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UNIT -1
VECTOR SPACE

Definition and Examples

Definition: A non-empty set V is said to be a vector space over a field Fif
(1) V is an abelian group under an operation called addition which we denote
by+.
(i1) For every a € F and v € V, there is defined an element av in V subject to the
following conditions.
(a) a(u+v)=au+av for all u,v€V and a€F.

(b) (e + B)u=a u+ Bu forallu € Vand a, B EF.
(c)a(Bu)=(aB)uforallueVanda,p EF.

(d)lu=uforallueV.

Remark

1. The elements of F are called scalars and the elements of V are called vectors.

2. The rule which associates with each scalar a€F and a vector vEV ,a vector av is
called the scalar multiplication. Thus a scalar multiplication gives rise to a function
from

FxV = V defined by (a, v) >av.

Examples

1. R x R is a vector space over a field R under the addition and scalar multiplication
defined by (x1,%2)+(y1,y2)=(X1+y1,%2+y2) and a(x1,x2)=(0x1,0x2).

Proof.

Clearly the binary operation + is commutative and associative and (0, 0) is the
zero element.

The inverse of (x1,x2) is (—x1,-X2).
Hence (RxR,+) is an abelian group.
Now, let u=(x1,x2) and v=(yi,yz2)andleta,BER.
Thena(u + v) = af(x1, Xx2) + (y1, y2)]
= a(xa+ y1, X2+ y2)
= (ax1+ ayi, oxo+ ay?)
=(ax1,0x2)+(ay1,ay?)
=a(x1,X2)+a(y1,y2)

=qau+ayv.

Now, (a+B)=(a+B)(x1,x2)


Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand


=((o+B)x1, (a+B)x2)

=(ax1+Px1,ax2+Px2)

= (ax1, axa) + (Bx1, Bx2)
= a(xa, x2) + B(x1, x2)
=au + Bu.

Also a(Bu) = a(B(x1, x2)) = a(Bx1, Bx2) = (aBx1, afxz) = (aB)(x1, x2) = (aB)u
Obviously 1u=u

* R x Ris avector space overR.
2. R"= {(x1, X2, . . . ,Xn) : X;€ R, 1 <i < n}. Then R"is a vector space over R under
addition and  scalar multiplication  defined by  (X1,X2,...,Xn)*+(Y1,Y2,...,¥n)=
(X1+Y1,X2+Y2, ..., Xn+Yn) and o(X1,X2,...,Xn)= (AX1,0X2,...,0Xn).

Proof:
Clearly the binary operation + is commutative and associative. (0, 0, . . ., 0) is the
zero element.
Theinverseof(x1,X2,...,Xn)l S(—X1,-X2,...,~Xn).
Hence(R",+) is an abelian group.
Now, letu=(x1,X2,...,%Xn)andv=(y1,Vy2,...,Yn)andlet a, B €R.
Thena(u + v) = af(x1, X2, - =+, Xn) + (Y1, Y2, - =+, ¥n)]
= a(x1+y1, X2+ Y2, . . . ,Xnt Yn)

=(0Xg+ay,0X2+0y2,...,aXn+0lYn)
=(0aX1,0X2,...,0Xn) +(0y1,QY2,...,0yn)
=0U(X1,X2,...,Xn)+0(Y1,Y2,...,¥Yn)=QU+QV.
Similarly(a+B)u=au+Buanda(Bu) = (ap)u.
s~ lu=u.

~.R"is vector spaceoverR.

Note :We denote this vector space over byV,(R).

Theorem: Let V be a vector space over a field F ,Then

(1) a0 =0foralla €F.
(i1) Ov=0forallveVv.
(1i1) (-a)v=0(-v) = —(av) foralla e Fand v E V.

(iv) av=0=a=0orv=0.
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Proof:

(i) a0 =a(0+0)=00+ a0. Hence a0 = 0.
(ii) Ov=(0+0)v=0v+0v. Hence Ov = 0.

(iii) O=[a+(-a)]v=av+(-a)v.

Hence(-a)v=—(av).

Similarlya(-v)=—(av).

Hence (-a)v = a(-v) =—(av).

(iv) Let av = 0. If a = 0, there is nothing to prove.

~Let af=0. Then a l€F.

Now,v = 1v = (o ta)v = a*{av) = a~10=0.

Subspaces:
Definition: Let V be a vector space over a field F. A non-empty subset W of V is called

a subspace of V if W itself is a vector space over F under the operations of V.

Theorem: Let V be a vector space over a field F. A non-empty subset W of V is a
subspace of V if and only if W is closed with respect to vector addition and scalar
multiplication V.
Proof. Let W be a subspace of V. Then W itself is a vector space and hence W is
closed with respect to vector addition and scalar multiplication.

Conversely, let W be a non-empty subset of V such that u,vE W =u+v € W and u
EWanda€EF=au€W.

We prove that W is a subspace of V.

Since W is non-empty, there exists an element u € W.

~ Ou=0€EW. AlsoveEW =(-1)v=-vEW.

Thus W contains 0 and the additive inverse of each of its element.

Hence W is an additive subgroup of V.

AlsoueWanda EF=>au€eW.

Since the elements of W are the elements of V the other axioms of a vector space

are truein W. Hence W is a subspace of V.

Theorem: Let V be a vector space over a field F. A non-empty subset W ofVis a

subspace of Vifand onlyifu,veWanda, B EF=au+ BvEW.
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Proof. Let W be a subspace of V.
Letu,vEWanda,BEF.

Then au and BvEWand hence au + Bv € W.

Conversely, letu,vEWanda,BEF = au + pv EW.
Takinga=Bf=1, wegetu, vVEW=>u+vEW.
TakingB=0,wegeta € Fandu €W = a € Fand ueEW=aueW.

Hence W is a subspace of V.

Examples
1. {0} and V are subspaces of any vector space V. They are called the trivial subspaces of

V.

2. W ={(a, 0, 0):a€ R} is a subspace of R3,
For,letu=(a, 0,0),v=(b,0,0) € Wanda,BER.
Thenau+Bv=a(a,0,0)+B(b,0,0)= (aa+pb,0,0)EW.

Hence W is a subspace of R3.

Solved problems

Problem:Prove that the intersection of two subspaces of a vector space V is a
subspace.

Solution.

Let A and B be two subspaces of a vector space V overa field F.

Weclaim that AnB is a subspace of V.

Clearly OEANB and hence ANB is non-empty.

Now,let u,vEANB and a,BEF.Then u,veA and u,vEB.

~au+BVveEA and au+Bv €B (since A and B are subspaces)

~au+Pfv EANB.

Hence AnB is a subspace of V.

Problem. Prove that the union of two subspaces of a vector space need not be a
subspace.

Solution. Let A= {(a,0,0):a€R}, B = {(0,b,0):b€R}.
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Clearly A and B are subspaces of R3.
However AUB is not a subspace of R3.

For,(1,0,0)and(0,1,0)€AUB.But(1,0,0)+(0,1,0)=(1,1,0)¢AUB.

Problem:If A and B are subspaces of Vprove that A+ B={vEV: v=a+b,a €A, b€EB}
is a subspace of V. Further show that A + B is the smallest subspace containing A and B.
(ie.,) If W isany subspace of V containing A and B then W contains A +B.

Solution. Let vi, v;E A+ Band a € F.

Then vi= a1+ bi, vo= a+ bowhere a1, a,EA,andby,h,EB.
Now,v1+vy=(a1+b1)+(az+hy)=(a1+a;)+(b1+b; ) EA+B.

Also a(a;+bi)=aa;+abEA+B.

HenceA+Bis a subspace of V.

Clearly ACA+Band B S A +B.

Now, let W be any subspace of V containing A andB.

Weshall prove that A+BEW.

Let vEA+B.

Then v=a+b where a€A and beB. Since ASW,aeW.

Similarly bEW and a+ b=veW.

Therefore A+BSWsothat A+B is the smallest subspace of Vcontaining A and B.

Problem: Let A and B be subspace of a vector space V. Then AnB = {0} if and only if
every vector VEA+B can be uniquely expressed in the form v=a+bwhere a €A and b
€B.

Solution. Let ANB={0}. LetvEA+B.

Let v=ai+bi=a>+by where a1,a2€A and b1,bEB.

Thenai—ax=by-b1.

But a;—a;E€A and by-b:€EB.

Hence ai1-aj,bo—-b1EANB.

SinceANB={0}, a1—a2=0 and b>-b1=0 so thatai=a> and bi= bs.

Hence the expression of vin the form a + b where a € Aand b € B is unique.

Conversely suppose that anyelement in A + B can be uniquely expressed in the forma+ b
where a€A and beB.

We claim that An B= {0}.
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If AnB ={0},letv € AnBandv=0. Then0O=v-v=0+0.
Thus 0 has been expressed in the form a + b in two different ways which is a

contradiction. Hence A n B= {0}

Definition:Let A and B be subspaces of a vector space V. Then V is called the direct
sum of A and B if
(1) A+B=V

(i)  AnB={0}

If Vis the direct sum of A and B we write V=A@ B.

Note: V=A@B If and only if everyelement of V can be uniquely expressed in the

form a+bwhere a€A and beB.

Examples

1. In V3(R) let A ={(a, b, 0): a, b € R} and B ={(0, 0, c): c € R}. Clearly A and B are
subspaces of Vand AnB = {0}. Also letv = (a, b, c) € V3(R). Then v= (a,b,0)+(0,0,c)
sothatA+B= V3(R).HenceVs(R)= A@DB.

Theorem: Let Vbe a vector space overF and W a subspace of V.

Let V/W={W+v:vEV}L

Then V /W is a vector space over F under the following operations.

(i) (W +v1)+ (W+v2) =W+ vit vz

(ii) a(W + v1) = W + avi.

Proof. Since W is a subspace of Vit is a subgroup of (V, +).

Since (V, +) is abelian, W is normal subgroup of (V, +)

so that (i) is a well-defined operation.

Now we shallprove that (ii) is a well-defined operation.

W +vi= W + vo= vi- vo€ W=a(vi-va) EW

Since W is a subspace = avi—- av,€ W= aviE W + av;=> W + avi= W + ava,
Hence (ii) is a well-definedoperation.

Now, let W + v1, W + vy, W + v3€ V/W.
Then(W+v1)+[(W+v2)+(W+v3)]=(W+v1) +H(W+Hva+vz) =W+vi+vo+vs=
(WHv1+v2)+(W+v3)=[(W+V1)+(W+v2) [ +(W+vs)

Hence + is associative.
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W + 0=WE V /W is the additive identity element.
For (W + vi) + (W + 0)= W+v1=(W+0)+(W+v1)forallvi€V.
AlsoW-viistheadditiveinverseof W + v;.

Hence V /W is a group under+.
Further,(W+v1)+(W+v2)=W+vi+v;

=W+va+vi=(W+v2)+(W+v1)
Hence V /W is an abelian group.
Now,leta,BEF.
a[(W+vi)+(W+va)]=a(W+vi+vz)
=W+a(vi+va)
= W+avi+ovs
= (W+avi)+(W+avsz)
=a(W+vi)+a(W+va)
(a+B)(WH+v1)=W+(a+B)v1
=W +avi+Bvi
=(W+awvi)+(W +Bv1)
=o(W+v1)+B(W+v1)
a[B(W+vi)]=a(W+Bvi)
=W+afvi
1(W+v1)=W+1vs
=W+v1

Hence V /W is a vector space.

The vector space V /W is called the quotient space of V by W.

Linear transformation
Definition Let V and W be a vector space over a field F. A mapping T: V->Wis called a

homomorphism if
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(a) T(u+v)=T(u)+T(v)and
(b) T(au)= aT(u)wherea€Fandu,veV.
A homomorphism T of vector space is also called a linear transformation.
(1) If Tis 1-1 then T is called monomorphism.
(1)If T is onto then T is called an epimorphism.
(i)  IfTis 1-1 and onto then T is called an isomorphism.

(iv)  TwovectorspacesVandWare said to be isomorphic if there exists an isomorphism

Tfrom V toW and we write V=W,

(V)A linear transformation T: V = F is called a linear functional.

Examples

1. T: V> Wdefined by T (v) = 0 for all v € Vis a trivial linear transformation.
2. T:V->VdefinedbyT(v)=v for all v€V is aidentity linear transformation.

Theorem: Let T:V>W bea linear transformation. Then T(V)={T(v):v€V} is a
subspace of W

Proof. Let wiandw;ET (V)and a €F.

Then there exist vi, v2€ V such that T(v1)=wiandT(v2)=w,.
Hencew1+wa=T(v1)+T(v2)=T(v1+v2) ET(V).

Similarly, awi=aT(v1)=T(av1)ET(V).

Hence T(V) is a subspace of W.

Definition: Let V and W be vector spaces over a field F and T: V - W be a linear
transformation. Then the kernel of T is defined to be {viv € Vand T (v) = 0} and is

denoted by kerT. Thus kerT = {v:v € Vand T (v) =0}.

For example, in example 1, ker T = V. In example 2, ker T = {0}.

Note: Let T: V = W be a linear transformation. Then T is a monomorphism if and

only if kerT ={0}.
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Theorem[Fundamental theorem of homomorphism] Let V and W be vector spaces over a

field FandT: V> W Ic;e an epimorphism.Then

(i) kerT = Viis a subspace of Vand

(ii) Vll =W

Proof.

(1) Given Vi=kerT ={v: vEV and T (v) = 0}
Clearly T (0) = 0.

Hence 0 €kerT=V;

~Viisnon-emptysubsetofV.

Letu,vekerTanda,BEF.

~T(u)=0andT (v) =0.

Now T (au + Bv) =T (au) + T (Bv)

=aT (u) + BT (v)

= a0+ B0 =0andso au + Bv EkerT.

Hence kerT is a subspace of V.
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1) vwe define a map

cp:VK - W byp(Vi+ V)
1

=T(v).

@ is well defined



Let Vi+v=Vi+w.
“VEV1+wW.

~v=vi+w where v1€V.
~T(v)=T(vi+w)

=T (va) + T(w) =0+ T (w)
=T (w)

~@(Vi+v) = @(Vi+ w)

~isl-1.

@(Vi+ v) = @(Vi+ w)

=T(v) -T(w)=0

=T(v) + T(-w) =0

=T(v-w)=0

=v-wekerT=V;

SVEV1+w

=>Vi+tv=Vi+w.

disonto.

Let weW.

Since Tisonto,there exists VEV such that T(v)=w and so @(Vi+v)=w .

@ is a homomorphism.

E[(Vi+v)+(Vi+w)]=@[(V1+(v+w)]=T(v+w)=T(v)+T(w)
=@(Vi+v)+@(Vi+w)

Alsop[a(Vi+v)]=@[(Vi+av)]=T(av)=aT(v)=aT(Vi+v).
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Hence ¢is an isomorphism.

Theorem: Let V be a vector space over a field F. Let A and B be subspaces of V. Then

A+B _ B

A — AnB’
Proof. We know that A + B is a subspace of V containing A.
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Hence %is also vector space over F.
An element of A+B is of the form (a+b) where a€Aand beéB. But A + a = A.

