output S=A+B+1. This is equal to A plus the 2’s complement of B, which is equivalent to

the subtraction A-B.

Computer Architecture Page 3 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Hardware algorithm:

The flowchart for the hardware algorithm is shown below. The two signs As and B are compared
by an exclusive OR gate. If the output of the gate is 0, the signs are identical; If it is 1, the signs
are different.

For an add operation, identical signs dictate the magnitudes be added. For a subtract operation,
different signs dictate that the magnitudes be added. The magnitudes are added with a
microoperation EA<—A+B where EA is a register that combines E and A. The carry in E after
the addition constitutes an overflow if it is equal to 1. The value of E is transferred into the add

overflow flipflop AVF.

Subiract operation Auld operation

Minuend in 4 Augend in A
Subtrahend in 8 Addend in B
k

= = =| =0

lAl':'E!' AS*BI

Y F
EA+~A+E+1 EA+~A+B
AVFF+=D

LA mE
AV

A<H A=B
i
A+A =0 =0
F
ArA+] A, +0
A A

b k

(END)
(result is in.4 and 4,)

Figure 10~2 Flowcharm for add and subrract operations.

Computer Architecture Page 4 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

The two magnitudes are subtracted if the signs are different for an add operation or identical
for a subtract operation. The magnitudes are subtracted by adding A to the 2’s complement
of B. No overflow can occur if the numbers are subtracted so AVF is cleared to zero.

A 1 in E indicates that A>=B and the number in A is the correct result. IF the number is zero,
the sign A must be made positive to avoid a negative zero.

A 0 in E indicates that A<B, it is necessary to takes the 2’s complement of A as A«A+1. A
register has circuits for microoperations complement and increment.

The final result is found in register A and its sign in As. The value in AVF provides an

overflow indication. The final value of E is immaterial.

ADDITION AND SUBTRACTION WITH SIGNED 2°’S COMPLEMENT DATA:

>

The signed 2’s complement representation of numbers together with arithmetic algorithms
for addition and subtraction. The left most bit of a binary number represents the sign bit: 0
for positive and 1 for negative.

If the sign bit is 1, the entire number is represented in 2’s complement form. For example
+33 is represented as 00100001 and -33 as 11011111(is the 2’s complement of 00100001).

The register configuration of hardware implementation is shown in figure 10.3

Figure 10-3 Hardware for signed-2’s complement addition and subtraction.

BR register
Y
Complementer and
Vv parallel adder
Overflow A
Y
AC register

Computer Architecture Page 5 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

» As shown in figure 10.4, sum is obtained by adding the contents of AC and BR. The
overflow bit V is set to 1, if the XOR of the last two carries is 1 and it is cleared to O
otherwise.

» The subtraction operation is obtained by adding the content of AC to the 2’s complement of
BR. Taking the 2’s complement of BR has the effect of changing a positive number to
negative and vice versa.

Subtract Add

l |

Minuend in AC Augend in AC
Subtrahend in BR Addend in BR

‘, |

AC+AC +BR + | AC<AC + BR
Ve—overflow Ve overflow

Y Y
END (END)

Figure 10-4 Algorithm for adding and subtracting numbers in signed-2's
complement representation.

2. MULTIPLICATION ALGORITHM
Multiplication of two fixed point binary numbers in signed magnitude representation is done by a

process of successive shift and add operations.

Computer Architecture Page 6 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

23 10111 Multiplicand
19 x 10011 Multiplier
10111
10111
00000 +
00000
10111
437 110110101 Product

The process consists of looking at successive bits of the multiplier, least significant bit first. IF
the multiplier bit is a 1, the multiplicand is copied down, otherwise zeros are copied down. The
numbers copied down are shifted one position to the left from the previous number. Finally the
numbers are added and their sum forms the product.

The sign of the product is determined from the signs of the multiplicand and multiplier. If they
are alike, the sign of the product is positive. If they are unlike, the sign of the product is negative.
HARDWARE IMPLEMENTATION OF SIGNED MAGNITUDE DATA:

First instead of providing registers to store and add simultaneously as many binary numbers as
there are bits in the multiplier, an adder is provided for the summation of only two binary
numbers and successively accumulate the partial products in a register.

Second instead of shifting the multiplicand to the left, the partial product is shifted to the right
which results in leaving the partial product and the multiplicand in the required relative positions
Third when the corresponding bit of the multiplier is O, there is no need to add all zeros to the

partial product since it will not alter its value.

Computer Architecture Page 7 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Figure 10-5 Hardware for multiply operation.

B;
B register Sequence counter (SC)
A
Complementer and
parallel adder
A . :
(rightmost bit)

Ag Qs O

Y 4

00— E > A register - Q register

The hardware for multiplication consists of two more registers A and B. The multiplier is stored
in Q register and its sign in Qs. The sequence counter SC is initially set to a number equal to the
number of bits in the multiplier. The counter is decremented by 1 after forming each partial
product. When the content of the counter reaches zero, the product is formed and the process
stops.

Initially the multiplicand is in B register and multiplier in Q. The sum of A and B forms a partial
product is transferred to EA register, both partial product and multiplier are shifted to the right.
The shift will be denoted by shr EAQ to designate the right shift. The least significant bit of A is
shifted into the most significant position of Q bit from E is shifted into the most significant
position of A and 0 is shifted into E. After the shift, one bit of the partial product is shifted into
Q, pushing the multiplier bits one position to the right. The rightmost flipflop in register Q is Qn

will hold the bit of the multiplier which is inspected next.

Computer Architecture Page 8 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Hardware algorithm:

The flowchart of the hardware multiply algorithm. Initially the multiplicand is in B and the
multiplier in Q. Their corresponding signs are in Bs and Qs. The signs are compared and both A
and Q are set correspond to the sign of the product since a double length product will be stored
in registers A and Q.

Registers A and E are cleared and the sequence counter SC is set to a number equal to the
number of bits of the multiplier. After the initialization, the low order bit of the multiplier in Qn
is tested. If it is a 1, the multiplicand in B is added to the present partial product in A. Ifitisa 0,
nothing is done. Register EAQ is then shifted once to the right to form the new partial product.
The sequence counter is decremented by and its new value checked.

If it is not equal to zero, the process is repeated and a new partial product is formed. The process
stops when SC=0. The partial product formed in A is shifted into Q one bit at a time and

eventually replaces the multiplier, The final product is available in both A and Q with A holding

e
Computer Architecture Page 9 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

the most significant bits and Q holding the least significant bits.

Figure 10-6 Flowchart for muldply operation.

Afeitiply operation

Multiplicand in &
Multiplier in O

SC+—um — 1
L J
= o =1
o
+
JEA — a4+ B8]
4
shr £.4 O
SC ~ SC — 1
= 0 =0
SC

END
(product is in 4)

4. BOOTH MULTIPLICATION ALGORITHM
Booth algorithm gives a procedure for multiplying binary integers in signed 2’s complement
representation. IT operates that strings of 0’s in the multiplier require not addition but just

shifting and a string of 1’s in the multiplier from bit weight 2to 2™ can be treated as 2**-2".

e
Computer Architecture Page 10 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

TABLE 10-2 Numerical Example for Binary Multiplier

Multiplicand B = 10111 E A Q sC
Multiplier in Q 0 00000 10011 101
Q.=1,add B 10111
First partial product 0 10111
Shift right EAQ 0 01011 11001 100
Q,=1;add B 10111
Second partial product 1 00010
Shift right EAQ 0 10001 01100 011
Q. = 0; shift right EAQ 0 01000 10110 010
Q. = 0; shift right EAQ 0 00100 01011 001

Q,=1;add B 10111

Fifth partial product 11011

Shift right EAQ 01101 10101 000
Final product in AQ = 0110110101

oo

The binary number 001110(+14) has a string of 1’s from 22 to 2'(k=3,m=1). The number can be
represented as 2¢*'-2M=2%-2'=16-2=14. The mulitplicatiotion of Mx14 where M is the
multiplicand and 14 the multiplieras Mx2*-Mx2. Thus the product can be obtained by shifteing
the binary multiplicatn M four times to the left and subtracting M shifted left once. Prior to the
shifting the multiplicantd may be added to the partial product, subtracted from the partial product
or left unchanged to the rules to

1. The multiplicand is subtracted from the partial product upon encountering the first least
significant 1 in a string of 1°s in the multiplier.

2. The multiplicnd is added to the partial product upong encountering the first 0 in a string of 0’s
in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous
multiplier bit.

The hardware implementation of Booth algorithm is shown below.

Computer Architecture Page 11 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Figure 10-7

Hardware for Booth algorithm.

BR register Sequence counter (SC)
Y
Complementer and
parallel adder
A
Qn Qn +1

\ b

AC register - OR register

Rename registers A, B and Q as AC, BR and QR. The flowchart for Booth algorithm is

Multiply

|

Multiplicand in BR
Multiplier in QR

|

AC+~AC+BR + 1

AC+ 0O
anl +~ 0
SC+ n
=01
QnQn+l
= L 4
=11 AC+ AC + BR
J 4 Y
ashr (AC & QR)
SC+SC—1
L
\ =0
Sc
i
END

Figure 10-8 Booth algorithm for multiplication of signed-2's complement

numbers.

Computer Architecture Page 12

Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Bit Qn+1 are initally cleared to 0 and the sequence counter SC is set to a number n equal to the
number of bits in the multiplier. The two bits of the multiplier in Qn and Qn+1 are inspected. If
the two bits are equal to 10, the first string 1 in a string of 1’s has been encountered. If the two
bits are equal to 01, the first O in a string of 0’s is envountered.When the two bits are equal, the
partial product does not change. An overflow cannot occur because the additon and subtraction

of the multiplicand follow each other.

5. FLOATING POINT ARITHMETIC OPERATIONS:

a) Addition and Subtraction:

During addition or subtraction, the two floating point operands are in AC and BR. The sum or
difference is formed in the AC. The algorithm can be divided into four consecutive parts.

1. Check for zeros.

2. Align the mantissas

3. Add or subtract the mantissa.

4. Normalize the result.

The flowchart for adding or subtracting two floating point binary numbers is shown below.

If BR is equal to zero, the operation is terminated with the value in the AC being the result. IF
AC is equal to zero, we transfer the content of BR into AC and also complement its sign if the
numbers are to be subtracted. If neither number is equal to zero, align the mantissa.The

magnitude comparator attached to exponents a and b provides three outputs. IF the two

Computer Architecture Page 13 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

exponents are equal, perfrom arithmetic operation. If the exponents are not equal, the mantissa

Add or subtract

Align
mantissas

' Mantissa
addition
or
subtraction

Normalization

| — |

t END

Figure 10-15 Addition and subtraction of floating-point numbers.

having the smaller exponent is shifted to the right and its exponent incremented. The process is
repeated until the two exponents are equal. If an overflow occurs when the magnitudes are
added, it is transferred to flip flop E. If E is equal to 1, the bit is transferred into A and all other
bits of A are shifted right.

If the magnitudes were subtracted, the result may be zero or may have an underflow. If the
mantissa is zero, the entire floating point number in the AC is made zero.Otherwise the mantissa

must have atleast one bit that is equal to 1.

Computer Architecture Page 14 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

b) Multiplication:

Multiplication of two floating point numbers multiply the mantissa and add the exponents. The
multiplication algorithm is subdivided into four parts.

1. check for zeros

2. Add the exponents

3. Multiply the mantissa

4. Normalize the product

Figure 10-16 Multiplication of floating-point numbers.

Multiply

Multiplicand in BR
Multiplier in QR

Y

a*—a—biasl

r

Multiply mantissa
as in Fig. 10-6

END
(product is in AC)

Computer Architecture Page 15 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Steps 2 and 3 can be done siultaneously if separtate adders are available for the mantissas and
exponenets. Flowchart for floating point multiplication is shown above,

The exponent of the multiplier is in q and the adder is between exponents a and b. To transfer the
exponents from ¢ to a, add the two exponents and transfer the sum into a.

c) DIVISION:

Floating point division requires that the esponents be subtracted and the mantissa divided. The
division algorithm can be subdivided into 5 parts.

1. check for zeros

2. Initialize registers and evaluate the sign.

3. Align the dividend

4. subtract the exponents

5. divide the mantissa

Flowchart for floating point division is

i
riviclhe b
[T
A = 5 A < &
EErRT) s
Devide magritoade of
mmambissas as s Fig, 10-13
+ ¥
EMND
DChecticmE = im RN

Figure 10-17 Cewrisiomn of floarimg-poins numbers.

Computer Architecture Page 16 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

COMPUTER ARCHITECTURE
UNIT IV
Input Output Organization : Input — Output Interface — Asynchronous data transfer — Modes of

transfer — Priority Interrupt — Direct Memory Access (DMA).

1. INPUT-OUTPUT INTERFACE:

Input output interface provides a method for transferring information between internal storage
and external devices. Peripherals connected to a computer need special communication links for
interfacing them with the CPU. Communication link resolves the differences exist between

central computer and each peripheral.

The major differences are

1. Peripherals are electromechanical and electromagnetic devices and their operation is different
from the operation of the CPU.

2. The data transfer rate of peripherals is slower than the transfer rate of the CPU.

3. Data codes and formats in peripherals differ from the word format in CPU and memory.

4. The operating modes of peripherals are different from each other and each must be controlled

not to disturb the operation of other peripherals.

To resolve these differences, computer systems include special hardware components to
supervise and synchronize all input and output transfers. The components are called interface
units because they interface between processor bus and the peripheral device. Each device have

its own controller that supervises the operation in the peripheral.

a) 10 Bus and INTERFACE MODULES
The 10 bus consists of data lines, address lines and control lines. The magnetic disk, printer and
terminal are employed in any general purpose computer. Magnetic tape is used in some

computers for backup storage. Each peripheral device is associated with an interface unit.

Computer Architecture Page 1 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Figure 11-1 Connection of 1O bus to input-output devices.

1/0 bus

Address
Control

—

1

Interface Imerface Interiace Inserface
displey disk tape
terminal

» Each interface decodes the address and control received from the 10 bus, interprets them
for the peripheral and provides signals for the peripheral controller.
» It also synchronizes the data flow and supervises the transfer between peripheral and
processor.
» The 10 bus from the processor is attached to all peripheral interfaces.
» To communicate with a particular device, the processor places a device address on the
address lines.
> Each interface attached to the 10 bus contains an address decoder that monitors the
address lines.
» When the interface detects its own address, it activates the path between the bus lines and
the device that it controls.
» The function code is referred to as an IO command and is in essence an instruction that is
executed in the interface and its attached peripheral unit.
» There are four types of commands that an interface may receive. They are classified as
control, status, data output and data input.
1. A control command is issued to activate the peripheral and to inform it what to do. For
example, a magnetic tape unit may be instructed to backspace the tape by one record, to rewind
the type or to start the tape moving in the forward direction.
2. A status command is used to test various status conditions in the interface and the peripheral.

During the transfer, one or more errors may occur which are detected by the interface.

Computer Architecture Page 2 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

3. A data output command causes the interface to respond by transferring data from the bus into
one of its registers. When the tape is in correct position, the processor issues a data output
command. The interface then communicates with the tape controller and sends the data to be

stored on the tape.

4. The data input command is the opposite of the data output. The interface receives an item of
data from the peripheral and places it in the buffer register. The processor checks if data are
available by means of a status command and then issues a data input command. The interface

places the data on the data lines accepted by the processor.
b) 10 VERSUS MEMORY BUS

Also the processor must communicate with the 10 and memory unit. The 10 bus, memory bus
contains data, address and read write control lines. There are three ways that computer buses can

be used to communicate with memory and 10O.

1. Use two separate buses, one for memory and the other for 10O.

2. Use one common bus for both memory and 10O but have separate control lines for each.
3. Use one common bus for memory and 10 with common control lines.

» The computer has independent sets of data, address and control buses, one for accessing
memory and the other for 10.

» The memory communicates with both the CPU and the input output processor(IOP) in
addition to the CPU. The IOP communicates with the input and output devices through a
separate 10 bus with its own address, data and control lines. The purpose of 10P is to provide
an independent pathway for the transfer of information between external devices and internal

memory.

Computer Architecture Page 3 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Bidirectional - | PomA | UOdata
EPE—— Bus “— register
data bus buffers
. N Port B 1/0 data
Chip select register
CS
— > RS1I
Register select
—— 1 N
RSO Timing o Control Control
and - o register
1/0 read Rp control 2
f:
0 writ 8
I/O write | WR £
Status Status
- . ——————
register
~4———— To CPU To 1/0 device ————————>

CS RS1 RSO | Register selected

0 x x None: data bus in high-impedance
1 0O 0 Port A register
1 0 1 Port B register

1 1 0 Control register

1 1 1 Status register

Figure 11-2 Example of I/O interface unit.

2. ASYNCHRONOUS DATA TRANSFER

v' The internal operations in a digital system are organized by means of clock pulses
supplied by a common pulse generator.

v/ Two units such as CPU and 10 interface are designed independently of each other.

v"If the registers in the interface share a common clock with the CPU registers, the transfer
between the two units is said to be synchronous.

v' Asynchronous data transfer between two independent units requires that control of
signals be transmitted between the communicating units to indicate the time at which data

is being transmitted;

Computer Architecture Page 4 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

v' Strobe pulse is supplied by one of the units to indicate to the other unit when the transfer
has to occur.

v" Another method is to accompany each data item being transferred with a control signal
that indicates the presence of data in the bus.

v" The unit receiving the data item responds with another control signal to acknowledge
receipt of the data.

v This type of agreement between the two independent units is referred to as handshaking.

a) Strobe control:

v The strobe may be activated by either the source or the destination unit.

v' A source initiated transfer, the data bus carries the binary information from source unit to
the destination unit.

v As in the timing diagram, the source unit first places the data on the data bus.