A+B,
Hence an element of %w of the form A + b.

Now, consider f: B 9%

Defined %is of the form A + b.

Now, consider f: B éAA;Bby f(b) = A+b.
Clearly f is onto.

Also f(bi+b)=A+(bi+b)

= (A+b)+(A+b)

=f(b1)+f(b2) and

f(ah1)= A+abi=a(A+b) = af (h).
Hence f is a linear transformation.

Let K be the kernel off.

Then K= {b:beB,A+b=A}.
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Now,A+b=AifandonlyifbeA.HenceK=AnBand so # = AI%

Theorem:LetVandW bevectorspacesoverafieldF.LetL(V,W)represent
thesetofalllineartransformationsfromVtoW.ThenL(V,W)itselfisavectorspace over F
under addition and scalar multiplication defined by (f + g)(v) = f(v) + g(v) and (af)(v)
=af(v).

Proof. Let f, g EL(V, W ) and v, V2€ V.
Then(f + g)(vi+ v2) = f(va+ v2) + g(vi+ v2)
= f(vi) + f(v2) + g(va) + g(v2)
= f(v1) + g(v1) + f(v2) + g(v2)
= (f+ g)(va) + (f + g)(v2)
Also (f + g)(av) = f(av) + g(av) = af(v) + ag(v) = a[f(v) + g(v)] = a(f + g)(v).
Hence (f + g) EL(V, W ).
Now, (af)(vi+ va) = (af)(v1) + (af)(v2) = af(vi) + af(va)
= a[f(vi) + f(v2)] = af(vi+ va).
Also(af)(Bv)=a[f(Bv)]=a[Bf(v)]=Blaf(v)]=B[(af)(v)].

HenceafeL(V,W). Addition defined on L(V, W ) is obviously commutative
andassociative.

The function f: V - W defined by f(v) = 0 for all v € V is clearly a linear
transformation and is the additive identity of L(V, W ).

Further (-f): V > Wdefined by (-f)(v) = -f(v) is the additive inverse of f.

Thus L(V, W ) is an abelian group under addition.

The remaining axioms for a vector space can be easily verified.

Hence L(V,W)isavectorspaceoverF.
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UNIT -1l
SPAN OF A SET

Definition:

Let V be a vector space over a field F.Let vi, vy,............,VhE V . Then an element of the
form aivi+apva+:--+asvawhere ay €F is called a linear combination of the vectors vi, vz, . . .
V.

Definition: Let S be a non-empty subset of a vector space V. Then the set of all linear
combinations of finite sets of elements of S is called the linear span of S and is denoted
byL(S).

Note: Any element of L(S) is of the form aivi+ azva+ - - - + asvawhereas, as,.......... , OnE F.

Theorem: Let V be a vector space over a field F and S be a non-empty subset of V .Then

(i) L(S) is a subspace of V.

(i))S < L(S).

(iii) If W is any subspace of V such that S € W, then L(S) € W (ie.,) S is the smallest subspace of
V containing S.

Proof.

(i) Letv,w€L(S)anda,BEF.

Thenv=auivi+opve+:-+anpvawherevi€Sandoi€ F .

Also, w = Biwi+ Bawa+ - - - + BmWmwherew;€ S BjE F .

Now, av + Bw = a(a1vi+ aava+ - - - + 0nVa) + B(Biwi+ Bawat - - - + BmWm).
=(aa)vi+-+(aon)Va+(BB1) Wit +(BBm)Wm.

~av+pw is also a linear combination of a finite number of elements of S.

Hence av + Bw €L(S) and so L(S) is asubspace of S.

(i) Letu €S. Thenu = 1u EL(S).
Hence S CL(S).

(i) Let W be any subspace of V such that S € W.
Let u €L(S).

Then u = aiui+ apur+ - +apupwhereu;ESanda,EF.

SinceSEW,wehaveus,uy,...,u,EW andsou € W .
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Hence L(S) EW.

Note:L(S) is called the subspace spanned(generated) by the setS.
Examples

1.In V3(R) let e;= (1, 0, 0); e2= (0, 1, 0) and e3= (0, 0, 1)

(a) Let S = {e1,e2} Then L(S)={ae1+Be2:a,BER}={(a,B,0):a,BER}

(b)LetS={e1,e2,e3}.ThenL(S)={aei1+Bes+yves:a,B,yER}={(a,B,v):a,B,yER} = V3(R) Thus V3(R) is
spanned by {e1, e,es}.

2.In Vu(R) let es=(1,0,:-+,0); e2=(0,1,0,...,0),...,e,=(0,0,...,1).
LetS={e1,e3,...,en}.Thenl(S) = {oie1+ azex+ anen:ai€ R}={(a,ayz,...,an):0iER}=VA(R)

ThusVa(R)isspannedby{es, ez, ...,en}.

Theorem: Let V be a vector space over a field F. Let S, T € V. Then
(a) S S T =L(S) EL(T).

(b) L(SU T) = L(S) + L(T).

(c) L(S) =S if and only if S is a subspace of V.

Proof.

(a) LetSCT. Let s EL(S).

Then s = a1s1+ azs2+ « + + + apspwhere s;€ S ando€ F .

Now, since SCT,sEeT.

Hence aisi+ 02Sa+ - - - + 0pSHEL(T ).

Thus L(S) SL(T).

(b) Lets€L(SUT).

Thens=a151+0252+: - +anspwheres,€SUTando,EF.
Withoutlossofgeneralitywecanassumethatsi,ss,...,smESandsm+1,...,SnET.
Henceaisi1+0uSo+: - +0mSmEL(S)andam+1Sm+1+: - +0nSnEL(T).

Therefore S= (a1s1+ 0282+ + * * + AmSm) + (Am+1Sme1+ * = - + AnSn) EL(S) + L(T).

Also by (a) L(S) S L(SUT)and L(T) S L(SUT).
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Hence L(S) +L(T)EL(SUT).
Hence L(S)+L(T)= L(SUT).

(c) Let L(S) =S. Then L(S) =S is a subspace of V.
Conversely, let Sbe asubspace of V.

Then the smallest subspace containing S is S itself.
Hencel(S)=S.

Corollary:L[L(S)] =S.

Linear Independence
In V3(R), let S = {e1, ez, es}. We have seen that L(S) = V3(R). Thus S is a subset ofV3(R) which

spans the whole space V3(R).

Definition:Let V be a vector space over a field F. V is said to be finite dimensional if there

exists a finite subset S of V such that L(S) = V.

Examples

1.  V3(R) is a finite dimensional vector space.

2. Vn(R) is a finite dimensional vector space, since S={ej,ey,...,en} is a finite sub- set of
Vn(R) such that L(S) = Vx(R). In general if F is any field V,(F ) is a finite dimensional vector
space over F.

Definition:Let V be a vector space over a field F. A finite set of vectors
V1,V2,...,VhinVissaidtobelinearlyindependentifaivi+aava+:+asva=
O=ai=0ay="=0a,=0.Ifv1,v3,...,vhare not linearly independent ,then they are said to be

linearly dependent.

Note:If vi,v2,...,vhare called linearly dependent then there exists scalarsai,ay,...,annot all
zero such that aivi+ava+:--+anve= 0.

Examples:

InV(F),{e1,ez,...,en} is a linearly independent set of vectors, for aze;+azez+:--+ane,=0.

=a1(1,0,...,0)+a2(01,...,0)+---+ax(0,0,...,1)=(0,0,...,0)

=(a1, 02,...,0,)=(0,0,...,0)>a1=0az=":-=0a,=0.
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2.InV3(R)thevectors(1,2,1),(2,1,0)and(1,-1,2)arelinearlyindependent.
For,let a1(1,2,1)+a2(2,1,0)+as(1,-1,2)=(0,0,0)

~s(a1+2az+as,2a+az—-as,a1+2a3)= (0,0,0)

a1+20,+03=0 (1)
201+02-03=0 (2)
o1+20a3=0 ++(3)

Solving equations (1),(2) and (3) we get ai= oz= a3=0.
~The given vectors are linearlyindependent.

3.InV3(R)thevectors(1,4,-2),(-2,1,3)and(-4,11,5)arelinearlydependent.For,
letaa(1,4,-2)+az(-2,1,3)+as(-4,11,5)=(0,0,0)
ai—-2ax-403=0 (1)

4oa+o+11a3=0-+(2)

-2a1+30+503=0-+(3)

From (1) and (2),

a1=—18k,ax=-27k,a3=9k.These values of a1, azand as, for any k satisfy (3) also.

Taking k = 1 we getai1=-18, a;=-27, az= 9 as a non-trivial solution. Hence the three vectors
are linearly dependent.
Theorem:Anysubsetofalinearlyindependentsetislinearlyindependent.

Proof: LetVbeavectorspaceoverafieldF.

LetS={v1,vz,...,vn}bealinearly independent set.

Let S'be a subset of S. Without loss of generality we take S'={v1, v, . . ., vk} where k <n.
Suppose S'is a linearly dependent set.

Then there existas,ay,...,axinFnotallzero,suchthatovi+oava+---+ovi=0.

Hence auvit+aava+:-+aVit+0vis1+:--+0vy=0isanon-triviallinearcombination giving the zero
vector. Here S is a linearly dependent set which is a contradiction.
Hence S'islinearlyindependent.

Theorem: Anysetcontainingalinearlydependentsetisalsolinearlydependent.
Proof. Let V be a vector space. Let Sbe a linearly dependent set. Let S'OS.

If S'is linearly independent S is also linearly independent (by theorem) which is a

contradiction. Hence S'islinearlydependent.
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Theorem: LetS={vi,vz,...,va}bealinearlyindependentsetofvectorsina
vectorspaceVoverafieldF. TheneveryelementoflL(S)canbeuniquelywrittenin
theformaayvi+aavo+---+anva,whereo,€F.
Proof.BydefinitioneveryelementsofL(S)isoftheformaiivi+oava+:--+onvn,
Now,a1vi+02Va+:-+anVa=B1vi+Bava+---+BnVn.

Hence(a1—B1)va+(az— B2)va+---+(an—Bn)vsa=0.

SinceSisalinearlyindependentset,a;—= Oforalli.

~.a=Bifor all i. Hencethetheorem.

Theorem:S={vi,v>,...,.va}bealinearlyindependentsetofvectorsina vector space V if and only if
there exists a vector VKES such that Vkis a linear
combinationoftheprecedingvectorsvi,va,...,Vk-1.

Proof:Supposevi,vy,...,vaarelinearlydependent.

Thenthereexistay,ay,...,an€ F, not all zero, such that a1vi+ ava+ -+ - + apvp= 0.
Let k be the largest integer for which axf=0.

Then aivi+ayva+: - -+akve= 0. -~ 0kVk= —0l1V1—0V2—" **—0k-1Vk-1.

svi= (a7 tog)vit - s+ (o tok-1) Ve,

~Vkis a linear combination of thepreceding vectors.

Conversely,

suppose there exists a vector visuch thatv + k = a1vi+ oava+---+0-1Vi-1.
Hence-a1vi—0Vy—--—0k-1Vk-1+Vk+OVis 1+ -+0v,=0.

Sincethecoefficientofvi=1, wehaveS={vi,v3,...,vs}islinearlydependent.

Example: InV3(R),letS=[(1,0,0),(0,1,0),(0,0,1),(1,1,1)].Here(1,1,1)=(1, 0, 0) + (0, 1, O) + (O, O,
1). Thus (1, 1, 1) is a linear combination of the preceding vectors. Hence S is a linearly

dependentset.

Theorem:LetVbeavectorspaceoverF.LetS={vi,v3,...,vn}and L(S)=W.Thenthereexists
alinearlyindependent subsetsS of SsuchthatL(S')= W.

Proof: Let S = {v1, vz, ..., va}

If Sis linearly independent there is nothing to prove.

If not, let wvibe the first vector in S which is a linear combination of the
precedingvectors.LetS1={v1,Va,...,Vk-1,Vk+1,...,Vn}.(ie.,)S1isobtainedby deleting the vector vifrom S.

Weclaim that L(S1) = L(S) = W.
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Since S1ES,L(S1) €L(S).

Now, let v EL(S).

Thenv = a1vi+ -+ - +0Vk+ * - * + ApVa.

Now,viis a linear combination of the preceding vectors.

Let vk= Bava+ - -+ + Bk-1Vk-1. Hencev=aivi+:+0k-1Vk-1+0k(B1Vi+: - +Bk-1Vk-1)+0k+1Vks1+:+0nVh.

-~V can be expressed as a linear combination of the vectors of Siso that v € L(S1).

Hence L(S) SL(S1).

Thus L(S) = L(S1) = W .

Now, if Siis linearly independent, the proof is complete.

If not, we continue the above process of removing a vector from Si, which is a linear
combination of the preceeding vectors until we arrive at a linearly independent subset S'of

S such that L(S) = W.

Basis and dimension:
Definition:A linearly independent subset S of a vector space V which spans

thewholespaceViscalledabasis ofthevectorspace.

Theorem:

Any finite dimensional vector space V contains a finite number of
linearlyindependentvectorswhichspanV.(ie.,)Afinitedimensionalvectorspacehas
abasisconsistingofafinitenumberofvectors.

Proof: Since V is finite dimensional there exists a finite subset S of V such that
L(S)=V.ClearlythissetScontainsalinearlyindependentsubsetS'={v1,va,...,vn}

suchthatL(S')=L(S)=VHenceS isabasisforV.

Theorem:LetVbeavectorspaceoverafieldF.ThenS={vi,va,...,vn}is
abasisforVifandonlyifeveryelementofVcanbeuniquelyexpressedasalinear combination of
element ofS.

Proof: Let S be a basis for V.

Then by definition S is linearly independent and L(S)=V.
HencebytheoremeveryelementofV canbeuniquelyexpressedasa linear combination of

elements ofS.
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Conversely, suppose every element of V can be uniquely expressed as a
linearcombinationofelementsofS.

ClearlyL(S)=V.

Now,letoiivi+oiva+:-+0ovy=0.

Also,0v1+0va+:--+0v,=0.

Thuswehaveexpressed Oasalinearcombinationof vectors of S in two ways.

By hypothesis a1= ax="- - - = a,= 0.

Hence S is linearly independent. Hence S isabasis.

Examples
1.5={(1,0,0),(0,1,0),(0,0,1)}isabasisforVs;(R)for,(a,b,c)=a(1,0,0)+b(0,1,0)+c(0, O, 1).

Any vector (a, b, c) of V3(R) has been expressed uniquely as a linear combination of the elements
of S and hence S is a basis for V3(R).

2.5={e1, ey, ...,en}is a basis for V,(F ). This is known as the standard basis forVn(F ).

3.5={(1,0,0),(0,1,0),(1, 1, 1)} is a basis for V3(R).

4. {1, i} a basis for the vector space C overR.

Theorem: Let V be a vector space over a field F. LetS={vi,vy,...,vn} spanV.LetS =
{w1,wz,...,wn}bealinearlyindependentsetofvectorsin V.Then m <n.

Proof.Since L(S) =V, every vector in V and in particular ws, is a linear combination ofvi,vy,...,vs.

HenceSi={w1,v1,V2,...,vn}is a linear independent set of vectors. Hence there exists a vector vif=
wiin Siwhich is a linear combination of the preceding vectors.

LetS,={w1,V1,...,Vk-1,Vk+1,...,Vn}.
Clearly,L(S2)=V.
Hencewais a linearcombinationofthevectorsinS,.

HenceSs={wa,W1,V1,...,Vk-1,Vk+1,...,Vn} iS linearly dependent. Hence there exists a vector in
Sswhich is a linear combination of the preceding vectors. Since the w/s are linearly
independent, this vectorcannotbe wyor wiand hence must be some vjwherejk(say, with j
>k).

DeletionofvfromthesetSsgivesthesetSa={wy,w1,v1,...,Vi-1,Vks1,...,Vj-1,Vj+1,...,Vn}OF n vectors
spanningV.

Inthisprocess,ateachstepweinsertonevectorfrom{wi, wy, . . . ,wm} and delete one vector from
{vi, v2, ..., vn}
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(i)
(ii)

(ii)

If m > n after repeating this process n times, we arrive at the set {wn, Wn-1, . . . ,w1} which
spans V.

Hencewp.iisalinearcombinationofwi,wa,...,wp.
Hence{w1,w3,...,Wn,Wns1,. . . , Wn} is linearly dependent which is a contradiction.

Hence m<n.

Theorem:Any two bases of a finite dimensional vector space V have the same number

ofelements.
Proof. Since V is finite dimensional, it has a basis say S= {vi, v2, ..., va}.
Let S'={wi, Wz, ...,Wn} be any other basis for V .
Now, L(S) = V and S'is a set of m linearly independent vectors. Hence m < n.
Also, since L(S) =V and S is a set of n linearly independent vectors, n < m. Hence m =n.

Definition:Let V be a finite dimensional vector space over a field F. The number of elements

in any basis of V is called the dimension of V and is denoted by dim V.

Theorem: Let V be a vector space of dimension n.Then
anysetofmvectorswherem>n is linearlydependent.

anyset of m vectors where m < n cannot span V.
Proof.
(i) LetS={vi, vz, -, va} be abasisforV.Hencel(S)=V.
Let S'be any set consisting of m vectors where m > n. Suppose S'is linearly independent. Since S
spansV,m<nwhichisacontradiction.

HenceS'islinearlydependent.
Let S'be a set consisting of m vectors where m < n. Suppose L(S) = V.
Now,S = {v1, va, - - - ,vn} is a basis for V and hence linearly independent.

Hence by theoremn < m which is a contradiction. HenceS'cannot span V.

Theorem:

LetVbeafinitedimensionalvectorspaceoverafieldaF.Any
linearindependentsetofvectorsinVispartofabasis.

Proof. Let S = {vi, v2, . .. ,v/} be a linearly independent set of vectors.

If L(S) = V then S itself is a basis.
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If L(S) =V, choose an element vr+1€ V - L(S).

Now, consider S1={vi1,2, . .., Vr, Vr+1}.

We shall prove that Siis linearly independent by
showingthatnovectorinSiisalinearcombinationoftheprecedingvectors.

Since {v1, v2, . . . ,v/} is linearly independent viwhere 1 <i < ris not a linear combination of the
preceding vectors.

Also vr1EL(S) and hence vriis not a linear combination of v, va, ... ,V-.

Hence Siis linearly independent.

If L(S1) = V, then Siis a basis for V . If not we take an element vr.2€ V — L(S1) and proceed as
before. Since the dimension of V is finite, this process must stop at a certain stage giving the

required basiscontainings.

Theorem: Let V be a finite dimensional vector space over a field F . Let Abe a subspace of V..

Then there exists a subspace B of V such that V= A (PB.
Proof. LetS= {vi, vy, ..., v/} be abasis of A.

By theorem , we can find w1, wa,...,ws€VsuchthatS'={v1,v2,"-,v;,W1,W2,...,Ws}isabasisofV.Now,

let B =L({w1, Wy, ..., Ws}).
Weclaim that An B={0}and V=A +B.
Now, let vEANB.ThenvEAandveB.

Hence v=aivi+:+oV/=LiWi+-+BsWs
SVt o V—Biwi— - —Bsws=0.

Now,sinceS'islinearlyindependent,a;= 0 = B;for all i and j.
Hence v =0. Thus A n B = {0}.

Now, letv EV .

Thenv = (a1va+ - - - + o) + (Biwit - - - + Bsws) € A+ B.
Hence A + B =V so that V = A@B.

Definition:Let V be a vector space and S = {v1, v2, . . . ,va} be a set of independent vectors
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in V. . Then S is called a maximal linear independent set

ifforeveryveV-S,theset{v,vi,v,...,vn} islinearlydependent.

Definition.LetS={v1,v»,...,va}beasetofvectorsinVandletL(S)=V. ThenSiscalledaminimal

generatingsetlf foranyv,eS,L(S-{vi})=V.

Theorem: LetV beavectorspaceoverafieldF.LetS={v1,va,...,va}€V. Then the following
areequivalent.

(1) Sis a basis for V.
(i1) Sis a maximal linearly independentset.

(iii) Sis a minimal generatingset.
Proof.(i)=(ii)LetS={v1,v2,...,va}beabasisforV.Thenbytheoremany
n+1lvectorsinVarelinearlydependentandhenceSisamaximallinearlyindependent set.
(ii)=(iii)LetS={v1,Vv2,...,va}beamaximallinearlyindependentset.thatS is a basis for V we shall
prove that L(S) = V.

Obviously L(S) €V.

Now,letveV.

IfveS,thenveL(S).(sinceSCL(S))

IfvgS,S ={v1,v2,...vn,v}is a linearly dependent set (since S is a maximal independent set)

~There exists a vectorinS whichisalinearcombinationofthepreceedingvectors.Sincevi,va,...,vaare
linearly independent, this vector must be v. Thus v is a linear combination of vy, va, ... ,vn.
Therefore v €L(S).

Hence V C€L(S). Thus V = L(S).

(i)=(iii) Let S={v1, v2, ..., va} be a basis. Then L(S) = V.

If S is not minimal, there exists vi€ S such that L(S - {vi}) = V.

Since S is a linearly independent, S - {vi} is also linearly independent. Thus S - {vi} is a basis
consisting of n — 1 elementswhichisacontradiction.

HenceSisaminimalgeneratingset.

(ii))=((i)

LetS = {v1, v2, . . ., vn} be a minimal generating set. To prove that S is a basis, we haveto show

that S is linearly independent.
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If S is linearly dependent, there exists a vector viwhich is a linear combination of the
preceeding vectors.
Clearly L(S — {v«}) = V contradicting the minimality of S.

Thus S is linearly independent and since L(S) =V, Sis a basis for V.

Theorem:Anyvectorspaceof dimensionnoverafieldFisisomorphictoVn(F).
Proof.LetVbeavectorspaceofdimensionn.Let{v1,va,...,va}beabasisforV.
ThenweknowthatifveV,vcanbewrittenuniquelyasv=aivi+oova+:-+anvn, Wherea,EF.
Now,considerthemapf:V>Vn(F)givenbyf(aivi+:-+anva)= (a1,a,...,0n).
Clearlyfis1-1landonto.

Letv,weV.

Thenv=aavi+:--+asvpandw=B1vi+:--+Bnvn.

f(v + w) = f[(oa+ Br)va+ (aa+ B2)va+ - - - + (0ot Bn)Vi]
=((aa+Pa),(02+B2),+, (0tr+Bn))
=(0t1, 02, an) +(B1,B2,"+,Bn)
= f(v)+f(w)
Alsof(av)=f(aasvi++aanvn)

=(aoy,00, +,00,)
= a(aL az; L an)
= af(v).

Hence f is an isomorphism of V to V,(F).

Corollary :Any two vector spaces of the same dimension over a field F are isomorphic,
For, if the vector spaces are of dimension n, each is isomorphic to V,(F ) and hence they

areisomorphic.

Theorem:. Let V and W be vector spaces over a field F. Let T : V - W be an isomorphism.
Then T maps a basis of V onto a basis of W.

Proof. Let{vy,vy,...,vn}beabasisforV.

WeshallprovethatT(vi),T(v2),...,T(va) are linearly independent and that they span W.

Now,a1T(v1)+ouT(va)+:+ a,T(vs) =0
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=T (ouvi) + T (a2v2) + - - - + T (atavn) = 0

=T (avi+ aava+ - - -+ apvp) =0

SoVit Vot - - - + oyVe= 0 (since Tis 1-1)

=ai= o= ---= = 0 (since vi,vy,...,vharelinearlyindependent).
~T(v1),T(v2),...,T(vn)arelinearlyindependent.

Now, let w EW . Then since T is onto, there exists a vector v €V.
suchthat T(v) = w.

Let v = agvit aavo+t - - -+ OpVp.

Thenw= T(v) = T(aivi+aava+:--+0nVn)

=1 T(v1)+02T(v2)+ - +anT(vn).

Thuswisa linear combinationofthevectorsT(vi),T(v2)...,T(Va).

~T(v1),T(v2)...,T(vn)spanW and hence is a basis forW.

Corollary: Two finite dimensional vector space V and W over a field F are

isomorphicifandonlyiftheyhavethesamedimension.

Theorem:Let V and W be finite dimensional vector spaces over a field F.
Let{vi,va,-,vn}beabasisforVandletwi,wy,...,wsbeanynvectorsinW(not
necessarilydistinct)ThenthereexistsauniquelineartransformationT:V->Wsuch
thatT(vi)=w;,i=1,2,...,n.

Proof. Letv=a1vi+aava+:+0pvhEV.

WedefineT(v)=01w1+0aWa+:+0pWn.

Now,letx,y€EV.

Letx=a1vi+aava+---+anvpandy=Bivi+Pava+:+Bnvn
S(x+y)=(a1+B1)vi+(az+B2)va+---+(an+Bn)Vn
-'-T(X+y)=((11+B1)W1+((12+[32)W2+---+((1n+Bn)Wn.
=(o1W1+0Wa+++0nWn)+(B1Wi+B2Wa+--+BnWn)

=T (x)+T(y)

Similarly T (ax) = aT (x).

Hence Tis a linear transformation.
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Also vi= 1v1+0vo+:--+0vp.

HenceT(vi)= 1wi+0wy+---+0wp= wi.

Similarly T(vi)=wiforalli=1,2,...,n.

Now,toprovetheuniqueness,letT:V->Wbeany otherlineartransformationsuchthatT (vi)=wi;.
Letv=aivitoova+:---+ayvaEV.

T(v)= a1T (va)+a T (v2)+:--+anT (V)

=Q1W1+0 W+ +0pWp

= T(v).

Hence T=T.
Remark: The above theorem shows that a linear transformation is completely

determinedbyitsvaluesonthe elements ofabasis.

Theorem: Let V be a finite dimensional vector space over a field F . LetWbe a subspace of V.
Then

(i) dimW<dim V.

(if) dim ( ) = dimV — dimW

Yy
w
Proof.

(1) LetS={w1,w3,...,wm}beabasisforW.SinceWisasubspaceofV,Sisapart of a basis for V. Hence

dimW <dim V.
(ii) LetdimV=nanddimW=m.
LetS={w1,w3,...,wm}beabasisforW.Clearly S is a linearly independent set of vectors in V.
Hence S is a part of a basis in V . Let S={w1,w2,...,Wm,v1,v2,",vr}be
abasisforV.Thenm+r=n.Now,weclaim S={W + vy, W+ v>, . . ., Vv\v/ + v/} is a basis for%.
Suppose ar(W +vi) + co(W+va) + -+ o (W+v,)=W+0
=>(W+avi)+ (W+oova)+- -+ (W+av) =W
>W +agvitoovet+av=W

>aVi+oaVao+-+o,vEW.
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Now,since{w1,wz, :*,Wm}isabasisforW,a1vi+azva+: - +0V,=B1Wi+B2Wa+: - +BmWm.

Thereforeavi+aava+:+o,V—B1Wi—Bawa—+=BmwWm=0.

Hencear=a,=--=a,=B1=P2=--=Bm=0andsoS’isalinearlyindependentset.
%4
Now,letW+vE—.
w

Letv=aivi+aova++av+Biwi+Bawa++BmWm. Then

W+ v =W + (0avi+ azva+ - - - + 0Vt Biwat BaWat - -+ + BmWm)
=W+(agvi+aava+--+ave)(sincefiwi+Bawat - +BmWmnEW
=(W+avi)+ (W+aava)+-+(W+a,vr)

=a1(W+vi)+o(W+va)++o(W+v,)

Hence S'spans%of thatS'isabasisfor% and dim%:r:n—m=dimv—dimW.

Theorem:Let V be a finite dimensional vector space over a field F. LetA

and B be subspaces of V. Then dim (A + B) = dim A + dim B - dim (A n B)
Proof. A and B are subspaces ofV. Hence A n B is subspace of V.
Let dim(ANB) =r

Let S={vi, v2,..., v/t be abasisforAn B

Since A N Bis a subspace of A and B, S is a part of a basis for A and B.

Let {v1, v2, ...,V U1, Uz, * -+, Ust be a basis for A andn{vi, vz, . . ., Vr, W1, W2,

for B.

Weshallprovethat{vi,vy,...,vr,U1,Uz,...,Us,W1,W3,...,W:}beabasisforA+B.

Letaivi+ova+ - +aV+HBiur+PBauz+: - +PBsUstyiWi+y2Wo, - +y:W=0.
Then Biui+Bauz+:--+BsUs=—(a1vi+0aVa+-+0V,)—(Y1W1+Y2W2, - +Y W) EB.
Hence Biui+ Bauz+ - - - + BsusEB.

Also Biui+ Baua+ - - - + BsUsE A,

..., Wt} be a basis

Hence Biui+Pauz+---+BsusssssEANBandsoBiui+Pauzr+ - +PBsus=01vi+82va+--+6,v,.

BlU1+BZU2+' : '+Bsus_61V1—62V2—' ~=6,v,=0.
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ThusPi1=B2=+=Bs= 61=62="+-=6,=0(Since{uy,uy,...,us,v1,vz,...,v/}islinearlyindependent)
- Similarly we canprove yi= y>= = y= 0.
Thus ai= Bj= yk= Oforall 1<i<r;1<j<s;1<k<t ThusS'sa linearly independent set.
Clearly S'spans A + B and so S'is a basis for A+ B. Hencedim (A+B) =r+s +t.
Also dimA=r+s;dimB=r+tanddim(ANB)=r.

HencedimA+dimB-dimANB= (r+s)+(r+t)-r=r+s+t=dim(A+B).

Corollary IfV=AE@PB,dimV=dimA+dimB.
Proof. V=A@ B=A+B=Vand AnB={0}.
. dim(AnB)=0.

HencedimV=dimA+dimB.
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UNIT - 111
RANK AND NULLITY

Definition:
Let 7:V — W be a linear transformation. Then the dimension of 7 (7 ) is called the rank of T.

The dimension of kerT is called the nullity of T.

Theorem. Let 7 :V — W be a linear transformation. Then dim V' = rankT + nullityT .

Proof.