Data bus
4» . [
Source Destination
unit Strobe unit
—p
(a) Block diagram
Data «—— Valid data —»

Strobe

(b) Timing diagram
Figure 11-3 Source-initiated strobe for data transfer.

v/ The information on the data bus and the strobe signal remain in the active state for a
sufficient time to allow the destination unit to receive the data.
v' The data must be valid and remain in the bus long enough for the destination unit to

accept it.

Computer Architecture Page 5 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

v’ Strobe pulses are actually controlled by the clock pulses in the CPU is always in control

of the buses and informs the external units how to transfer data

Data bus
Source Destination
unit Strobe unit
(a) Block diagram
Data ~+— Valid data —
Strobe I- _
(b) Timing diagram

Figure 11-4 Destination-initiated strobe for data transfer.

b) Handshaking:

v The disadvantage of the strobe method is that the source unit that indicates the transfer
has no way of knowing whether the destination unit has actually received the data item
that was placed in the bus.

v Similarly a destination unit that indicates the transfer has no way of knowing whether the
source unit has actually placed the data on the bus.

v' The handshake method solves the problem by introducing s second control signal that
provides a reply to the unit that indicates the transfer.

v' The data transfer procedure when initiated by the source, the two handshaking lines
are data valid, which is generated by the source unit and data accepted generated by the
destination unit. The timing diagram shows the exchange of signals between the two

units.

Computer Architecture Page 6 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Data bus

Source Data valid Destination
unit urnit

Data accepted

A

(a) Block diagram

Data bus ,~ |+—Valid data —=

Data valid \ (I““\
N/
]

Data accepted

(b) Timing diagram

Source unit Destination unit

Place data on bus.

Enable darta valid. \

!

Accept data from bus.
Enable dara accepred.

Disable dara valid.
Invalidate data on bus. —

Disable data accepted.
Ready to accept data
(initial state).

(c) Sequence of events

Figure 11-5 Source-initiated transfer using handshaking.

v The source unit initiates the transfer by placing the data on the bus and enabling its data
valid signal. The data accepted signal is activated by the destination unit after it accepts
the data from the bus.

v The source unit then disables the data valid signal which invalidates the data on the bus.

v/ The destination unit then disables its data accepted signal and the system goes into its
initial state.

v' The destination initiated transfer using handshaking lines is shown in figure.

Computer Architecture Page 7 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Figure 11-6 Destination-initiated transfer using handshaking.

Data bus .
Source Data valid - Destination
unit o unit
L Ready for data

(a) Block diagram

Ready for data / N

Data valid \
~<——Valid data —
Data bus
(b) Timing diagram
Source unit Destination unit

Ready to accept data. -

Enable ready for data. |
Place data on bus.

Enable data valid. \
Accept data from bus.

Disable data valid. | o —— Disable ready for data.
Invalidate data on bus

(initial state). r\

(c) Sequence of events

v' The name of the signal generated by the destination unit has been changed to ready for
data to reflect its meaning.

v The handshaking scheme provides a high degree of flexibility and reliability because the
successful completion of a data transfer relies on active participation of both units.

v If one unit is faulty the data transfer will not be completed. Such an error can be detected
by means of a timeout mechanism which produces an alarm if the data transfer is not

completed within a predetermined time.

Computer Architecture Page 8 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

¢) Asynchronous serial transfer:

v
v

<

The transfer of data between two units may be done in parallel or serial.

In parallel data transmission, each bit of the message has its own path and the total
message is transmitted at the same time. This means that an n-bit message must be
transmitted through n separate conductor paths.

In serial data transmission, each bit in the message is sent in sequence one at a time.
Serial transmission can be synchronous or asynchronous.

In synchronous transmission, the two units share a common clock frequency and bits are
transmitted continuously at the rate dictated by the clock pulses.

In asynchronous transmission, binary information is sent only when it is available and the
line remains idle when there is no information to be sent.

Each character consists of three parts: a start bit, a character bits and stop bits. The
convention is that the transmitter rests at thel-state when no characters are transmitted.
The first bit called the start bit is always a 0 and is used to indicate the beginning of a
character.

The last bit is called the stop bit is always a 1.

A transmitted character can be detected by the receiver from knowledge of the

transmission rules.

1. When a character is not being sent, the line is kept in the 1 state.

2. The initiation of a character transmission is detected from the start bit which is always 0.

3. The character bit always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected when the line returns to

the 1 state for atleast one bit times.

v

v

As an illustration, consider the serial transmission of a terminal whose transfer rate is 10
character per second. Each transmitted character consists of a start bit, eight information
bits and two stop bits for a total of 11 bits.

The baud rate is defined as the rate at which serial information is transmitted and is

equivalent to the data transfer in bits per second.

Ten characters per second with an 11 bit format has a transfer rate of 110 bauds.

Computer Architecture Page 9 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Figure 11-7 Asynchronous serial transmission.

Start
bit

Stop_,
bits

Tk

-t Character bits -

v The terminal has a keyboard and a printer. The terminal interface consists of a transmitter
and a receiver. The transmitter accepts an 8 bit character from the computer and
proceeds to send a serial 11 bit message into the printer line. The receiver accepts a serial
11 bit message from the keyboard line and forwards the 8 bit character code into the
computer.

v’ Integrated circuits are available which are specifically designed to provide the interface
between computer and similar interactive terminals. Such a circuit is called an
asynchronous communication interface or a universal asynchronous receiver
transmitter(UART),

d) Asynchronous communication Interface:

v The block diagram of an asynchronous communication interface is shown in figure. It
functions as both a transmitter and a receiver. The interface is initialized for a particular
mode of transfer by means of a control byte that is loaded into its control register. The
transmitter register accepts a data byte from the CPU through the data bus.

v" The CPU can read the status register to check the status of the flag bits and to determine
if any errors have occurred. The chip select and the read and write control lines
communicate with the CPU. The chip select(CS) input is used to select the interface
through the address bus. The register select(RS) is associated with the read(RD) and
Write(WR) controls. Two registers are write only and two are read only.

v The operation of the asynchronous communication interface is initialized by the CPU

by sending a byte to the control register.

Computer Architecture Page 10 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Bidirectional

Bus _ _ Transmit
e EEEEE— -t L
data bus buffers _ | Transmitter . Shift ﬂ»
| register | register
T in Transmitter
ransmitter clock
. = Corimt-ol control [
Chip sefect register and clock
1 CS 4
L
) =
Register select E Recel
—»1 RS .. = . ecelver
Timing = B Status Receiver clock
and - it control
1/0 read _ control register and clock
» RD
I/0 write | WR Receive
- Reco_eiver | | Sr}ift _‘____dai_
register register
CS RS | Operation | Register selected
0 x X None: data bus in high-impedance
1 0 WR Transmitter register
1 1 WR Control register
1 O RD Receiver register
1 1 RD Status register

Figure 11-8 Block diagram of a typical asynchronous communication interface.

v The initialization procedure places the interface in a specific mode of operations as it

defines certain parameters such as the baud rate to use, how many bits are in each

character, whether to generate and check parity and how many stop bits are appended

to each character.

v" Two bits in the status register are used as flags. One bit is used to indicate whether the

transmitter register is empty and another bit is used to indicate whether the receiver

register is full.

Computer Architecture

Page 11

Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

v" The operation of the transmitter portion of the interface is as follows: The CPU
reads the status register and checks the flag to see the transmitter register is empty. IF
it is empty, the CPU transfers a character to the transmitter register and the interface
clears the flag to mark the register full. The first bit in the transmitter shift register is
set to O to generate a start bit. The character is transferred in parallel form the
transmitter register to the shift register and the appropriate number of stop bits is
appended into the shift register.

v The operation of the receiver portion of the interface is similar. The receive data
input is in the 1-state when the line is idle. The receiver control monitors the receive
data line for a 0 signal to detect the occurrence of a start bit. Once a start bit has been
detected, the incoming

v’ Bits of the character are shifted into the shift register at the prescribed baud rate.

v' The interface checks for any possible errors during transmission and sets appropriate
bits in the status register. The CPU can read the status register at any time to check if
any errors have occurred. Three possible errors that the interface checks during
transmission are parity error, framing error and overrun error.

v’ Parity error occurs if the number of 1’s in the received data is not in the correct
parity. A framing error occurs if the right numbers of stop bits is not detected at the
end of the received character. AN overrun error occurs if the CPU does not read the
character from the receiver register before the next one becomes available in the shift
register. Overrun error results in a loss of characters in the received data stream.

3. MODES OF TRANSFER

Data transfer to and from peripherals may be handled in one of three possible modes.

1. Programmed IO

2. Interrupt initiated 10

3. Direct Memory Access(DMA)

1. Programmed 10O: operations are the result of 10 instructions written in the computer program.
Each data item transfer is initiated by an instruction in the program. Usually the transfer is to and
from a CPU register and peripheral. Other instructions are needed to transfer the data to and from

CPU and memory.

Computer Architecture Page 12 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

In the programmed 10 method, the CPU stays in a program loop until the 10 unit
indicates that it is ready for data transfer. This is a time consuming process since it keeps the
processor busy needlessly. It can be avoided by using an interrupt facility and special commands
to inform the interface to issue an interrupt request signal when the data are available from the
device.