We know that v /ker 7 = T (V)

~.dimV —dim(kerT) = dim(7(¥"))
s dimV —nullityT = rankT

s dimV = nullity + rankT

Note. kerT is also called null space of T.

Example. Let V denote the set of all polynomials of deg ree < nin R[x]. Let T:V =V be defined

by T(f):dl. We know that T is a linear transformation. Since 4 — 0 < f is constant, kerT
dx dx

consists of all constant polynomials. The dimension of this subspace of Vis 1. Hence nullity T is

1. Since dimV =n+1, rankT=n

Definition. A linear transformation 7 :V — W is called non-singular if T is 1-1; otherwise Tis

called singular.

Matrix of a Linear Transformation.

Let V and W be finite dimensional vector spaces over a field F. Let dim}) =manddiml¥ =n. Fix

an ordered basis {VI’VZ""’Vm} for V and an ordered basis {Wl,Wz,---,Wm} for W.

Let 7:V — W be a linear transformation. We have seen that T is completely specified by the

elements T(Vl,Vz,---,Vm) Now, let
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T(vl)z aw, +a,w, +..+a,w,
T(v2)= Ay W, + AW, +...ta,, W,

T(Vm)z amlwl +am2w2 +"‘+amnwn

Hence T(vap---,vm) are completely specified by the mn elements @; of the field F. These @;

can be conveniently arranged in the form of m rows and n columns as follows.

a,  ap a,,
ay Ay a,
aml am2 amn

Such an array of mn elements of F arranged in m rows and n columns is know as , x » matrix
over the field F and is denoted by @;. Thus to every linear transformation T there is associated

with it an, x» matrix over F. Conversely and , x . matrix over F defines a linear

transformation 7' :V — W given by the formula (1).

Note. The , x » matrix which we have associated with a linear transformation 7:V — W
depends on the choice of the basis for Vand W
For example, consider the linear transformation 7:v,(R)— v,(R) given by 7(a,b)=(a,a +b).
Choose {e,, e, } as a basis both for the domain and the range.

T(e)=(11)=¢ +e,

Then
T(e,)=(01)=e,

1 1
Hence the matrix representing T is {0 J

Now, we choose {¢ ,e, } as a basis for the domain and {(1,1),(1,-1)} as a basis for the range.
Let w, =(1,1)andw, = (1,-1).

T(g)=(L)=mw,
Then
T(e,)=(0,1)=(1/2)w, —(1/2)w,

1 0
Hence the matrix representing T is
1/2 -1/2
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Solved Problems

Problem 1.

Obtain the matrix representing the linear transformation T3V3(R)—>V3(R) given by

T(a,b,c)= (3a.a—b,2a + b+ c) W.r.t. the standard basis {81,%,%}.

Solution.

T(e,)=7(1,0,0)=(3,1,2) =3¢, + e, +2e,

T(e,)=7(0,1,0)

(0,-11)=—e, +e,

T(e;)=1(0,0,1)=(0,0,1) = e,

31 2
Thus the matrix representing Tis [0 —1 1
0 0 1
Problem 2.
I 2 1
Find the linear transformation T1V3(R)—>V3(R) denoted by the matrix | 0 1 1] w.r.t. the
-1 3 4
standard basis {epep%}
Solution.
T(e,)=e +2e, +e, =(1,2,1)
T(ez)z Oe, +e, +e, = (0,1,1)
T(e,)=—e +3e, +4e, =(~13,4)
Now, (a,b,c)=a(1,0,0)+ 5(0,1,0)+ ¢(0,0,1)
=ae +be, +ce,

.'.T(a,b,c)zT(aq +be, +c%)
=aTl (e, )+bT(e,)+cT(e,)
=a(1,2,1)+5(0,1,1)+ ¢(~1,3,4)
~T(a,b,c)=(a-c2a+b+3c,a+b+4dc)

This is the required linear transformation.
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(a)
(b
(c)
(d)

~—

Definition. Let A:(ay') and B:(bg) be two m x » matrices. We define the sum of these two
matrices by A+B:(aij +sz)

Note that we have defined addition only for two matrices having the same number of rows and

the same number of columns.

Definition. Let A=(a,-j) be an arbitrary matrix over a field F. Let & € . We define a4 = (Ola,j)

Theorem.

The set M,,M(F)of all m x » matrices over the field F is a vector space of dimension mnover F

under matrix addition and scalar multiplication defined above.

Proof

Let Az(aﬁ) and B:(by,) be two » x » matrices over a field F. The addition of » x » matrices
is a binary operation which is both commutative and associative. The , x » matrix whose
entries are 0 is the identity matrix and (—%) is the inverse matrix of (a,»j). Thus the set of all

m x n_matrices over the field F is an abelian group with respect to addition. The verification of
the following axioms are straight forward.

a(4+B)=a(4)+a(B)

(a+p)d=al(d)+p(4)

(o )d = a(p4)

14=A4

Hence the set of all ,» « » over Fis a vector space over F.

Now, we shall prove that the dimension of this vector space is mn. Let E;-j be the matrix

.\t
with entry 1 in the (l,j)t place and 0 in the other places. We have mnmatrices of this form. Also

any matrix A—(Cl,-j) can be written as A=Za,-jE,»j. Hence A is a linear combination of the

matrices E,, are linearly independent. Hence these mn matrices form a bases for the space of all

m x n_matrices. Therefore the dimension of the vector space is mn.
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Theorem
Let V and W be two finite dimensional vector spaces over a field F. Let dimV =manddimW =n.

Then L(v,w ) is a vector space of dimension mn over F.

Proof.

L(V,w )is a vector space of dimension mn over F. Now, we shall prove that the vector space
L(v,w ) is isomorphic to the vector space MW(F) is of dimension mn, it follows that (v ,w )
is also of dimension mn

Fix a basis {Vl,Vz,...,Vm} for V and an ordered basis {m,wz,...,wm} for W.

We know that any linear transformation

T e L(V,w )can be represented by an » x » matrix over F.

Let T be represented by u7(7). This function MIZ(V,W)—)MW(F) is clearly 1-1 and onto

Let 7.7, e L(7,w ) and M(Tl):(ay)andM(Tz):(b-)

i

~.
1]
—_

=M(T;)+M(T,)
Similarly M (aT,)= aM (T;)

Hence M is the required isomorphism from (v ,w ) to M,M(F)

Definition and examples

Definition. Let V be a vector space over F. An inner product of V is a function which assigns to
each ordered pair of vectors u, v in V a scalar in F denoted by <u,v> satisfying the following

conditions.
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(i) w+v,w) = (u,w) +{v,w)

{

(i) (owv)=afuy)
{
<

u,v> = > where <u v> is the complex conjugate of <u v>

(iii)

(iv)  (u,v)>0and (uu)=0iffu =0.

A vector space with an inner product defined on it is called an inner product space. An inner
product space is called an Euclidean space or unitary space according as F is the field of real

numbers or complex numbers.

Note 1. If F is the field of real numbers then condition (iii) takes the form <u,v> =<v,u>. Further

(iii) asserts that <u,u> is always real and hence (iv) is meaningful whether F is the field of real or

complex numbers

Note 2.<u,av> = a(u,v}

For, <u,av> = <au,v>

Note 3. <u,v + w> = <u,v> + <v, w>

For, {u,v+w)={v+wu)
= (v.0) +(w.u)
=) + {wd)
= () + ()

Note 4. (11,0) =(0,v) =0
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For, (1,0) =(1,00) = 0{1,0) =0

Similarly <0,v> =0.

Examples.

1. V,,(R) is a real inner product space with inner product defined by
<x,y> =X +X%y, .. tXY,

x:(xl,)g,...,xn)and

y=0s350e-33)

This is called the standard inner product on Vn(R)

Proof.

Let X,),Z EV;,(R)and aeR.

(i) <x+y,Z> :(xl +J’1)Z1 +(x2 +Y2)Zz +'“+('xn +yn)Zn

=(xz, + X2, +.t x,2, )+ (1,2, + 1,2, + .+ 1,2,

(02} ()
(i) (omy)=omy, +axn,y, +..+ax,y,
=a(xy, +x,0, +...+x,y,)
=a(x,y)
(iii) (x,y>=x1y1+x2y2+...+xnyn
= VX, + Vo Xy F ot VX,
={yx)
(iv) (xX)=x +x;+..+x; 20 and
2

<x,x>=0iffx12=x22=...=x =0

n

<x,x> =0iffx=0
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2. V,;(C) is a complex inner product space with inner product defined by

() =53 4637+, 7, where X=(5,505) and y=(31,353,)

Proof.

Let X,1,2€V,(C) and aeC

) (x+32)=(n+ )z + 00+, )z ++ (x4, )z,
S T
= (r,2)+(32)
(ii) (am}§:a%;§+ag;;+m+amjz
:a(x1)71+x2y_2+...+xny_n)

(x.)

(i) (3,x)= 2 + oy + ot 3,3,

Il
N

=X T YX oty X,

=XV tX), . t+X, ),

=(x.)

(iv) <x,x>:x1;1+x2x_2+...+xnx_n
= |)c1|2 +|)c2|2 +...+|xn|2 >0and

<x,x>=0iffx12 =x;=..=x.=0

<x,x>=0iffx=0

3. Let V be the set of all continuous real valued functions defined on the closed interval

1
[0,1]. Vis a real inner product space with inner product defined by (1, g)= If(t)g(t)dt
0

Proof.

Let f,g,heV and aeR
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0 (£ )= [ 76+ gl

)dt+_[g Wil e

o'—.—

() +(ah)

(i) (af.g)=[af()elop

(i) (f.g)= jf(t)g(tyz

= [ gl)f (er

=(g:h)

) (7.f)=[[/)Fdr >0 and

(f.f)=0iff =0

Definition. Let V be an inner product space and letx €)' . The norm or length of x, denoted by

M, is defined by |x||= ,/(x,x) . Xis called a unit vector if M =1

Solved Problems

Problem 1.

Let V be the vector space of polynomials with inner product given by (f, g) jf(t)g (Yt . Let

f(t)=1t+2and g(t)=t2 —2¢t—3. Find (i) <f,g> (ii) ||f||

Solution.
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0 (fog)=[ el

= j(t+ 2)(¢> 20 -3 )it
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Theorem. The norm defined in an inner product space V has the following properties.

(i) | =0and|x|=0iffx=0.

(i) Joa] =[afp].

(iii) |<x,y>| < || [y (Schwartz’s inequality).

(iv) ||x+y|| =||x”+||y|| (Triangle inequality).

Proof.

(i) ||x||=1/<x,x> 20and||x||=Oiffx=O.
(i) flo]" = (erx, exx)

= alx,ax)

= aa{x, x)

= |a"

Jeod] =l

(iii)  The inequality is trivially true when x=0o0r y =0.Hencelet x#0 and y =0

Consider z =y — <|T’”f>x
X!

Then OS<Z,z>
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) )
<y W >

NI R R

2 + 2 2
[~ [ I~

b
:Hyzu_m< %) (%) +<y,x><y,x>

2 2 2
<l < [

A

SO <ol oA = e )

)<l D

(iv) ||x+y||2 = <x+y,x+y>

= (%) + (%) +(1.x) +(.)
= + () + (5 + oA
=[] +2Re(x, )+ ]
<[+ 2fe, )|+ oA

< 42y +

<l +oAY

A=l

Orthogonality
Definition. Let V be an inner product space and x,y e V' let x is said to be orthogonal to yif

<x,y> =0

Note 1. xis orthogonal to y :><x, y> =0
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= (x,5)=0

—_

= <y,x> =0
=y is orthogonal to x

Thus x and y are orthogonal iff<x,y> =0

Note 2. xis orthogonal to y = ax is orthogonal toy
Note 3. x, and x, are orthogonalto y = x, + x, is orthogonal toy

Note 4. 0 is orthogonal to every vector in V and is the only vector with this property

Definition. Let V be an inner product space. A set S of vectors in V is said to be an orthogonal

set if any two distinct vectors n S are orthogonal

Definition. S is said to be an orthonormal set if S is orthogonal and Hxﬂ =lforall xeS

Example. The standard basis {el,%,---ﬁn} in R"or C" is an orthogonal set with respect to the

standard inner product.

Theorem. Let SZ{VI,Vz,---,Vn} be an orthogonal set of non zero vectors in an inner product

space V. then S is linearly independent.

Proof.

Let AV, OVy,... 2V, =0

Then (av, &V, v, 1) =(0,1) =0

.'.051<v1,v1>+a2<v2,v1>+...+an<vn,v1> =0
a’l<v1,vl> =0 (since S is orthogonal)

sa, =0 (since v, %0)

Similarly &, =05 =...=Q,, =0
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Hence S is linearly independent.

Theorem. Let SZ{VI,Vz,---,Vn} be an orthogonal set of non zero vectors in an inner product

space V.let veV and V=V, V... &4V, . Then a, = <|r»‘|’|k2>
Vi

Proof. <v,vk> = <a1v1,a2v2,...,anvn,vk>
=, (v )+ (Vo) + ot O (Vv ) Ho 2, (0,0
= ak<vk,vk> (since S is orthogonal)

_ 2
—akH"kH

_(vw)

k 2
vl

Theorem. Every finite dimensional inner product space has an orthonormal basis

Proof.

Let V be a finite dimensional inner product space. Let {vl,vz,...yn} be a basis for V. From this

basis we shall construct an orthonormal basis {W,Wza---m} by means of a construction know as

Gram-Schmidt orthogonalisation process
First we take w, = v,

(v2,w)

2
[l

We claim that w, = 0. For, if w, = 0 then v, is a scalar multiple of w, and hence of 4, which is

Let Wy, =V, —

W

a contradiction since y, v, are linearly independent

Also, <w2,wl>= vz—w W
[

~ (vy,m) 5
=\V2 = 2 ViV ( W1:V1)
vl
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:(vz,v1>— <V2’V1><vl,v1>

2
v

=<v2,v1>—<v2,v1>
=0

Now, suppose that we have constructed non zero orthogonal vectors {Wl,Wz,---m}. Then put

)
k+12 77§
Wist = Vi _Z 7 Wk
=R
We claim that W, ;4 #0. For, if Wia =0 then V,,1 is a linear combination of {W{,WZ,...M} and

hence is a linear combination of {vl,vz,...yk} which is a contradiction since {Vl,Vz,---)’kH} are

linearly independent

Also

k
_ <vk+1’wj>
<Wk+1’W1>—<Vk+1’W1>_Z 2_<W/’Wi>

A %wm

”Wi

= <vk+l7wi>_<vk+l7wi>
=0
Thus, continuing in this way we ultimately obtain a non zero orthogonal set {W{,Wz,...m}

By theorem this set is linearly independent and hence a basis

To obtain an orthonormal basis we replace each W, by —
w.

1

Solved Problems

Problem 1. Apply Gram-Schmidt orthogonalisation process to construct an orthonormal basis
for V;(R)with the standard inner product for the basis {VI,VZ,V3}where v, =(1,0,1); v, =(1,3,])
and V3 :(3:251)

Solution.

Take w, = v, = (1,0,])
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Then |w[* = (w,w)=1*+0*+1*=2 and
(W) =140+1=2

Put w, =V, ——<V2,W1>

bl
= (1,3,1)- (1,0,1)
=(0,3,0)
sl =9
Also, (W, w;)=0+6+0=6 and (w;,v;)=3+0+1=4

Now, W, = v, — <V39W1> <V3awz>

2 Wi~ 7 W
o [w|

4 6
=(3,2,1)-—=(10,1)-—(0,3,0
(’ ’) 2(’3) 9(53)

_ (3,2,1)—2(1,0,1)-%(0,3,0)

=(1,0,-1)
o =2
- The orthogonal basis is {(1,0,1),(0,3,0),(1,0,—1)}

Hence the orthonormal basis is

{Fogmhon 5ozl

Problem 2. Let V be the set of all polynominals of degree <2 together with the zero

polynomial. V is a real inner product space with inner product defined by f g If x)dx

2
Starting with the basis {I,X,x }, obtain an orthonormal basis for V.
Solution.
Let v, =1;v, =x and ;=X

Let w, =V,
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1
Then ||W1||2 =(w,w) = jldx =2
-1

[l =~2
_ <V3’W1> <"3’W2>

w, =V, — w, — w
SRR T R N
1 1
=x>- lJ.xza’x - [3—x}jx3dx
2 -1 2 -1
el
3

1 1y, 8
o = s = (57 -5 = 3

-1

1
Hence the orthogonal basis is {l,x,x2 _5}

(e

2 4

\S]

1 V3 V1o
The required orthonormal basis is {—,—x,—(?)xz —1)}

Orthogonal Complement
Definition. Let V be an inner product space. Let S be a subset of V. The orthogonal complement

of S denoted by S*, is the set of all vectors in V which are orthogonal to every vector of S

(ie) S* = {x/x eVand <x,u> =0 forallue S}

Examples
L 1 . . L
1. 4 :{O} and {0} =V since 0 is the only vector which is orthogonal to every vector

2. Let SZ{(X-O-O)/X ER}§V3(R) with standard inner product. Then S* ={(0,y,2)/y,z ER}

(i.e) The orthogonal complement of the x-axis is the yz plane

Theorem
If Sis any subset of V then S* is a subspace of V.
Proof.

Clearly 0 € S* and hence S* = ®
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Now, let )C,yeSl and a,8eF
Then <x,u>=<y,u>=0 forall ueS
.'.(ax+,[;j/,u> =a<x,u>+,8<y,u> =0forallues

.ox+[3 €S Hence s* is a subspace of V.

Theorem
Let V be a finite dimensional inner product space. Let W be a subspace of S. Then V is the direct
sumof Wand w+* (ie)V=wew

Proof.

i) W ={0} and

(ii) W+Ww*=V

(i) let veWnWwW*.Then veWand veW*

Now, ve W* = v is orthogonal to every vectorin W.

In particular, v is orthogonal to itself.

<v,v> =0and hence v=0

Hence WW* I{O}
(ii) Let {v,,v,,.. v, } be an orthonormal bases for W. Let ve V'
Consider v, ev—(v,v1>v1 —(v,v2>v2 —...—(v,v,.)vr

o (voovi) =) =) (i) (since<v,.,vj>=0 ifiz)

= <V,Vi>—<v,vi> (since <v,.,vj> =1)

=0

. Vyis orthogonal to each of {y,v,,.., v,} and hence is orthogonal to every vector in W. Hence
vy eW" and v=[<v,v1>v1 +<v,v2>v2 +...+<v,vr>vr]+vo EW+W'y —wew*

Hence the theorem.
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Corollary. dim V = dim W + dim W *

Proof. dinV’ =din{ly @)= din#¥+dim#™*

Theorem. Let V be a finite dimensional inner product space. Let W be a subspace of V. Then
) =w
Proof.

Let we W .Thenforany uew™, <W,u> =0

Hence we (Wl)L .Thus W (Wl)l (1)

Now by theorem V =w @ w*
Aiso V =W @ (")
Hence dimW:dim(Wl)L...(Z)

From (1) and (2) we get (Wl)l =W

Solved problems

Problem 1.

1
Let V be an inner product space and let 5, and s, be subsets of V. Then S, =5, =S, gSIl
. 1
Solution. Let €S,
Then <u,v> =0forall yes,

But 5, c 5,. Hence <u,v> =0forall 4 ¢ S,

Hence u €S, . Thus S, =S,

Problem 2.

Let w, and w, be subspaces of a finite dimensional inner product space. Then
. L L 1

i W) =w oW,

G (W om) =W +w;

Solution.

(i) We know that w, e w, + w,
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: (Wﬁ-W;)L QWIL (by the problem 1).
Similarly, (WH—WE)l gW;L

Hence (Wf+Wz)L ng'l ﬁW;l...(l)
Now, Let we WllszL

Then WEWIl and wWe Wzl

3 <w,u>=0for all wew, and w,

Now, let v e W, + W,

Then v = v, +v, where v, e w, and v, e 7,
. <W,u>=<w,vl+v2>
=(wv)+(w,v,)

=0+ 0 (since v, e w,and v, e w,)
Hence We(Wﬁ-W;)L
W oW, e(W+W,)" ..(2)
From (10 and (2) we get

(W +m ) =Wy

(ii) Proof is similar to that of (i)
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UNIT - IV
THEORY OF MATRICES

Introduction
In this chapter we shall develop the general theory of matrices. Throughout this chapter we deal

with matrices whose entries are from the field F of real or complex numbers.

Algebra of Matrices

We have already seen that anm X n matrix A is an arrat of mn numbers a;; where 1<

i <m,1 < j <narranged in m rows and n columns as follows

a1 Q42 - Qqn
a21 azz an aZn
An1 Amz - Omp

We shall denote this matrix by the symbol (a;;). If m=n, Ais called a square matrix of order n

Definition. Two matrices A=(a;;) and B=(b;;) are said to be equal if A and B have the same
number of rows and columns and the corresponding entries in the two matrices are same.

Additional of matrices. We have already defined the addition of two m X n matrix A=a;; and
B=(bl]) by A+B=(aU + bU)

We note that we can add two matrices iff they have the same number of rows and columns.

1 2 0 4 1 6
Example. If A=|3 4|andB=| 2 1|thenA+B=|5 5
9 5 -1 0 8 5

Remark. The set of all m X n matrices is an abelian group under matrix addition. The m X n
matrix with each entry 0 is the zero matrix and is denoted by 0 and the additive inverse of
matrix A=(aij) is (—aij) and is denoted by - A

If A=a;jis any matrix and « is any number (real or complex) we have defined the matrix a4 by
al = (aaij)

The set of all m X n matrices over the field R under matrix addition and scalar multiplication
defined above is a vector space. This result is true if R is replaced by C or by any field F

We now proceed to define multiplication of matrices. We have already defined the
multiplication of 2 X 2 matrices, which we generalise in the following definition

Definition. Let A=q;; be anm X n matrix and B=(b;;) be an n X p matrix. We define the product

AB as the m X p matrix (ci]-) where the ijt" entry (cij) is given by
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n

Cij = Aj1b1; + Qipby; + -+ by = Z ik Dy
k=1

Note 1. The product AB of two matrices is defined only when the number of columns of A is
equal to the number of rows of B.

Note 2. The entry c;; of the product AB is found by multiplying it" row of A and the j* column
of B. To multiply a row and a column, we multiply the corresponding entries and add.

Solved Problems

2 =3 1
Problem 1. Show that the matrix A= 3 1 3] satisfies the equation
-5 2 -4
AA-DA+2)=0
Solution
2 =3 1 1 0 0
A—-1=1]3 1 31—(0 1 0
-5 2 -4 0 0 1
1 -3 1
=13 0 3
-5 2 =5
4 -3 1
A-2I=1]3 3 3
-5 2 =2
Now
2 -3 1 1 -3 1 4 -3 1
ALA-DMA+2D)=|3 1 3 3 0 3 3 3 3
-5 2 —4/l-5 2 =5ll-5 2 =2

-12 -4 -12114 -3 1 0 0 O

=|-9 -3 -9/{]| 3 3 3|1=(0 0 0|=0
21 7 2111-5 2 =2 0 0 O

AA-DA+2D) =0

Problem 2.

Y I

0 A 0 AR

Solution. We prove this result by induction of n. when n = 1 result is obviously true. Let us

Prove that [

assume that the result is true forn = k
THN Y
“lo A 0 Ak
[A 1]“[}\ 1]:[Ak kxk-l] A1
0o AL A 0 Ak 0 A
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_ [}\k+1 }\k 4+ k}\k]

0 7\k+1
AR (k4 1DAK
- 0 )\k+1

~Theresultistrueforn =k + 1

Hence the result is true for all positive integers n.

Definition. Let A=(aij) be anm X n matrix. Then the n X m matrix B=(b;;) where bij = a;j

is called the transpose of the matrix A and it is denoted by A”. Thus AT is obtained from the

matrix A by interchanging its rows and columns and the (ij*) entry of AT = (ji") entry of A.

1234 ;
For example, if A = [2101] then AT = 3
0315 4

m matrix

Theorem. Let A and B be two m X n matrices. Then

M ANT=A
(i) (A+B)"=A4"+B"

Proof.

(i) The (ij") entry of (4T)T

=(ij*") entry of AT
= (ij*")entry of A
2 (AT = A
(i)  The (ij*") entry of (A + B)T
=(jit") entryof A+ B

=(jit") entry of A + (ji*") entry of B
=(ij*") entry of AT + (ji*") entry of BT
=(ij*") entry of AT + BT

~(A+B)" = A" +B"

Theorem.

2

_ o

0

1
5

3 clearly if A is anm X n matrix. Then the n X
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Let A be anm X n matrix and B be an n X p matrix. Then (AB)T = BTAT

Proof.

By hypothesis AB is defined and it is anm X p matrix. Hence (AB)Tis a p X m matrix
Further BT is a p X n matrix and A7 is ann X m matrix

Hence, the product BT AT is defined and itisa p X m matrix.

Now, let A:(ai]-), B=(b;;) and (AB) = (cij)

Then (i, /)" entry of

(4B) = (c¢;j) = Z Axbyj
k=1

n
(AB)" = (Cji) = Z Ajic by
k=1

Now the it row of BT is the i*® column of B and it consists of the elements by;, by;, ... by; . Also

the j'* column of BT is the j* row of A and it consists of the elements ay;, ay;, ... An;

n
= 2 bkiajk
k=1

= (i, /)" entry of (AB)T
Hence (AB)T = BTAT

Definition. Let A=(al~j) be a matrix with entries from the field of complex numbers. The
conjugate of A, denoted by 4, is defined by 4 = (a,,).

ATis called the conjugate transpose of the matrix A.

2 2+ —i 2 2—1 i ]
1+i -3 4+3i 1-i -3 4-3i

Theorem. Let A and B matrices with entries from C. Then

For example if A = [ ]thenff = [

(i) (4) = A.

(i) A+B=A+B

(i) kA = kA, wherek € C.

(iv) A = A ©all entries of A are real
(V) AB = AB

(vi) (DF=4T

The proof of the above results are immediate consequences of the corresponding properties of

complex numbers.
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Types of Matrices
Definition. An1l X n matrix is called a row matrix. Thus a row matrix is consists of 1 row and
columns.
Itis of the form (a1, a1, ... 15)
Definition. Anm X 1 matrix is called a column matrix. Thus a column matrix is consists of 1
column and rows.

a1

b

It is of the form | |

A1n
Definition. Let A:(aij) be a square matrix. Then the elements (a1, a,3, ... a,,) are called the
diagonal elements of A and the diagonal elements constitute what is known as the principal
diagonal of the matrix A. A square matrix is called a diagonal matrix if all the entries which do

not belong to the principal are zero. Hence in a diagonal matrix a;; = 0if i # j

1 0 0
For example [0 3 0] is a diagonal matrix
0 0 2

Definition. A diagonal matrix in which all the entries of the principal diagonal are equal is called

a scalar matrix

4 0 O
For example [0 4 0] is a scalar matrix
0 0 4

Definition. A square matrix (aij) is called an upper triangular matrix if all the entries above the
principal diagonal are zero

Hence a;; = 0 whenever i < j is an upper triangle matrix.
Definition. A square matrix (aij) is called a lower triangle matrix if all the entries below the

principal diagonal are zero

Hence a;; = 0 whenever i > j in an lower triangular matrix

1 0 0 O
1 2 3
. . |1 0 0] .
Forexample [0 2 1|isanlower triangular matrix 0 2 3 0 is upper triangular
003 2 3 2 4

Clearly a square matrix is a diagonal matrix iff it is both lower triangular and upper triangular.
Definition. A square matrix A = (al-j) is said to be symmetric if a;; = a;; forall i, j

Example.


Free Hand

Free Hand


a h g 1 2 3 4
[Z 2]’ h b f], g 8 (6) 3 are symmetric matrices.
97 s 5 7 8

Theorem. A square matrix A is symmetric iffA = AT

Proof. Let A be a symmetric matrix

Then the (i, /)" entry of A

= (j, i) entry of A

= (i, /)" entry of AT

Hence A = AT

Conversely let A = AT

Then (i, /)" entry of A

= (i,j)" entry of AT

= (j,i) entry of A

Hence A is symmetric

Theorem. Let A be any square matrix. Then A + AT is symmetric
Proof. (4 + AT)T = AT + (41T

=A"T+ A

=A+AT

Hence A + AT is symmetric

Theorem. Let A and B be symmetric matrices of order n. Then
) A + B is symmetric

(ii) AB is symmetric iff AB = B

(iii)  AB + BAis symmetric

(iv) If Ais symmetric, then kA is symmetric where k € F.

Proof.

(i) (A+B)T = AT + BT

= A+ B (since A and B are symmentric)
~ A+ Bis symmetric

(ii) AB is symmetric

& (AB)T = AB
© BTAT = AB
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©BA=A
(i)  (AB+B )T =AB)T + (BA)T
=B+ DB

= BA+ A (since A and B are symmetric)

=AB+B
~ AB + BAis symmetric
(iv)  (kA)T = kAT = k since A is symmetric

~ kAis symmetric

Definition. A square matrix A = (aij) is said to be skew symmetricif a;; = —a;;, for all i, j
Note. Let A be a skew symmetric matrix. Then a;; = —a;;. Hence 2a;; = 0 (ie) a;; = 0, for all

i. Thus in a skew symmetric matrix all the diagonal entries are zero

0 -2 1
[2 —Oa] ’ [ 2 0 —3] Are examples of skew symmetric matrices
-1 3 0
Theorem. A square matrix A is skew symmetric matrix iffA = —AT

Proof is similar to that of by theorem

Theorem. Let A be any square metrix. Then A — AT is skew symmetric

Proof.

(A=—AT)T = AT — (AT)T

=AT - A

=—(AT-4)

Hence A — AT is skew symmetric

Theorem. Any square matrix A can be expressed uniquely as the sum of a symmetric matrix and
a skew symmetric matrix.