Transfer of data from programmed 10 is between CPU and peripheral. In DMA, the
interface transfers data into and out of the memory unit through the memory bus. The CPU
initiates the transfer by supplying the interface with the starting address and the number of
words needed to be transferred and then proceeds to execute other tasks, when the transfer is
made, the DMA requests memory cycles through the memory bus.

Example of programmed 10: in the programmed 10 method, the 10 device does not have
direct access to memory. A transfer from an 10 device to memory requires the execution of
several instructions by the CPU including an input instruction to transfer the data from the device
to the CPU and a store instruction to transfer the data from the CPU to memory.

An example of data transfer from an 10 device through into the CPU is shown in the
device transfers bytes of data on a time as they are available when a byte of data is available,
the device is in the 10 bus enables its data valid line.

A program is written for the computer to check the flag in the data registered determine if
a byte has been placed in the data registered by the device. This is done by reading the status
register into a CPU register by checking the value of the flag bit. If the flag is equal to 1, the
CPU takes data from the data register.

A flowchart of the program that must be written for the CPU is shown. It is assumed that
the device is sending a sequence of bytes that be stored in memory. The transfer of each byte
requires three instructions.

1. Read the status register.

2. Check the status of the flag bits and branch to step 1 if not set 0, if set.

3. Read the data register.

The programmed 10 method is particularly useful in small low speed computers or in systems

that are dedicated to monitor a device continuously.

Computer Architecture Page 13 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

Figure 11-10 Data transfer from /O device to CPU.

Interface
_ Data bus </0bus
Address bus Data register
CPU - ‘ Data valid 1/0
1/0 read -~ device
1/0 write - Status F Data accepted
i reglster -
F = Flag bit
v A L
I Read data register I
| Check flag bit |
=1
A £
l Read status register I
A 2
I Transfer data to memory]
Operation no

complete?

Continue
with
program

2) Interrupt Initiated 10:
An alternative to the CPU constantly monitoring the flag is to let the interface inform the
computer when it is ready to transfer data. This mode of transfer uses the interrupt facility. While

the CPU is running a program, it does not check the flag. However when the flag is set, the

Computer Architecture Page 14 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

computer is momentarily interrupted from proceeding with the current program and is informed

that the flag has been set.

» The CPU responds to the interrupt signal by storing the return address from the program
counter into a memory stack and then control branches to service routine that processes the
required 10 transfer.

» The way that the processor chooses the branch address of the service routine varies from one
unit to another.

> In principle there are two methods for accomplishing this one is called vectored interrupt and
the other non-vectored interrupt.

> Inanon-vectored interrupt, the branch address is assigned to a fixed location in memory.

» In a vectored interrupt, the source that interrupts supplies the branch information to the
computer. This information is called the interrupt vector.

3) DIRECT MEMORY ACCESS(DMA)

» The transfer of data between a fast storage device such as magnetic disk and memory is often
limited by the speed of the CPU. Removing the CPU from the path and letting the peripheral
device manage the memory buses directly would improve the speed of transfer. The transfer
technique is called Direct Memory Access(DMA). During DMA transfer, the CPU is idle
and has no control of the memory buses.

» Two control signals in the CPU that facilitate the DMA transfer, the bus request(BR) input
is used to relinquish control of the buses. When this input is active, the CPU terminates the
execution of the current instruction and places the address buses.

» When this input is active, the CPU terminates the execution of the current instruction and
places the address bus, the data bus and the read and write lines into a high impedance state.

» The CPU activates the bus grant(BG) output to inform the external DMA that the buses are
in the high impedance state.

» In DMA burst transfer, a block sequence consisting of a number of memory words is
transferred in a continuous burst while the DMA controller is master of the memory buses.

» This mode of transfer is needed for fast devices such as magnetic disks, where data
transmission cannot be stopper or slowed down until an entire block is transferred.

» An alternative technique called cycle stealing, allows the DMA controller to transfer one

data word at a time, after which it must return control of the buses to the CPU.

Computer Architecture Page 15 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

i) DMA Controller:

» The DMA controller needs the usual circuits of an interface to communicate with the CPU
and 10 device.

» The unit communicates with the CPU via the data bus and control lines. The registers in the
DMA are selected by the CPU through the address bus by enabling the DS(DMA Select) and
RS(Register Select) inputs. The RD(read) and WR(write) inputs are bidirectional.

» The DMA controller has three registers. An address register contains an address to specify
the desired location in memory. The address bits go through bus buffers into the address bus,
The address register is incremented after each word that is transferred to memory. The
control register specifies the mode of transfer. All registers in the DMA appear to the CPU
as 10 interface registers. Thus the CPU can read from or write into the DMA registers under
program control via the data bus.

» The DMA is first initialized by the CPU. After that the DMA starts and continues to transfer
data between memory and peripheral unit until an entire block is transferred.
1. The starting address of the memory block where data are available(for read) or where data
are to be stored.

2. The word count which is the number of words in memory block.

3. Control to specify the mode of transfer such as read or write.

4. A control to start the DMA transfer.

i) DMA Transfer:

» The CPU communicates with the DMA through the address and data buses as with any
interface unit.

» The DMA has its own address, which activates the DS and RS lines. The CPU initialize
the DMA through the data bus.

» Once the DMA receives the start control command it can start the transfer between the
peripheral device and the memory.

» The peripheral device sends a DMA request. The DMA controller activates the BR line,
informing the CPU to relinquish the buses.

» The CPU responds with its BG line informing the DMA that its buses are disabled.

Computer Architecture Page 16 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

» The DMA then puts the current value of its address register into the address bus, initiates
the RD or WR signals and sends a DMA acknowledge to the peripheral device.
» For each word that is transferred the DMA increments its address register and decrements its
word count register.

> IF the word count does not reach zero the DMA checks the request line coming from the

peripheral.
Iwteriapr i e P
NG " g ‘ Mesnmry (AMD
.W DR B SWE AMeess Dats ‘ BRI WK Adress Dams
; | l v Head rommanl ’ I 1
" —ahbe 00'.’"
Addy e n
s AMbisss b
select ®* Detebee ?7
4 . 4‘
MDD WK AMesss Dars
D% p——

DMA Acbhnewiedge
< Traswet Ao . - |)
"N \ HIAI AN lrcv.-l-.o N |
ne o ol ‘___.:_.A “01-.00 Hevar s

b —e M
Inteivupt

4. PRIORITY INTERRUPT:

Data transfer between the CPU and an 10 device is initiated by the CPU. The CPU
cannot start the transfer unless the device is ready to communicate with the CPU. The
readiness to the device can be determined from an interrupt signal. The CPU responds to the
interrupt request by storing the return address from PC into a memory stack and then the
program branches to a service routine that processes the required transfer.

In a typical application, a number of 10 devices are attached to the computer, with each
device being able to originate an interrupt request. The first task of the interrupt system is to
identify the source of the interrupt. There is also the possibility that several sources will
request service simultaneously. In this case the system must also decide which device to
service first.

e Devices with high speed transfer like magnetic disks are given high priority.

e Devices like keyboards are given low priority.

Computer Architecture Page 17 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

e Polling procedure is used to identify the highest priority source by software means.

e Highest priority source is tested first, if the interrupt signal is ON, otherwise next
lower priority source is tested.

Disadvantage is if there are many interrupts, the time required to poll them can exceed the
time available to service the 10 device. So hardware priority interrupt unit can be used.
a) Daisy Chaining priority:

e It consists of serial connections of all devices that request an interrupt,

e Device with the highest priority is placed in the first position.

e Lowest priority is placed in the last position.

e CPU responds by enabling the interrupt acknowledge line. Signal received by 1 at its
Priority in(Pi). Ack signal passes on to the next device by Priority Out (Po). If
pending interrupt, it blocks th acknowledge signal from next device by placing a 0 in
the Po output.

e ltuses a register whose bits are set separately by the interrupt signal.

e A high priority device interrupt the CPU while a lower priority device is being
serviced.

e It consist of an interrupt register, individual bits are set by external conditions and
cleared by program instructions.

Processor data bus

VAD 1 VAD 2 VAD 3

Device | Device 2 Device 3 T .
0 nex
Pr PO FI PO Pl PO [t ovice

Interrupt request
INT

CPU

Interrupt acknowledge
INTACK

Figure 11-12 Daisy-chain priority interrupt.

e
Computer Architecture Page 18 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

VAD

Priority in
Pl oty v Enable

=
Int - RF __{_\ Priority out P
nterru;

s ¢ {>c /

request
from device

—t R Pl RF | PO Enable
[] 0 0

[V | 0 0
Delay I o 1 0
[0 1

Open-collector
inverter
Interrupt request to CPU

Figure 11-13 One stage of the daisy-chain priority arrangement.

b) Parallel Priority Interrupt:
e Magnetic disk has highest priority.
e Printer has next priority followed by character reader and a keyboard.
e Mask register has same number of bits as the interrupt register.
e By program instructions, possible to set or reset any bit in the mask register.
e Interrupt bit and mask bit are applied to an AND gate to produce four inputs to the
priority encoder.

e IST(Interrupt Status) and IEN(Interrupt Enable) provide a common interrupt signal

for the CPU.
Dkfz":l] -
(=5 ——D_'”
e { ol
b BRI =

Mask
register

Figure 11-14 Pricrity interrupe hardware

Computer Architecture Page 19 Prepared by V.Betcy Thanga Shoba, Asst. Profin CS, GASC, Ngl.