Proof. Let A be any square matrix

Then A + AT is skew symmetric matrix (by Theorem)

%(A + AT)is also a symmetric matrix
Also % (A — A7) is also a symmetric matrix (by above theorem)
Now, A = %(A + A7) +%(A — A7)

~Ais the sum of a symmetric matrix and a skew symmetric matrix
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Now, to prove the uniqueness, let A = R + S where S is a symmetric matrix and R is a skew

symmetric matrix. We claim that S = %(A +AT)andR = %(A —AT)
A=S+R...(0)

~AT =S +R)T

=ST +RT

=S — R (since S is symmetric and R is skew symmetric)

2 AT =85 — R .. (i)

From (i) and (ii) we get S = %(A +AT)and R = %(A — A7)
Theorem. Let A and B be skew symmetric matrices of order n. Then
(i) A+B is skew symmetric

(ii) kA is skew symmetric where k € F

(iii) A2 is a symmetric matrix and A2"*1 is a skew symmetric matrix where n is any positive

integer.

Proof.

Let A, B be skew symmetric
@ (A+B)

=—-A-B

= —(A+B)

~ A+ B is skew symmetric
(i1) Proof is similar to that of (i)
(iii)  Let m be any positive integer

Then (A™)T = (AA ...m times)”
= ATAT ... A" (m times)
=(—=A)(=A4) ... (—A)(m times) (since AT = —A)
= (-)mam

(A™)T = {Am if miseven
—A™if mis odd

A™is symmetric when m is even and skew symmetric when m is odd
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Definition. A square matrix A = (aij) is said to be Hermitian matrix ifa;; = —a;; forall i,j. Ais

said to be a skew Hermitian matrix iff a;; = —a,; forall i, .
Note
1. Any hermitian matrix over R is a symmetric matrix and any skew Hermitian matrix over R

is a skew symmetric matrix.
2. LetA = (aij) be a hermitian matrix. Then a;; = —a,; and hence qa;; is real for all i.
3. Let A = (aij) be a skew hermitian matrix. Then a;; = —a,;, and hence a;; = 0 or purely

imaginary for all i.

Theorem. Let A be a square matrix
(i) Ais HermitianiffA = AT

(i)  Aisskew HermitianiffA = —AT

Proof. The result is an immediate consequence of the definition
Theorem. Let A and B be square matrices of the same order. Then
(i) A, B are Hermitian = A + B is Hermitian

(ii) A, B are skew Hermitian = A + B is skew Hermitian

(iii)  Ais Hermitian = iA is Hermitian

(iv)  Ais skew Hermitian = iA is skew Hermitian

(v) Ais Hermitian and k is real = kA is Hermitian

(vi)  Ais skew Hermitian and k is real = kA is skew Hermitian
(vii) A, B are Hermitian > AB + BA is Hermitian

(viii) A, B are Hermitian = AB — BA is Hermitian

Proof. We shall prove (i), (iii) and (vii)
(i) (A+B)=A+B)T

=A+B
= A + B (since A and B are Hermitian)
~ A + Bis Hermitian
(i) - =-0)"
= AT

= iA (since A is Hermitian)
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=~ [Ais skew Hermitian
(vi) (4B + BA)T = (AB + BA)T
= (AB + BA)T
= (AB)" + (BA)T
= BTAT + ATBT
= BA+ AB
=AB+B

~ AB + B is Hermitian

Theorem. Let A be any square matrix. Then
(i) A + AT is Hermitian

(i) A — AT is skew Hermitian

Proof.

(i) letA+ AT =B

B=A+ AT
BT=A+AT"
=AT+ A

(ii) Proof is similar to that of (i)

Theorem. Any square matrix A can be uniquely expressed as the sum of a Hermitian matrix and
a skew Hermitian matrix.

Proof.

The proof is similar to that of the Theorem

Definition. A real square matrix A is said to be orthogonal if AAT = ATA =1

Example
= [_Cgisngg zi)r; g]is an orthogonal matrix (verify).

Theorem. Let A and B be orthogonal matrices of the same order. Then
(i) AT is orthogonal

(ii) AB is orthogonal
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(i)

Proof

AT(AT)T = ATA = (since Ais orthogonal)

similarly we can prove (AT)TAT =1

(ii)

(ii)

= ATis orthogonal

(AB)(AB)" = (AB)(B"A")
= A(BBTA"

= AIAT
= AAT
=]
Similarly (AB)(AB)T =1
Hence AB is orthogonal

Definition. A square matrix A is said to be an unitary matrix if AAT = ATA =1

0

Note. Any matrix over R is an orthogonal matrix

For example [(l) l] is unitary.

Theorem. If A and B are unitary matrices of the same order, then AB is also an unitary matrix
Proof. Similar to the proof of (ii) of the above theorem

The Inverse of a Matrix.

a b

A2 X 2matrix A = [c d] has an inverse iff |A| = ad — b 0 and the inverse of A is given by

1 — . . . . .
m[ dc ab]' Such matrices are called non-singular. In this section we shall describe the
method of finding the inverse of any non-singular matrix of order n.
Determinants. We can associate with any n X n matrix A = (a;;) over a field F an element of F
a1 Q12 - Qip
a a S}
given by the determinant 2 e an

ap1 QApz . Qpn

If value can be determined in the usual way and it is denoted by |A]|

For example
. _[a b _ _

(i) IfA—[C d]then |A| = ad — be
1 1 0 1 1 0
fA=]0 2 1|thenA=1]0 2 1|=1
1 2 1 1 2 1
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Definition. A square matrix A is said to be singularif |[A| = 0

A'is called a non singular matrix if |[A| # 0

Theorem. The rule of multiplying two matrices is same as the rule for multiplying two
determinants.

Hence if A and B are two n X n matrices. |AB| = |A||B].

Theorem. The product of any two non-singular matrices is non-singular.

Proof. Let A and B be two non-singular matrices of the same order. Then |A| # 0 and |B| # 0
~|AB| = |Al|B|

Hence AB is non singular matrix.

Note. Sum of two non-singular matrices need not be non-singular. For, if A is non-singular
matrix then - A4 is also a non-singular matrix and A + (—A) is the zero matrix which is obviously
a singular matrix

Definition. Let A = (a;;) be ann X n metrix. If we delete the row and the column containing the
element (a;;) we obtain a square matrix of order n — 1 and the determinant of this square
matrix is called the minor of the element (a;;) and is denoted by (M;;)

The minor M;; multiplied by (=1)¥*7 is called the cofactor of the element a;; and is denoted by
Ajj
~Ag = (DM

A1 dzz QA3
a3z1 dzz dszs

a;; 412 Qg3
Example. Let A =

Corresponding to the 9 elements a;;, we get 9 minors of A. For example, the minor of a,is

Az dz3
My, = | |

aiq a12|
Qa3 dszz

and the minor of a,3 is My; = |a31 sy
The cofactor of a;; is A;; = (—1)2M;; = My,

The cofactor of a3 is Ay3 = (—1)?13M,; = —M,,

Definition. Let A = (a;;) be a square matrix. Let A;; denote the co-factor of a;;. The transpose
of the matrix 4;; is called the adjoint to adjugate of the matrix A and is denoted be adjA

Thus the (i, /)" entry of adjA is Aj;

Note. If A is a square matrix of order n then adjA is also a square matrix of order n.

1 0 2
Example.letA=]|3 1 -1
-2 1 3
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Then A, = H _31| =4

-1

_|3 __
A12 - |_2 3 | - 7
Similarly other co-factors can be calculated and we get
Ay Ay Ags 4 2 -2
adjA = Ayy Ay Axz|= (=7 7 7
Azy Az Ass 5 -1 1

We notice that

AadjA =

1 0 2 4 2 =2 14 0 O
3 1 —1||-7 7 7]|=|0 14 0= (adjA)A (verify)
-2 1 3 5 -1 1 0 0 14

Theorem. Let A be any square matrix of order n. Then (adjA)A = A(adjA) = |A|l where [ is
the identity matrix of order n.

Proof. The (i, /)" element of (A(adjA))

n
:ZaikAjk
=1
_{Oifiq&j
|Alif i=j
A 0 .. 0
sAGaay =[O M 0y
0 a, .. A

Similarly (adjA)A = |A|l
Hence (adjA)A = A(adjA) = |A|l

Note. Suppose |A| # 0. Now, consider the matrix B = ﬁ adj A
1

Then AB = A [|A|

ade]
!
4l
!
Al
=]

Similarly BA = I.Thus AB =BA =1

(A adj A)

|AlI

Definition. Let A be a square matrix of order n. A is said to be invertible in there exists a square
matrix B of order n such that AB = BA = I and B is called the inverse of A and is denoted by
A—l
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Note. The invertible matrices are precisely the units of the ring M,,(F)

Theorem. A square matrix A of order n is non singulariff A is invertible

Proof. Suppose A is invertible.

Then there exists a matrix B such that AB = BA =1
Hence |[AB| = |I| =1

~|Al|B] =1

Hence |A| # 0 so that A is non-singular.

Conversely, let A be non-singular. Hence |A| # 0

Now, consider the matrix B = ﬁ adj A

Then AB = BA (refer the above Note)

~ Aisinvertible and A is the inverse of A.

Solved problem

2
Problem1. Compute the inverse of the matrix A = |—15
5
Solution.
2 -1 1
|Al=1]-15 6 -—5[=-1
5 -2 2
Since |A| # 0, Ais non-singular
Hence A~ exist and is given by A™1 = %
Ay A Ags
Now, we find adjA = |41 Azp Ay
A31 A32 A33
_|6 —=51_>-.
All - _2 2 | - 2/

to=-[15 5=s
A =] 8)=0
A21:—|:; ;zo
Ay =2 =1

-1 _ 1

A23:_|§ —21=

where A, (i,j = 1,2,3) are cofactors ofal-]-
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1

_ -1 _
A31_|6 _5|_ 1
_ ] 2 1)__
As2 =~ |_q5 —5|_ >
_ -1 _ _
Ass = —15 6|_ 3
2 0 -1
HenceadjA=|5 -1 -5
0 -1 -3
L 2 0 -11[1-2 0 1
A_1=_—1=5 -1 —-5|=[-5 1 5
0 -1 -3 0 1 3
Problem 2.
. 11 1
ifw = e2™/3 find the inverse of the matrix A = [1 o w?
1 0w w
solution.

We note that w3 = 1

~]A| # 0, Ais non-singular. Hence A~ exists and is given by A™! = %
w-w w-0w -
Now,adjA= w2 —-w w-1 1— w?
w-w 1-w? w-1
. w—-—w w-0 w-o
Al =—— 02— w—-1 1-—w?
3(w?-w)
w-w 1-w? ow-1
1 [@ w w
:—[a) 1 —1—w]
3w w —-1—-w 1
Problem 3.

Show that a square matrix A is orthogonal iffA~* = AT
Solution.

Suppose A is orthogonal. Then AAT = |

~AAT| =1 =1
~ Al AT =1
~ |AllA]l =1

=~ |A| # 0and hence A is non-singular
=~ A lexists.

Now, A"1(4 AT) = A7
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A (ATIA)AT = A1
o JAT = A1

W AT = A1

Conversely, let AT = A™1

Then AAT = AA™ = I similarly AAT =1

Hence A is orthogonal

Problem 4. Show that a square matrix A is involutoryiffA = A1
Solution. Suppose A is involutory. Then A% = I.

Hence |[4%] =1

~ A% = A4l =1

~ |A| # 0and hence A is non-singular

=~ A7 exists

Now, A"1(44) = A~
2 (A™TA)A = A1
~JA= 71
nA=A"1

Conversely, let A = A1

ThenA?2=4AA—-A4 1=1

-~ Ais involutory.

Elementary Transformations

Definition. Let A be anm X n matrix over a field F. An elementary row-operation on A is of any
one of the following three types.

The interchange of any two rows

Multiplication of a row by a non-zero element cin F

Addition of any multiple of one row with any other row.

Similarly we define an elementary column operation on A as any one of the following three
types.

The interchange of any two columns.

Multiplication of a column by a non-zero element c in F

Addition of any multiple of one column with any other column
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(i)
(ii)
(iii)

1 2 3 -1
Example.LetA =12 1 |4,=1]2 1
3 -1 1 2
2 2 1 2
A, =14 1 |A;=|5 7 |A;isobtained from A by interchanging the first and third rows.
6 -1 3 -1

A,is obtained from A by multiplying the first Column of A by 2.

Asis obtained from A by adding to the second row the multiple by 3 of the first row.
Notation. We shall employ the following notations for elementary transformations.
Interchange of i*" and j*" rows will be denoted by R; < R;

Multiplication of it" row by a non-zero element ¢ € F will be denoted by R; - CR;

Addition of k times the j" row to the i*" row will be denoted by R; = R; + kR;

The corresponding column operations will be denoted by writing C in the place of R

Definition. Anm X n matrix B is said to be row equivalent (column equivalent) to m X n matrix

A if B can be obtained from A by a finite succession of elementary row operations (column

operations).

A and B are said to be equivalent if B can be obtained from A by a finite succession of

elementary row or column operations.

If A and B are equivalent. We write A~B

Exercise. Prove that row equivalence, column equivalence and equivalence are equivalence

relations in the set of all m X n matrices.

Definition. A matrix obtained form the identity matrix by applying a single elementary row or

column operation is called an elementary matrix

1 0 0][4 0 OJ[1 0 O
For example, [1 0 O0|[0 1 O[]0 1 O0f are elementary matrices obtained from the
0 0 1/to o 1flo 2 1
1 0 0
identity matrix |0 1 0] by applying the elementary operationsR; < R,
0 0 1

Ry = 4Ry, R3 = R3 + 2R, respectively
Exercise. Give examples of elementary matrices of order 4.
Theorem. Any elementary matrix is non-singular.

Proof.

The determinant of the identity matrix of any order is 1. Hence the determinant of an

elementary matrix obtained by interchanging any two rows is —1. The determinant of an
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interchanging any two obtained by multiplying any row byk # Ois k. The determinant of an
elementary matrix obtained by adding a multiple of one row with another row is 1. Hence any
elementary matrix is non-singular.

Solved problems.

Problem 1.

1 2 -1
Reduce the matrixA =|1 1 2 |tothe canonical form.
2 4 =2

1 2 -1
Solution.A=(1 1 2
2 4 =2

1 2 -1
~l0 -1 3 |R,>R,—R,&R; > R;— R,
0 0 0

1 0 0
~10 -1 3|C,>C,—20,&C; - C;—C,

0O 0 O
1 0 O
~0 _1 OCZ_)C3+3C2
0O 0 O
1 0 O
~|0 1 O|R, > —R,
0 0 O
1 0 2
Problem 2. Find the inverse of the matrix A =3 1 -1
-2 1 3
Solution.
1 0 2 1 0 O
3 1 —-1|=10 1 0]4
-2 1 3 0 0 1
1 0 2 1 0 O
=10 1 —-7|=1|-3 1 O0|AR, 2 R, —3R,&R3 = R; + 2R,
o1 7 2 0 1

10 2 1 0 0
=0 1 -7|=]|-3 1 0|AR; > R;—R,

0 0 14 5 -1 1
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z 1
1 00 [ ) Z )
il Rl I T
00 s 1 1
14 14 14
2 1 17
7 7 7
a0 L
2 2 2
5 1 1
- 14 14 14

1 1 1
]lARl >Ry —>R; , Ry R, +-R3&R; > —Rs

Definition .Let A and B be two square matrices of order n. B is said to be similar to A if there

exists a n X n non-singular matrix P such that B = P~AP.