) walk --ib‘

1. Memory Hjm_mhy

The mMEemory unit that communicates directly with the CPU is called the main

memory. AL TeY
Dewvices that provide the backup storage are called auxiliary memory.

—— e, ——

The total memory capacity of a computer can be visualized as being a hierarchy of

components.

The memory hierarchy system consists of all storage devices employed in a computer

system from the slow but high-capacity auxiliary memory to a relatively faster main

memory, to an even smallcr and faster cache memory accessible to the speed

processing logic. goxiai 0’ oty Ay g5 0

The main memory occupies a central position by being able to communicate with
directly the CPU and with auxiliary memory devices through an I/O processor.

When programs not residing in main memory are needed by the CPU, they are brought

in from auxiliary memory.

A special very-high speed memory called a cache is sometimes used to increase the

speed of processing by making current programs and data available to the CPU at a

rapid rate. Fig.

Magoneb < Jé : ..]
eSS

A oeh o
31 Yors

CPU logic is usually faster than main memory access time, with the result that
processing speed is limited primarily by the speed of main memory.

The 1/O processor manages data transfers between auxiliary memory and main
memory, the cache organization is connected with the transfer of information

between main memory and CPU.

The auxiliary memory has a large storage capacity, is relatively inexpensive, but
has low access speed compared to main mernory.

The cache memory is very small, relatively expensive, and has very high access
speed. :

Auxiliary and cache memories are used for different purposes. The cache holds
those parts of the program and data that are most heavily used, while the auxiliary
memory holds those parts that are not presently used by the CPU.

Moreover, the CPU has direct access to both cache and main memory but not to
auxiliary memory.

Auxihary memory average access time is usually 1000 tlrnes that of main memory.

— iy e

e

s Ly item Ard fertume Fage 1 /BT Shnba

Scanned by TapScanner'

» Block size in auxiliary memory typically ranges from 256 to 2048 words, while cache

block size is typii:a]ly from 1 to 16 words.
« Many operating systems are designed to enable the CPU to process @ number of
independent programs concurrently. This concept, called multiprogramming, refers to
the existence of two or more programs in different parts of the memory hierarchy at the

same time, _
e The part of the computer system that supervises the flow of information between

auxiliary memory and main memory is called the memory management system.

2. Main Memory
e The main memory is the central storage unit in a computer system.

e It is a relatively large and fast memory used to store programs and data during the
computer operation.

e The principal technology used for the main memory is based on semiconductor
integrated circuits.

» Integrated circuit RAM chips are available in two possible operating modes, s_tfﬁf and
dynamic.

e The static RAM consists essentially of internal flip-flops that store the bmary
information of electric charges that are applied to capacitors. The capacitors are
provided inside the chip by MOS transistors.

e Most of the main memory in a general-purpose computer is made up of RAM
integrated circuit chips,but a portion of the memory may be constructed wath ROM

chips.

e Originally, RAM was used (o refer to a random-access memeory, but now it is used to
designated a read/write memory to distinguish it from a read-only memory, although
ROM is also random access that are subject to change.

« ROM is used for storing programs that are permanently resident in the computer and
for tables of constants that do not change in value once the production of the

computer is completed,

e The ROM portion of main memory is needed for storing an initial program called a
bootstrap loader.

e The bootstrap loader is a program whose function is to start the computer softwasre
operating when power 18 turned on.

e Since RAM is volatile, its contents are destroyed when power is tumed off.

e The contents of ROM remain unchanged after power is turmed off and on agan.

1w Gystem Architer e Pagi J 8L Shaba

Scanned by TapScanner

e The startup of a computer consists of Turning the power on and starting the execution
of an initial program.

* Thus when power js turned on, the hardware of the computer sets the program
counter to the first address of the bootstrap loader. |

* The bootstrap program loads a portion of the operating system frctm disk to main
memory and control is then transferred to the operating system, which prepares the

computer for general use.

a) RAM and ROM chips

e A RAM chip is better suited for communication with the CPU if it has one or more
control inputs that select the chip only when needed.

e Another common feature is a bidirectional data bus that allows the transfer of data
either from memory to CPU during a read operation or from CPU to memory during a

write operation.
e« A bidirectional bus can be placed in one of three-state buffers. A three-state buffer

output can be placed in one three possible states:asignal equivalent to logic 1, a signal
equivalent to logic O, or a high-impedance state.

e The logic 1 and O are normal digital signals. The high-impedance state behaves like an Luﬁ
open circuit, which means that the output does not carry a signal and has no logic
ificance. c 81,232, 2D W, mamony Funckish &lake of data

orike WK AT

: . :
g (%) Punchion a

e The block diagram of a RAM chip is shown above. The capacity of the memory is 128
words of eight bits(one byte) per word. This requires a 7-bit address and an 8-bit r

bidirectional data bus.

S

-—

g&a&i C.S’j_, O HOERX X ﬂ:h\\i:\:‘\ HY —-\'rnpé anea I.
; & 9 — m O :1, X X 1\'\\'\:&3\%

?..D_a.cl R D 128%8 > i Qoo .Eh}&b:_&; Lam

b % ?)} gl Y Sofo Prom WM

bul X X '

e The read and write inputs specify the memory operation and the two chips select(CS)
control inputs are for enabling the chip only when it is selected by the microprocessor.

e The availability of more than one control input to select the chip facilitates the

Ir-*._.. e
FIR & !

5 decoding of the address lines when multiple chips are used in the microcomputer.

e The read and write inputs are sometimes combined into one line labeled R/W. '-f
e C oMt #1 Sy ean Archmecnre Page 4 J BT Shoba f,-i.
*:;_.;. ;

Scanned by TapScar

* When the chip is selected two binary states in this line specify the two operations of
read or write.

* The function table listed above specifies the operation of the RAM chip.

* The unit is an operation only when CS1=1 and CS2=0.The bar on top of the second
select vanable indicates that this input is enabled when it is equal to O.

* [If the chip select inputs are not enabled, or if they are enabled but the read or

write inputs are not enabled, the memory is inhibited and its data bus is in s high-
impedance state.

* When CS1=1 and CS2=0, the memory can be placed in a write or read mode.When
the WR input is enabled, the memory stores a byte from the data bud into a
location specified by the address mput lines.

* When the RD input is enabled, the content of the selected byte is placed into the
data bus.

* The RD and WR signals control the memory operations as well as the bus buffers
associated with the bidirectional data bus.

* A ROM chip is organized externally in a similar manner. However, since a ROM can
only read, the data bus can only be in an output mode.

vp Slack |
,;pgeﬂo,ck'c?

r)g-'l:ﬁk CL;O}.U\. Lu“S

e The block diagram of a ROM chip is shown in fig. For the same-size chip, it is
possible to have more bits of ROM than of RAM,because the internal binary cells
in ROM occupy less space than in RAM.

* For this reason, the diagram specifies a 512-bytes ROM, while the RAM has only
128 bytes. The nine address lines in the ROM chip specify any one of the 512

bytes stored in it. The two chip select inputs must be CS1=1 and CS2=0 for the
unit to operate.

* Otherwise, the data bus is in a high-impedance state. There is no need for a read o
write control because the unit can only read.

* Thus when the chip is enabled by the two select by the address lines appears on
the data bus.

T osogaler y term AriPeterlime Fage 4

Scanned by TapScanner

b)Memory Address Map:

* The designer of a computer system must calculate the amount of memory required

for the particular application and assign it to either RAM or ROM.

a then established from

* The interconnection between memory and processor i
f RAM and ROM chips

knowledge of the size of memory needed and the type O

available.

e The addressing of memory can be established by means of a table that specifies

the memory address assigned to each chip.

e The table,called a memory address map, is a pictorial representation of assigned

address space for each chip in the system.

To demonstrate with a particular example, assume that a computer system needs

512 bytes of RAM and 512 bytes of ROM.
e memory address map

« The RAM and ROM chips to be used are specified in fig. Th

A
adgdve S>

cooo -~ S pe i e i
co 30 — e} *x N g et
o\co — o\l s " PC v N X
o - > o x ar A

e The component col spe
hexadecimal address column assigns a range of hexadecimal equivalent addresses
for each chip.

The address bus lines are listed in the third column.Although there are 16 lines in
the address bus, the table shows only 10 lines because the other 6 are not used 1in

this example and are assumed to be zero.

The small x¥'s under the address bus lines designated those lines that must be
connected to the address inputs in each chip.

The RAM chips have 128 bytes and need 7 address lines. The ROM chip has 512
bytes and needs 9 address lines.

e The x's are always assigned to the low-order bus lines: lines 1 through 7 for the

RAM and lines 1 through 9 for the ROM. It is now necessary to distinguish
between four RAM chips by assigning to each a different address.

e For this particular example we choose bus lines 8 and 9 to represent four distinct
binary combinations. Note that any other pair of unused bus lines can be chosen

for this purpose.

Computer System Acchatad i e Pape 5
V8T Shoba

Scanned by TapScanner

the nine low-order bus lines constitute a memory

e The table clearly shows that '
2 bytes.The distinction between a RAM and ROM

space for RAM equal to 2°=51
address is done with another bus line.

se.When line 10 is O, the CPU selects a RAM,
OM.The cquivalcnt hexadecimal
the address bus

e Here we chose line 10 for this purpo
and when this line is equal to 1, selects the R .
address for each chip obtained from the information under

assignment.

The address bus lines are subdivided into groups of four
xadecimal digit.

bits each so that each
group can be represented with a he

e The first hexadecimal digit represents lines 1
hexadecimal digit represents lines 9 to 12, but

e The range of hexadecimal address for each compon
associated with it. These x's represent a
-0's to an all -1's value.

c) Memory Connection to CPU:

cted to a CPU through the data and address buses.
the byte within the chips and other
through its chip select inputs.

¢ RAM and ROM chips are conne
The low-order lines in the address bus select

lines in the address bus select a particular chip

the CPU is shown in fig. This configuration

e The connection of memory chips to
of RAM and 512 bytes of ROM.

gives a memory capacity of 512 bytes
e It implements the memory map of table. Each RAM receives the seven low-order
bits of the address bus to select one of 128 possible bytes.

e The particular RAM chip selected 18 determined from lines 8 and 9 in the address
gh a 2*4 decoder whose outputs go to the CS1 inputs in

M chip is selected, and so on.The RD and WR

e Thus, when O1, the second RA
are applied to the inputs of each RAM chip.

between RAM and ROM is achieved through bus line 10. The RAMs

e The selection
0 and the ROM when the bitis 1.

are selected when the bit in this line is
e The other chip select input in the ROM is connected to the RD control line for the
ROM chip select to be enabled only during a read operation.

 Address bus lines 1 to 9 are applied to the input address of ROM without going
through the decoder. This assigns address O to 511 to RAM and 512 to 1023 to

ROM.

Pages L VB.T Shoba

Computer System Architecnre

Scanned by TapScanner

« The data bus of the ROM has only an outpul capability, whercas the data bus

connected to the RAMs can transfer information in both directions. e ———

cpu
Addsess bus S b 3
6 -1 SR R e s B M : it
e s
;- |
a (pJ.l)\)
2 & '\ O p

28 X 8
o™

2T

? 3&:\5‘1
ua't 3]y — —. - — - &

mm uxili me ' ed in com uter sy:tems are
B The most coO on a ary memory devices us P Eoridponst s
magnetic disks and tapes. Other components used, but not as q Y,

magn¢tic drums, magnetic bubble memory, and optical disks.

—tant characteristics of any device are its access mode, access time,

. —— —

. The 1mpo
transfer rate, capacity, and cost.

“)~ The average time required to reach a storage location in memory and obtain its
. ¥ L

confents is called the access time. The access time consists of a seek time required

e

.8 L
to position the read-write head to a location and a transfer time required to transfer
data to or from the device, because the seek time is usually much longer than the

transfer time, auxiliary storage is organized in chqrd? or blocks.

record i pecified number of characters or words. Reading or Writing is always
; dtne on e:::i:csrecords. The :ia:mfor rate is the number of characters or words that
the device can transfer per second, after it has been positioned at the beginning of the

record.

B Magnetic drums and disks are quite similar in operation, Bo-th consist of high-
speed rotating surfaces coated with a magnetic recording medium. The rotating
surface of the drum is a cylinder and that of the disk, a round flat plate. The

| VBTS
Cowwputed System Arthaectun s Page 7 S

i e L 4, - 3
L ™ ') == o e : :

I o L"‘ % . P ST R o R L T f

g 3 = . = 5

4 R4 - , :

- 5 = i - '..-f --wi‘l-'.' 54 ;
n i . = . ; . . e - i
L i =l "' 3 -hr . L ¥ ' . o T ! - L i ; e A ! Pl o iy %
i, e E —— i ps »

Scanne by TapScanner

recording surface rotates at uniformm speed and is not started or stopped during
access operations.

« Bits are recorded as magnetic spots on the surface as it passes a Stationary
mechanism called a write head. Stored bits are detected by a change in magnetic
field produced by a recorded spot on the surface as it passes through a read head.

* The amount of surface available for recording in a disk is greater than in a Drum of
equal physical size. Therefore, more information can be stored on a disk than on a
drum of comparable size. For this reason, disks have replaced drums in more recent

computers.

a) Magnetic disks

* A Magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of disk are used and several disks may be
stacked on one spindle with read/write heads available on each surface.

e All disks rotate together at high speed and are not stopped or started for accesses
purposes.

e Bits are stored in the magnetized surface in spots along concentric circles called
tracks. The tracks are commonly divided into sections called sectors.

Some units use a single read/write head for each disk surface. The track address bits
are used by a mechanical assembly to move the head into the specified track position

before reading or writing.
¢« Permanent timing tracks are used in disks to synchronize the bits and recognize the
sectors.
» Disks may have multiple heads and simultaneous transfer of bits from several tracks
at the same tume.
If bits are recorded with equal density, some tracks will contain more recorded bits

than others.

» Disks are permanently attached to a unit assembly and cannot be removed by the
occasional user called hard disks. A disk drive with removable disks is called a floppy

disk.
e There are two sizes commonly used with diameters of 5.25 and 3.5 inches.

b) Magnetic Tape:

e A magnetic tape consists of the electrical, mechanical and electronic components to

provide the parts and control mechanism for a magnetic tape unit.
e The tape itself is a strip of plastic coated with a mmet.lc recording medium. Bits are

.ﬂ'““*""- T — _ & -~

R A

fm
Cormter System Ardhutectury Faje 8 V B.T Shoba
ﬁ"i:!é" lm.i....‘ |

Scénned by TapScanner

recorded as .
e Magnetic t magnetic spots on the tape along several tracks,
rewound. AP€ units can be stopped, started to move forward or in reverse or can bHe

s : :
Information 1S recorded in blocks

_ referred to as records. Gaps of unrecorded tape are
ins
erted between records where the tape can be stopped.

The tape starts moving while in a gap and attains its constant apeed by the time it
reaches the next record.
Each record on tape has an .dentification bit pattern at the beginning and end. By

identifies the record number.

reading the bit pattern at the beginning, the tab control
By reading the bit pattern at the end of the record, the control recognizes the

beginning of the gap.
number and the number of

addressed by specifying the record

e A tape unit 18
Records may be of fixed or variable length.

characters in the record.

4. Associative Memory ..

-processing applications requ
arches

ire the search of items in a table stored in

o Many data
the symbol address table in order to extract

memory. An assembler program S€

the symbol’s binary equivalent.
An account number may be searched in a file to determine the holder’s name and
ore all items where they

account status. The established way to search a table is to st

can be addressed in sequence.

The search procedure ig a strategy for choosing a sequence of addresses, reading the
and comparing the information read with the item

content of memory at each address,
being searched until a match occurs.
e The number of accesses to memory depends on the location of the item and the
efficiency of the search algorithm. Many search algorithms have been developed to
minimize the number of accesses while searching for an item in a random or
sequential access memory.
o The time required to find an :+emn stored in memory can be reduced considerably if
stored data can be identified for access by the content of the data itself rather than by
an address. A memory unit accessed by content is called an associative memory or
content addressable memory(CAM).
This type of memory is accessed simultaneously and in parallel on the basis of the
data content rather than by specific address or location. When a word is written in an
associative memory, no address is given.
nused location to store the word. When a

The memory is capable of finding an empty u
word is to be read from an associative memory, the content of word, or part of the

word, is specified.
which match the specified content and marks them for

o

Comiputer System Architecture Page)

Scanned by TapScanner

a) Hardware Organization
* The block diagram of an associative memory is shown in fig. It consists of 5 memory
array and logic for m words with n bits per word. The argument register A and key

register K each have n bits, one for each bit of a word.

Block diagram of associative memory
Vﬂtﬂwmb{jfﬂﬁ'\sm 0
E A\ o

Tudpuk Az2pciofVve Themony -
QI AY and YoR\c

W ke AT Y Yo oo
e The match register M has m bits, one for dach memory word. Each word in ‘'memory is
ar

compared in parallel with the content of gument register. The words that match
the bits of the argument register set a corres dﬂﬁg bit in the match register.

After the matching process, those bits in the match register that can be set indicate
the fact that their corresponding words have been matched. Reading is accomplished
by a sequential access to memory for those words whose corresponding bits in the
match register have been set.

The key register provides a mask for choosing a particular field or key in the
argument word. The entire argument is compared with each memory word if the key

register contains all 1’s.
Otherwise, only those bits in the argument that have 1’s in their corresponding

position of the key register are compared. Thus the key provides a mask are
identifying piece of information which specifies how the reference to memory is made.