Rank of a Matrix.

We now proceed to introduce the concept of the rank of a matrix.

Definition. Let A = (aij) be anm X n matrix. The rows R; = (a;1,a;3, .- Qi) of A can be

thought of as elements of F™. The subspace of F™ generated by the m rows of A is called the

row space of A.

Similarly, the subspace of F™ generated by the n columns of A is called the Column space of A.

The dimension of the row space (column space) of A is called the row rank (column rank) of A.

Definition. The rank of a matrix A is the common value of its row and column rank

Solved Problems

Problem 1.
4 2 1 3
Find the rank of the matrixA =6 3 4 7
21 0 7
Solution.
4 2 1 3
A=1]|6 3 4 7
21 0 7

0
[10 0 0

1 2 4 3
~14 3 6 7
1 2 7

C, & Cs

4 -5 —10 —5] C, > Cy+2C,, C3— Cy+4C, Cp— Cy+3C

0 1 2 7
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0 -5 -10 -5
0 1 2 7

1 0 0 0
~ R2_>R2+4R1

o
|
Ul
o

1 0 0 0
~ 0C3_>C3_2C2,C4_)C4_C2
0 1 0 6
1 0 00 1
~{0 =5 0 O R3_>R3+§R2

0 0 0 6

1 0 0 O
~10 =5 0 0]|C, e (s

0 0 6 0

1 0 0 O . .
~10 1 0 O R2—>—§R2, R, _>ER3

0 01 0
~Rankof A =3

1 1 1 1
Problem 2. Find the rank of the matrix A=[4 1 0 2| by examining the determinant
0 3 4 2

minors.
Solution.
[1 1 1] [1 1 1]
4 1 0|=0=1]1 0 2
0 3 4. 13 4 2.
1 1 1] [1 1 1]
4 1 2/=0=14 0 2
0 3 2. 0 4 2.
~Every 3 X 3 submatrix of A has determinant zero.

mmu H=—3¢0

~Rankof4 =2

Characteristic Equation and Caylay Hamilton Theorem
Definition. An expression of the form Ay + A;x + Ayx? + -+« + A,x™ where Ay, A4, ..., A, are

square matrices of the same order and A,, # 0 is called matrix polynomial of degree n.

1 23./1 1 2 0\ 5. . . .
For example, (O 3)+(2 1) x+ (3 1)x is @ matrix polynomial of degree 2 and it is simply

14+ x + 2x? 2+ x )

the matrix (
2x +3x% 3 4+x+x?

Definition. Let A be any square matrix of order n and let I be the identity matrix of order n. Then
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the matrix polynomial given by A — xI is called the characteristic matrix of A
The determinant |4 — xI| which is an ordinary polynomial in x of degree n is called the
characteristic polynomial of A.

The equation |4 — xI| = 0 is called the characteristic equation of A.

Example 1.
LetA = (; i)

Then the characteristic matrix of A is A — xI given by

a-xi= 1 By (1 )

3 4 0 1
_ (1 —Xx 2 )
3 4 —x
-~ The characteristic polynomial of Ais |4 — xI| = 1 ;x 4 E X

=1-x)(4—x)—6
=x%?—-5x—2
-~ The characteristic equation of Ais |[A — xI| = 0

~ x2 — 5x — 2 = Ois the characteristic equation of A.

1 0 2
Example 2. Let A = (O 1 2)

1 2 0

The characteristic matrix of Ais A — xI given by

1—x 0 2
A—xI = 0 1—-x 2
1 2 —X

The Characteristic polynomial of A is

1—x 0 2
[A—=xI|=] 0 1—-x 2
1 2 —X

=1-0[A-x)(-x)—4] -2(1-x)
=—x(1-x)*—-4(1—-x)—2+2x
=—x34+2x>—x—4+4x -2+ 2x

=—x3+2x>+5x—6
~The characteristic equation of A is

—x3+2x2+5x—6=0
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(ile)x3—2x2—-5x+6=0

Theorem (Cayley Hamilton Theorem)

Any square matrix A satisfies its Characteristic equation.

(i.e) if ag+ a;x + a,x? + .-+ a,x" is the characteristic polynomial of degree n of A
then ag + a;A + a, A% + -+ a,A" = 0

Proof

Let A be a square matrix of order n.

Let |A —xI| = ag + a;x + axx? + -+ a,x™.....(i)

Be the characteristic polynomial of A

Now, adj (A — xI) is a matrix polynomial of degree n — 1 since each entry of the matrix
adj (A — xI)is a cofactor of A — xI and hence is a polynomial of degree < n — 1

sletadj (A—xI) = By + Byx + Byx? + -+ B,_1x™ 1 ....(2)

Now, (A — xI)adj (A —xI) = |A—xI|I (since (adj A)A = A(adj A) = |A|I)

(ap + a;x + a,x? + -+ + a,x™)Iusing (1) and (2)

~ Equating the coefficients of the corresponding powers of x we ger

ABO = aol
ABl - BO == a1[
AB2 - Bl = a21

—B,_1 = a,l

Pre-multiplying the above equations by I, 4, A?, ..., A™ respectively and adding we get
aol + a1A + aA* + -+ a, A" =0

Note. The inverse of a non-singular matrix can be calculated by using the cayley
Hamilton theorem as follows.

Let ay + a;x + a,x? + --- + a,x™ be the characteristic polynomials of A

Then by theorem we have ayl + a;A + a,A* + -+ a, A" = 0 ...(3)

Since |A — xI| = ag + a;x + a;x* + -+ + a,x™ we get a, = |A| (by putting x = 0)

~ag # 0 (since A is a non singular matrix)
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ol = —=[a A+ azA? + -+ a, A" (by (3))
0
AT = ——[a] + aA + -+ @, A"
0
Solved problems.
Problem 1.

8 —6 2
Find the characteristic equation of the matrix A = (—6 7 —4)
2 -4 3

Solution.

The characteristic equation of Ais given by |[A — AI| = 0

8—1 -6 2
(ie)] -6 7—-2 —-41]=0
2 -4 3-2

B=-MD[7-2DB-1)—-16]+6[-6(3—-21)+8]+2[24-2(7-1]=0
(i.e.)(8 —1)(2* — 101+ 5) + 6(64 — 10) + 2(24 + 10) = 0

(i.e.)(82% — 801 + 40 — 2% + 102> — 51) + (361 — 60) + (41 +10) = 0
(i.e.)A3 — 1842 + 451 = 0 which represents the characteristic equation of A.

Problem 2. Show that the non-singular matrix A = (é i) satisfies the equation

A? —2A — 51 = 0. Hence evaluate A~ 1.

Solution.

The characteristic polynomial of Ais |[A — xI| = |1 X

2 | _ .2 _
3 1_x|—x 2x —5

= By Cayley-Hamilton theorem A2 — 24 — 51 =0
al =2 (A2 - 24)

SATL=Z(A-2D)

=£[(2 2-2( 9)

1,
=§( 31 —21)
Problem 3.
2 =3 1

Show that the matrix 4 = [ 3 1 3 ] satisfies the equation A(A —1)(A+21) =0

-5 2 -4

Solution.
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2—1 -3 1
The characteristic polynomial of Ais |[A — AI| = | 3 1-1 3
-5 2 —4-1

— 23— A2 4 22 (verify)

~.Bycaylay-Hamilton theorem —A3 — A%2 + 24 =0
(i.e.) A + A> — 2A = 0. Hence A(A>+A—-21) =0
SAA+2D(A—1) = 0

Problem 4.
7 2 =2
Using Cayley-hamilton theorem find the inverse of the matrix [-6 -1 2
6 2 -1
Solution.
7 2 =2
LetA=]-6 -1 2
6 2 -1
7—x 2 -2
The characteristic polynomialof A = |[A—xI| =] -6 —-1-—x 2
6 2 -1—-x

=7 -20)[A+x)?—4]-2[6(1+x)—12] —2[-12 + 6(1 + x)]
=7 -x)(x?*+2x-3)—-12(x—1)—12(x — 1)

=7x>+12x — 21 —x3 —2x? +3x — 12x + 12 — 12x + 12
=—x3+5x2—7x+3

~byCayley-Hamilton Theorem

—A3+542-7A+3I;=0

A =542 +7A-313=0

~3l3=A%—-5A4A*+74A

tl3 = 2 (A° — 542 + 74)

Pre (or post) multiplying by A~ on both sides we get

SATL= 2 (A2 = 5A+ 713)..(1)

7 2 =217 2 =2
Now, A% = |-6 -1 2”—6 -1 2]
6 2 —11L6 2 -1
25 8 -8
=[—24 -7 8]
24 8 -7

~from (1)
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7 0 0

1 /[ 25 8 -8 35 10 -10
A‘1=§ —-24 -7 8|—|-30 =5 10 |+7{0 7 O
24 8 -7 30 10 =5 0 0 7
-1[‘63 B 22]
3l-6 -2 5
Problem 5.
3 3 4
Find the inverse of the matrix |2 —3 4] using Caylay-Hamilton theorem.
0 -1 1
Solution.
3—x 3
The characteristic polynomialof A = |[A —xI| =] 2 -3 —x
0 -1

=—x3+x?+11x—11
~byCayley-Hamilton Theorem
—A3+ A2+ 114A-11=0
A3 — A2 —11A+111;,=0
Hence 11I; = —( A3 — A2 — 114)
I3 = —i(A3 — A% - 114)

11

Pre (post) multiplying by A~ on both sides we get

Al = —i(AZ—A—m )
11 3

1

(115 -4 287 3 3 4 1.0 0 211
=—=|[0o 11 o|-[2 -3 4/-11]0 1 of|=| =
—2 2 =31 lo -1 1 00 1 121

Problem 6. Verify Cayley Hamilton’s theorem foe the matrix A =

Solution.

The characteristic equation of Ais |[A — AI| = 0
1= A 2 | _

| PR /1| =0
~(1-2)DB-1)-8=0

1—x

7
11
3

11

11

)

247

11
4

11
15

11
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WA2—41-5=0
By byCayley-Hamilton Theorem A satisfies its characteristic equation

~We have 42— 44—-51=0
now 2= (3 2, 3= 1)

44 = (146 182)and51 - ((5) g)

AT =44 =51 = (196 187) - (146 182) - ((5) (5)) - (g 8) =0
The Cayley-Hamilton Theorem is verified

Theorem 7.

1 0 -2
Using Cayley-Hamilton Theorem for matrix A =

0 0 2

Solution.

The characteristic equation of Ais |[A — AI| = 0

1-41 0 -2
Y2 2—-21 4 [=0
0 0 2—21

(ile) 3—52+81—4=0

By Cayley-Hamilton Theorem

A3 —5A2 4 8A—4L, =0 .. (1)

4L, = A3 — 542 + 84

To find A~ pre multiplying by A~1 we get

4471 = A"143 — 547142 + 84714
4471 = A2 — 54+ 8]
Al = %(AZ —54+8D) ..(2)

1 0 -271111 0 -2 1 0 -6
Now,A2 =2 2 4|2 2 4]|=|6 4 12
0O 0o 2110 0 2 0 0 4
From (2)
1 1 0 -6 5 0 -10 8 0 O
A‘1=Z 6 4 12(—110 10 20 |+]0 8 O
0 0 4 0 0 10 0 0 8

2 2 4 ] find (i) A71 (ii)A*
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o 1
A_1= 1 E _2
1
0 0 —=
2
(ii) To find A*

From (1) A% = 54% — 84 + 41,
= 5(54%2 — 84 + 4I) — 8A + 4I; (using (1))
= 17A% — 364 + 201

1 0 -6 1 0 -2 1 0 0
=17 6 4 12]—36[2 2 4 +20(0 1 0]
0 0 1
17 —102 —72 20 0 O
102 684 204 ] [72 72 144 0 20 O ]
0 0 0 20

—-30
~AY = 30 16 260
0 0 16
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(i)

UNIT -V
EIGEN VALUES AND EIGEN VECTORS

Definition:

Let A be ann X n matrix. A number A is called an eigen value of A if there exists a non-zero

X1
xzw

‘ such that AX = AX and X is called an eigen vector correcponding to the eigen
xn

vector X =

value A

Remark 1. If X is an eigen vector corresponding to the eigen value A of A, then aX where «a is
any non-zero number, is also an eigen vector corresponding to 4

Remark 2. Let X be an eigen vector corresponding to the eigen value A of A. Then AX =1 so
that (A — AI)X = 0. Thus X is a non-trivial solution of the system of homogeneous linear
equations (A — AI)X = 0. Hence |A — AI| = 0 which is the characteristic polynomial of A.

Let |[A — Al|l = apA™ + a; A" 1 + -+ a,

The roots of this polynomial give the eigen values of A. Hence eigen values are also called
characteristic roots.

Properties of Eigen Values

Property 1. Let X be an eigen vector corresponding to the eigen values A;and A,. Then 1, = 4,
Proof . By definition X # 0, AX = 4;X and AX = 1,X

X =X

24 —2)X =0

SinceX #0,4; =1,

Property 2. Let A be a square matrix.

Then (i) the sum of the eigen values of A is equal to the sum of the diagonal elements (trace) of
A

(i) product of eigen values of A is |A]

Proof.
a1 Az .. Qqn
Let A = az1 Qzz2 ... Q2
an1 QGnz2 -+ Qnn

The eigen values of A are the roots of the characteristic equation
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a;; — 4 a1z A1n

A—al=| @1 G2=A - G | _ )

Let|A — AI| = apA® + a A" 1+ -+ a, ..(2)

From (1) and (2) weget

ap = (-1 a; = (=) (ay; + azz + - + apn);-(3)
Also by putting A = 0 is (2) we get a,, = |A|

Now let A4, 4,, ..., 4, be the eigen values of A.

& A4, A5, ..., Adyare the roots of (2)

A4+ A = —% = qaqq + ayy + -+ a,, (using (3))
0

~sum of the eigen values= trace of A.
(ii) Product of the eigen values =product of the roots

= AIAZ An

aTl
= (-1
Qo

_ (=D"ay

=nn
=a,
= 14|
Property 3. The eigen values of A and its transpose AT are the same
Proof.
It is enough if we prove that A and AT have the same characteristic polynomial. Since for any
square matrix M, |[M| = |M|T we have

A=Al =(A-AD"| =AD" - @AD" = |AT -4 |

Hence the result

. . . . 1, . _
Property 4. If A is an eigen value of a non singular matrix A then 7 is an eigen value of A71

Proof. Let X be an eigen vector corresponding to 4
Then AX = AX. Since A is non singular A1 exists
~ ATHAX) = A7 (AX)
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IX = 247X

S ATIX = <1>X
A

G)is an eigen value of A~1

. ) . 1 1 1
Corollary. If 14, 4,, ..., 4, are the eigen values of a non singular matrix A then T are
1 2 n

the eigen values of A™1

Property 5. If A is an eigen value of A then kA is an eigen value of kA where k is a scalar.