To illustrate with the numerical example, suppose that the argument register A and
the key have the bit configuration as given below; Only the three leftmost bits of A are

compared with memory words because K has 1’s in these positions.

» A 101 111100

W 111 000000

» Word 1 100 111100 no match
v Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits of the

argument and the word are equal.
The relation between the memory array and the external registers in an associative

memory shown in fig. The cells in the array are marked by the letter C with two
subscripts. The first subscript gives the word number and the second specifies the bit

position in the word. Thus cell C; is the cell for bit j in wor&:;

o Al Tt T il
SRy i T SCRE
] * W | aly il

-
S i 3 b
- ,
I —— g |

- -
£ e
B e

Sche'd by Ta'b"Scanner

e A blt. Aj in the argument register is compared with all the bits in column j of the array
provided that Kj=1. This is done for all columns j=1,2,............... .

* If a match occurs between all the unmasked bits of the argument and the bits in word
I, the corresponding bit Miin the match register is set to 1. If one or more unmasked
bits of the argument and the word do not match, M; is cleared to O.

* The internal organization of a typical cell Cj is shown in fig below. It consists of a flip-
flop storage element Fj and the circuits for reading, writing and matching the cell. The
input bit is transferred in to the storage cell during a write operation.

® The bit stored is read out during a read operation. The match logic compares the
content of the storage cell with the corresponding unmasked bit of the argument and

provides an output for the decisio 1c that sets &e bit in Mi.
)

Xy

N‘i‘\ke Q = ri-;l-:l W f_rb M :l
Reod \ Vogic
3

b) Match Logic c{
frived from the comparison algonthm for two

The match logic for each word can be
binary numbers. First, we neglect the key bits and compare the argument in A with

the bit stored in the words. - | .
Word i is equal to the argument in A if Aj=F; for j=1,2,....,n. Two bits are equal if they

th 0. The equality of two bits can be expressed logically by the

are both 1 or bo
Boolean function
o Xi=AjFgtAiFg
o Where X;=1 if the pair of bits in position j are equal; otherwise, X;=0.
o For a word i to be equal to the argument in A we must have all X; variables equal to 1.
This the condition for setting the corresponding match bit M; to 1. The Boolean

function for this condition is
: 0 Mi=X) X2 X3.0eveneans Xn

o And constitutes the AND operation of all pairs of matched bits in a word..
« We now include the key bits K; in the comparison logic. The requirement is that if K;
=0, the corresponding bits of A; and Fj need no comparison. Only when K;=1 must

they be compared. This requirement is achieved by O Ring each term with K’j,thus:
o« Xi=K’p=fx if Kj=1,1 if K=0

Computer System Acchitechive

Scanned by TapScanner

=0, then Kj'l and x* I=1. A term (xl""Kﬂ
compared. This is necessary because '
f 1 will have no effect. The

e When Kj~1, we have K'j=0 and x+0=X;. When K;

will be in the 1 state, if its pair of bits is not
each term is ANDed with all other terms so that an output o

comparison of the bits has an effect only when Ky=1.
o The match logic for word i in an associative memory can now be expressed by the

following Boolean function:
. Mi"‘lxl*‘1'{'1)(3(2"'1('2)()&3*1('3) (Xn+K'n

on will be equal to 1 if its corresponding Kj=0. If Kj=1,the

« Each term in the expressi
tch will occur and M; will

term will be either O or 1 depending on the value of x;. A ma
be equal to 1 if all terms are equal to 1.
If we substitute the original definition of x; the
expressed as follows: M=r(A;F;+A’Fi+K))
o Where Il is a product symbol designating the
We need m such functions, one for each word i=1,2,3............

¢) Read Operation

e than one word in memory matches the unmasked argument field, all the
position of the match register. It 1s

Boolean function above can be

AND operation of all n terms.

If mor
matched words will have 1’s in the corresponding bit

then necessary to scan the bits of the match register one at a time.

The matched words are read In sequence by applying a read signal to each word line

whose corresponding M; bit is a 1.

ctly to the read line in the same word position,the content of

By connecting output M; dire
d automatically at the output lines and no special read

the matched word will be presente
command signal is needed.

Furthermore if we exclude words having zero content, an all-zero output will indicate that

no match occurred and that the searched item is not available in memory.

d) Write operation

o An associative memory must have a write capability for storing the information to be
searched. Writing in an associative memory can take different forms, depending on
If the entire memory is loaded with new information at once prior to a

the application.
ing can be done by addressing each location in

search operation then the wrtin

sequence.
This will make the device a random access memory for writing and a content

addressable memory for reading. The advantage here is that the address for input can
be decoded as in a random-access memory. Thus instead of having m address lines

can be reduced by the decoder to d lines, where m=24,

Camputer System Architecture Page 12 V BT Shoba

=
o

* funw
neede danr;:da:ﬁ;f;;ave Fu be dele.tcc.l a.nd new words ins?rted one at a time,there is a
register, sometigme register to distinguish between active and' inactive words. This
il ehory: S called a tag register, would have as many bits as there are words

B :‘; orl ﬁ;cr;rmacti}re word stored in memory, the corresponding bit in the tag register is set

. rd is deleted from memory by clearing its tag bit to 0. Words are stored in

KCIory by scanning the tag register until the first O bit is encountered.

* This gives the first available inactive word and a position for writing a new word. After
the new word is stored in memory it is made active by setting its tag bit to 1.

* An unwanted word when deleted from memory can be cleared to all 0’s if this value is
used to specify an empty location. Moreover, the words that have a tag bit of O must

be masked with the argument word so that only active words are compared)

S. Cache Memory: ¢
s of a large number of typical programs show that the references to memory at
any given interval of time tend to be confined within a few localized areas in memory.

This phenomenon is known as the property of locality of reference.

the CPU repeatedly refers to the set of instructions
ocalize the references

e Analysi

e When a program loop is executed,
are fetched from memory. Thus loops and subroutines tend to 1

to memory for fetching instructions.
e Iterative procedures refer to common memory locations and array of numbers is

confined within a local portion of memory.

e If the active portions of the program and data are placed in a fast small memory, the
average memory access time can be reduced, thus reducing the total execution time of
the program. Such a fast small memory is referred to as cache memory.

It is placed between the CPU and main memory. The cache memory access time 1s
less than the access time of main memory by a factor of 5 to 10. The cache is the
fastest component in the memory hierarchy.

Although the cache is only a small fraction of the size of mﬁai\xl-xilfmory..

e The basic operation is when the CPU needs to access memory, the cache is
examined. If the word is found :n the cache, it is read from the fast memory. A block
of words containing the one just accessed is then transferred from main memory to

cache memory.
e The performance of cache memory is frequently measured in terms of a quantity
ry and finds the word in cache it is said

called hit ratio. When the CPU refers to memo '
to produce a hit. If the word is not found in cache, it is in main memory and it counts

as a miss.

umber of hits divided by the total CPU references to memory is the

s of ._(_)_-2__ and higher have been reported.
be improved by the use of

access time of a computer system can \
th cache accesses time of 100ns, a main memory access time of
0.9 produce an average access ume of 200ns.

e The ratio of the n
hit ratio. Hit ratio

e The average memory

cache. A computer wi
1000ns and a hit ratio of

Computer Syrtem A ¢ Mt Tr @

Scanned by TapScanner

s fast access time. The transformation of

e The basic characteristic of cache memory is it
ferred to as a mapping process,

data from main memory to cache memory is re

e Three types of mapping procedures are
1. Associate mapping

2. Direct mapping

3. Set associative ma |
E:p’?jg} Ccacjwe memo~Yy

e The main memory can store 32K words of 12 bits each. The cache is capable of
d in cache, there

storing 512 of these words at any given time. For every word store

is a duplicate copy in main memory.

e Associate mapping: The associative memory stores both the address and data of the

memory word. This permits any location in cache to store any word from main
memory. cpu address (s kES)

lﬁ\fgurnent -re_aigberl
. e—— A dAveas — —

OlOC O ' 58
I'.'::.?-"'l""l.;"l
223h5

e The address value of 15 bits is “shown as a five digit octal number and its
corresponding 12-bit word as a four digit octal number. A CPU address of 15 bits is
placed in the argument register and the associaive memory is searched for a

matching address.
If the address is found, the corresponding 12 bit data 1s read and sent to the CPU. If

no match occurs, the main memory is accessed for the word.

an address-data pair must be displaced to make room for a pair is

e If the cache is full,
lace cells of the cache in round robin order whenever a

replaced is determined. To repl:
new word is requested from main memory.

Associative memories are expensive compared to random access {2 A" -
of the added logic associated with each cell. The CPU address of 15

#

e Direct Mapping:,
memories because
bits is divided into two fields.

ficant bits constitute the index ficld and the remaining six bits

e The nine least signi
e index field is equal to the number of

form the tag field. The number of bits in th
address bits tz.::ued to access the cache memory.

S 1"‘ a 'ﬁ Fig 467

EeT

Computer Systerm Architecture M wn
(‘;(\0\ at\f}'el‘ e ot 1
ispbs |

8 = |
SR %‘g‘; i Bl

e

= —

i N Y T
-y " SR A gl B e

Scanned by Tpcanner

TR A S T

48 409

‘B\Oﬂ‘- 1o [I

L3 M4t oo oGS
When a new word is first brought if}to the cache, the tag bits are stored alongside the

data bits. When the CPU generates a memory request, the index field is used for the
address to access the cache.

The tag field of the CPU address is compared with the tag in the word read from the
cache. If the two tags match, there is a hit and the desired data word is in cache. If
there is no match, there is a miss and required word is read from main memory.

The disadvantage of direct mapping is that the hit ratio can drop considerably if two

or more words whose addresses have the same index but different tags are accessed
repeatedly.

The index field is now divided into two parts: the block field and the word field. In a
512 word cache there are 64 blocks of 8 words each, since 64 x 8=512. The block

number is specified with a 6 bit field and the word within the block is specified with a
3 bit field.

e The tag field stored within the cache is common to all eight words of the same block.

Every time a rniss occurs, an entire block of eight words must be transferred from
main memory to cache memory.

c) Set-Associative Mapping: It is an improvement over the direct mapping organization
in that each word of cache can store two or more words of memory under the same
index addresses. Each data word is stored together with its tag and the number of tag
data items in one word of cache is said to form a set.

e Each index address refers to two data words and their associated tags. Each tag
requires six bits and each data word has 12 bits , so the word length is 2(6+12)=36
bits. An index address of nine bits can accommodate 512 words. Thus the size of
cache Eemn 1S 5‘%::236 P

AL 10 120>])
ool Q0 ' 211:;.5&] F | _ o

Fig 470 l

f
|

e i} 0O E . O 6HE T 1 T o PR, T TR MR G 1) e
e The words'stored at addresses U (000 _and 02000 of main memory are stored in cache

memory at index address 000. Similarly the words at addresses 02777 and 00777 are

stored in cache at index address 777.
et

« When the CPU generates a memory request, the index value of the address is used to
access the cache. The tag field of the CPU address is then compared with both tags in
the cache to determine if a match occurs.

« When a miss occurs in a set- associative cache and the set is full, it is necessary to

replace one of the tag data items with a new value. The most common replacement
s ased are- random replacement, first in first out, Least Recently Used.

e
— - - —=

¢ oot Sy siem Arg ey tury b age 1% vV BT Shoba

Scanned by TapScanner

« Both FIFO and LRU can be implemented by adding a few extra bits in each word L
of cache.

« When the CPU finds a word in cache during a read operation,
not involved in the transfer, The simpleat and most commo used procedure ia 1o

update main memory with every memn ry write | tion, wi memory
h:?ng updated in parallel if it containa the word at the specified address. This is

called the write-through method,

. The method in which only the cache location is updated during a wm;%
The location is then marked by a {lag so that later when the word is remo

the cache it is copied into main memory is called write-back

« The cache is initialized when power is applied to the computer or when the main
memory is loaded with a complete aet of programs from auxiliary memory. After
initialization the cache is considered to be empty. It is customary to include with
each word in cache a valid bit to indicate whether or not the word contains valid

data.)

E-‘“E. Virtual Memory: is a concept used in some large computer systems that permit the
user to construct programs as though a large memory lggqgﬂwqo“gnﬂabla. equal to the

totality of auxiliary memory.

« Each address that is referenced by the CPU goes through an address mapping from
the so called virtual address to a physical address in main memory.

e A virtual memory system provides a mechanism for translating program generated
addresses into correct main memory locations.

a) Address space and Memory space: An address used by a programmer will be called a
virtual address and the set of such addresses the address space. An address in main

memory is called a location or physical address.

« The set of such locations is called the memory S . The address space is allowed to
be larger than the memory space in computers with virtual memory

In a virtual memory system, the address field of the instruction code has a sufficient

{ bits to specify all virtual addresses. In our example, the address field of an
5 mpA R of 2 but physical meméw addresses must be

instruction code will consist
specified with only 15 bits..

e A memory table is used to map a AR N e O T .
bits. The mapping is a dynamic operation WA HAEEES TR S50

; A — .
—) : - Yo S

e ﬁh

Ll
e i i
i PR

= == T - - e o) T]
' el B - TR e e . = 't ¥ i i "
- Fa) - L oy e ¥ bt - M
5 = 1 w8 L W= P, e ks ‘..' i
w

i o 5 , ‘-_- . L

Scanned by TapScanner

equal size called modn.h‘“.m: The physical memory is broken down ; grou
"‘“““Nmoﬁm:mmm’mgemwmme sy ps of

For B space of the same size. Semmes s pagr
EIIIIP < 1 a >
m- space is g or block consists of 1K wm:ds, then, using the previous

: into 1024 d i dviden s T
anilmmmmrymdi' intoafgiw.an mmnmcmmymd;ndedmto_lﬂm
* Although both 2 E

the TR ? andablockare_splitintogmupaofy{wda,a ref

G Won aHHimaw&ce,whﬂeablockmfmwtheurgaﬁimﬁEsg:fm::ot;

lhepromgalsomnaid ' '
T ¢ ered to be split into pages. Portions of programs are moved
fromau-nharymcmorytnmainmmorymrmrda X e

. s J equal to the size of a page. The term
m 1s sometimes used to denote a block.

1-"'_-"'—'-'—-..‘

_ _ ter with an address space of 8K and memory

;iﬂ;t ::c:h into groups of 1K words we nﬁmaanﬂour%?h:fa 14&7:
_ any given time, up to four i !

o ksl e our pages of address space may reside in main memory

—

space is facilitated if each virtual address
Co u.mheltamnumberadd:ga 1
within the page. lnammﬁm@mm,pﬁumnwma:;yaax
mmdmemgmghﬂdmﬁudmmmwthem
number. In the example of fig. a virtual address has 13 bits.

* The memory-page table consists of eight words,
page table denotes the page number and)
number where that page is stored in main memory. The table shows that
and 6 are now available in main memory in blocks 3,0,1,and2, respectively.

* A presence bit in each location indicates whether the page has been transferred from
auwxaliary memory into main memory. A O in the presence. A 0O in

The CPU reference a word in memory with a virtual address of 13 bits.

.] | T o %
i & - i - i
| m e L8 R SRR P &ﬂf;ﬂﬁh{éﬂmﬁ‘i SOk N ke o A 1"' 2y "R g v el ‘
: L g o 3 s S i . b oy I':_'. v o e] T g e -.I —‘. — .'." I
v - .. PGB N o TR Wy T PR VT R I e e e -
i T:"-‘.— |-_-.. ; .:r_.l:.‘ et el |

L r - 4 b

¥ = - "
o A R e L MRS SR E T IR e & et
& | "5...-,‘... o I ol SR - " ol — = o~
o L : i
L g S = '.'_ " " = "
X e | R D TR e

Scanned by TapScanner

c) Associative Memory page table: A random access memory page table is inefficient
with respect to storage utilization. A system with n pages and m blocks would require a
memory page table of n locations of which up to m blocks would require a memory page
table of n locations of which up to m blocks will be marked with block numbers ang a1 :

others will be empty.

This method can be implemented by means of an associative memory with each word in
memory containing a page number together with its corresponding block number. The
page field in each word is compared with the page number in the virtual address. If g
match occurs, the word is read from memory and its corresponding block number is
extracted.

Each entry in the associative memory array consists of two fields. The first three bits
specify a filed for storing the page number. The last two bits constitute a field for storing
the block number. The virtual address is placed in the argument register. The page
number bits in the argument register are compared with all page numbers in the page
field of the associative memory.

If the page number is found, the Sbit word is read out from memory. The corresponding
block number is transferred to the main memory address register. If no match occurs, a
call to the operating system is generated to bring the required page from auxiliary
memory.

d) Page Replacement: A virtual memory system is a combination of hardware and
software techniques. The memory management software system handles all the software
operations for the efficient utilization of memory space. It must decide

1. Which page in main memory ought to be removed to make room for a new page.
2. When a new page is to be transferred from auxiliary memory to main memory .

3. Where the page is to be placed in main memory.

When a program starts execution, one or more pages are transferred into main memory
and the page table is set to indicate their position. The program is executed from main
memory and the page table is set to indicate their position. The program is executed from
main memory until it attempts to reference a page that is still in auxiliary memory. This

condition is called page fault.

When page fault occurs, the execution of the present program is suspended until the
required page is brought into main memory. The new page is then transferred from
auxiliary memory to main memory. If main memory is fill, it would be necessary to
remove a page from a memory block to make room for the new page.

Two of the most common replacement algorithms used are the first-in, first-out(FIFO)
and the least recently used(LRU) .The FIFO algorithm selects for replacement the page
that has been in memory has no more empty blocks. When a new page must be loaded,
the page least recently brought in is removed. The page to be removed is easily
determined because its identification number 1s at the top of the FIFO stack.

The LRU policy is more difficult to implement. The least recently used page is the page
with the highest count. The counter are called aging registers, as their count indicates
their age, that is, how long ago their associated pages have been referenced.

SCénhéd by Tap-S;c;énner' |