Proof. Let X be an eigen vector corresponding toA

Then AX =1 ..(1)

Now, (kA)X = k(AX)

= k(AX) (by (1))

= (kD)X

~ kA is an eigen value of kA

Property 6. If 1 is an eigen value of A then A¥ is an eigen value of A¥ where k is any positive
integer

Proof . Let X be an eigen vector corresponding to 1

Then AX = 1X...(1)

Now, 42X = (AA)X = A(4AX)

= AQAX  (by(1))

= A(4X)

= 2(X) (by (1))

= 12X

A%is an eigen value of A?

Proceeding like this we can prove that A¥ is an eigen value of A¥ where k is any positive integer
Corollary. If 1, 4,, ..., A, are the eigen values of A then AlK, AZK, ...,Ank are eigen values of A
for any positive integer k.

Property 7. Eigen vectors corresponding to distinct eigen values of a matrix are linearly
independent

Proof. Let A4, 4,, ...,4, be distinct eigen values of a matrix and let X; be the eigen vector
corresponding to 4;

Hence AX; = 4, X;(i = 1,2,3,...k) ... (1)

Now, suppose X4, X5, ..., Xj are linearly dependent. Then there exist real numbers a4, as, ..., Ak
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not all zero, such that a;X; + a,X, + -+ + a; X, = 0. Among all such relations, we choose one

of shortest length say i.

By rearranging the vectors X;, X5, ..., X; we may assume that

a1 X1 + aX; + -+ a;X; = 0..(2)

~A(a Xy) + AlayXy) + -+ AajX;) = 0

nay (AXy) + ay(AXy) + -+ + aj(AX;) = 0

sy (X)) + ap(A,X5) + -+ + a;(4;X;) = 0..(3)

Multiplying (2) by A; and subtracting from (3), we get

wty (A — )Xy + as(Ay — 23)X5 + -+ a;(A;, — 4;)X; = 0...(4)

And since A4, A5, ..., Ay, are distinct and a; .... @; are non-zero we have
ai(A — ) #0i=23,..j

Thus (4) gives a relation whose length is j — 1, giving a contradiction

Hence X3, X5, ..., X are linearly dependent.

Property 8. The characteristic roots of a Hermitian matrix are all real

Proof.

Let A be a Hermitian matrix

Hence A = A7 1...(1)

Let A be a characteristic root of A and let S be a characteristic vector corresponding to A

~AX = 2X...(2)

Now

AX =1 =>XTAX =AXTX

= (XTAX)T = AXTX (sinceXTAX isa 1 X 1 matrix)

= XTAT(XT)T = AXTX

= XTATX = AXTX

= XTATX = AXTX

= XTATX = AXTX

= XTAX = 2XTX (using 1)

= XTAX = AXTX (using2)
=2 AXTX) = 2(XTX)...(3)
Now,

XTX = XTX =x7x1 + X%y + -+ XXy,
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= Ixal® + Ixal® + o x|

=0

~From (3) we get 1 = 1

Hence A is real

Corollary. The characteristic roots of a real symmetric matrix are real.

Proof.

We know that any real symmetric matrix is Hermitian. Hence the result follows from the above
property.

Property 9.

The characteristic roots of a skew Hermitian matrix are either purely imaginary or zero

Proof.

Let A be a skew Hermitian matrix and A be a characteristic root of A

|[A—AIl =0

[iA—iAl| =0

iAis a characteristic root of iA

Since A is skew HermitianiA is Hermitian

ilis real. Hence A is purely imaginary or zero

Corollary. The characteristic roots of a real skew symmetric matrix are either purely imaginary
or zero

Proof. We know that any real skew symmetric matrix is skew Hermitian

Hence the result follows from the above property

Property 10.

Let A be characteristic root of an unitary matrix A. Then |A] = 1. (i.e.) the characteristic roots of
a unitary matrix are all the unit modulus

Proof

Let A be a characteristic root of an unitary matrix A and X be a characteristic vector
corresponding to A

~AX = 2X....(1)

Taking conjugate and transpose in (1) we get

@x" = (A%)"

XTAT = 2XT....(2)

Multiplying (1) and (2) we get
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XTAT(AX-) = (AXT)(AX)

~XT(ATA)X = (A1) (XTX)

Now, since A is an unitary matrix ATA = 1

Hence (XTX) = (12)(XTX)

Since X is non-zero vector X' is also non-zero vector and

(XTX) = |x11% + |2z |2 + -+ + | x| # Owe get (A1) = 1

Hence [1|?> = 1. Hence |A| = 1

Corollary. Let A be a characteristic root of an orthogonal matrix A. Then |1| = 1
Since any orthogonal matrix is unitary the result follows from property 10.
Property 11. Zero is an eigen value of A if and only if A is a singular matrix.
Proof.

The eigen values of A are the roots of the characteristic equation |A — AI| = 0. Now, O is an

eigenvalueof A |[A-0I| =0
< |Al=0
& Ais a singular matrix

Property 12. If A and B are two square matrices of the same order then AB and BA have the

same eigen values.

Solution

Let A be an eigen value of AB and X be an eigen vector corresponding to A.
~(AB)X = X

~B(AB)X = B(AX) = A(BX
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~(BA)(BX) = A(BX

~(BA)Y = AYwhereY = (BX)

Hence A is an eigen value of BA

Also BX is the corresponding eigen vector.

Property 13. If P and A are n X n matrices and P is a non-singular matrix then A and P~*AP have

the same eigen values
Proof.
let B = P71AP

To prove A and B have same eigen values, it is enough to prove that the characteristic

polynomials of A and B are the same.
Now |B — AI| = |P71AP — AI|

= |P~1AP — P~1(AI)P]

= |P~1(A - ADP|

= |P~!|A = 2I||P]
= [P7H|P||A = Al
= |P~1P||A - |

= |1]|A = Al

= |4 - Al

~The characteristic equation of A and andP~1AP have the same eigen values
Property 14.

If X is a characteristic root of A then f(1) is a characteristic root of the matrix f(A) where f(x)

is any polynomial.
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Proof

Let f(x) =apx"+a;x" 1+ +a,_1x+a,where ay#0 and ay,ay,..a, are all real

numbers
2 f(A) = apA™ + AV + a1 A+ agl

Since A is a characteristic root of A, A™ is a characteristic root of A™ for any positive integer n

(refer property 6)
JATX =X
AVTIX = v 1x

AX =X
aoAnX = aol’lnX

alAn_lX = alln_lX

an_ 14X = a,,_AX

Adding the above equations we have

agA"X + a;AVIX + -+ a1 AX = agAMX + AV IX 4 -+ a AX

2(@pA™ + a AV + o+ a1 A)X = (@A™ + AT+t DX

a (@AM + AV 4 a1 A+ a,DX = (@At + AV + o+ a A+ a)X
~ fAX = fFD)X

Hence f (1) is a characteristic root of f(A)
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Solved Problems

Problem 1.

If X;,X, are eigen vectors corresponding to an eigen value A then aX; + bX, (a,b non-zero

scalar) is also an eigen vector corresponding to A

Solution.

Since X1, X, are eigen vectors corresponding to an eigen value A, we have

AX1 = AXlandAXZ = ){Xz

And hence A(aX;) = A(aX;) and A(bX;) = A(bX,)

-'-A(aX1 + sz) = /1((1 1 + sz)

~(aX; + bX, is an eigen vector corresponding to A

Problem 2.
3 10 5

If the eigen valuesof A = |—=2 —3 —4]|are 2,2,3 find the eigen values of A~ and A?
3 5 7

Solution

Since 0 is not an eigen value of A, A is a non singular matrix and hence A~! exists

. _ 111 .
Eigen values of A™1 are =53 and eigen values of A? are 22,22,32

Problem 3.
3 00
Find the eigen values of A whenA =[5 4 0
3 6 1

Solution. The characteristic equation of A is obviously 3 —1)(4 —-1)(1—-1) =0
Hence the eigen values of A are 3,4,1

~the eigen values of A° are 3°,45,1°
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Problem 4. Find the sum and product of the eigen values of the matrix [

actually finding the eigen values.

Solution.
3 —4 4
lLetA=|1 -2 4
1 -1 3

Sum of the eigen values =traceof A=3+ (—2)+3 =4

Product of the eigen values = |A]|

3 -4 4
Now, |[Al =(1 -2 4
1 -1 3

=3(—6+4)+4(3—4)—4(-1+2)
=—6-4—4=-14

~The product of the eigen values= —14

Problem 5. Find the characteristic roots of the matrix ( cots 9 —sin 6)
—sin@® cosf@
Solution.
cosf@ —sind
Let4A =
€ (— sinf cosf@ )

The characteristic equation of Ais given by [A — AI| = 0

cos@—A1 —sinf
—sin@ cosf — A

=0
(cos@ — 1)? —sin?0 =0
(cos@ — A —sinf)(cos® — A + sinf) = 0

[A — (cos @ — sinB)][A — (cos O + sinB)] = 0

3
1
1

-4 4
-2 4
-1 3

] without
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The two characteristic roots (the two eigen values of the matrix are (cos@ — sinf) and

(cos@ + sin )

Problem 6.
Find the characteristic roots of the matrix 4 = ( CO.S 6 —sin 9)
—sin@ —cos6@
Solution.
__(cosf —sinf
Letd = (— sinf cosf )

The characteristic equation of Ais given by [A — AI| = 0

cosf — A —sin@
—sin@ —cosf@ — A

| =0
—(cos? 9 —21*) —sin?6 =0

A% — (cos? 0 + sin?6) = 0
A—-1=0

The characteristic roots 1 and —1

Problem 7.

Qaiq

Find the sum and product of the eigen values of the matrix A = [a21

a
a12] without finding the
22

roots of the characteristic equation.

Solution.

Sum of the eigen values of A =trace of A = a,; + a,,
Product of the eigen values of A = |A| = a;1a5, — @120,
Problem 8.

Verify the statement that the sum of the elements in the diagonal of a matrix is the sum of the

eigen values of the matrix
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Solution

The characteristic equation of Ais |[A — AI| = 0

-2-2 2 -3
(i.e) 2 1-4 -6
-1 -2 0-2

=0

(i.e)(=2 = D[(A = D(=A) —12] = 2[-2A— 6] = 3[4+ (1 = D] =0
(ie)(=2=AD[1?*-21-12]+4(1+3)+3(1+3)=0

(i) =222 4+22+24—-A3+22+12A+421+12+314+9=0

(ie) =23 — A2+ 211+ 45 =0

(i.e)A>+ 12 —211—-45=0

This is a cubic equation in A and hence it has 3 roots and the three roots are the three eigen

values of the matrix

coef ficiient of /12) - _1

The sum of the eigen valued = — ( —
coefficiient of A3

The sum of the elements on the diagonal of the matrixA =-2+14+0= -1

Hence the result

Problem 9.
6 =2 2

The product of two eigen values of the matrix A = -2 3 —1 ] is 16. Find the third eigen
2 -1 3

value. What is the sum of the eigen values of A?

Solution.

Let A4, 4,, 43 be the eigen values of A.
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Given, product of 2 eigen values (say) 44, 4, is 16

-'-/11, /12 =16

We know that the product of the eigen values of |A|

6 -2 2
(i.e.) /11/12/13 =|-2 3 -1
2 -1 3

(ile)164;=6(9—1)+2(—6+2)+2(2—-6)
=48-8-8

=32

Ay =2

~The third eigen value is 2

Also we know that the sum of the eigen vales of
A=traceof A=6+3+3=12

Problem 10.

The product of the two eigen values of the matrix A =

of A.

Solution.

Let A4, 4,, 45 be the eigen values of A.

Given, product of 2 eigen values (say) 44, 4, is —12

2l Ay = —12..(1)

We know that the product of the eigen values of |A|

2 2
2 1
01

-7
2
-3

] is -12. Find the eigen values
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2 2 =7
(|8) 111213 =2 1 2
0 1 -3

(i.e.) 1243 = =12

s =1..(2)

~The third eigen value is 1

Also we know that the sum of the eigenvales =tra of A
M+A,+4;3=24+1-3=0

A+ 2, = —1 (using (2)) ... (3)

Using (3) in (1) we get A, (—1 — 4,) = —12

M4 —12=0

L1 +4)A,—-3)=0

Ay = 3o0r—4

Putting 4; = 3 in (1) we get A, = —4. Or putting A, = —4in (4) we get 4, = 3
Thus the three eigen values are 3, —4,1

Problem 11.
3 1 4
Find the sum of the squares of the eigenvaluesof A=|0 2 6

Solution.
Let A4, 4,, 45 be the eigen values of A.

We know that /112,/122,/132 are the eigen values of A?

31 4\/3 1 4
A? = (O 2 6) 0 2 6)
0 0 5/\0 0 5
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9 5 38
= (0 4 42
0 0 25

~Sum of the eigen values of A% =Trace of A2
=94+4+25

(i.e) 42 A,% A5% = 38

~ Sum of the squares of the eigen values of A = 38
Problem 12.

Find the eigen values and eigen vectors of the matrix

1 1 3
151]

311

A=

Solution.

The characteristic equation of Ais [A — AI| = 0

1-4 1 3
+ 1 5-1 1
3 1 1-1

=0

cA=DG=-DA=-D=-1-[1=-2)=3]+3[1-3G-1]=0
1-2DA%?-61+4)+(A+2)+33B1—-14)=0
A2—61+4+61>—41+21+2+91—42=0

W—=A3+712 —36 = 0.Hence A>3 — 742 +36 =0
2(A+2)(12-91+18) =0

Hence (A +2) (1 —6)(A—-3) =0

~ A = —2,3,6 are the three eigen values
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Case (i)

Eigen vector correspondingto A = —2
X1

LetX = xz] be an eigen vector correspondingto A = —2
X3

Hence AX = —2X

1 1 31[%] [~2x
(ile)|1 5 1]|X%2|=]-2x;
3 1 11lx3 —2x3
Xy + xy + 3x3 = —2x;
x1 + 5x2 + X3 = —sz
3x1 + Xy + X3 = _Z.X3

~3x1+x, +3x3=0

X1+ 7x,+x3=0

31 +x,+3x3=0

Clearly this system of three equations reduces to two equations only from (1) and (2) we get
xy = =2k; x, =0; x3 =2k

~It has only one independent solution and can be obtained by giving any valueto ksay k = 1
~(—2,0,2) is an eigen vector correspondingto A = —2

Case (ii)

Eigen vector corresponding to A = 3.

Then AX  3X gives

_2x1 +x2 + 3x3 =0
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x1+2x2+x3:0
3x1+x2i2:0

Taking the first 2 equations we get

Taking k = 1(say) (—1,1,—1) is an eigen vector corresponding to 1 = 3

Case (iii)

Eigen vector correspondingto A = 6

We have AX 6X

Hence —5x; + x, + 3x3 =0

xl_xZ+X3:0

3x1+x2—5x3:0

Taking the first two equation we get

~x, =k; x, = 2k; x3 = k. It satisfies the third equation also

Taking k = 1(say) (1,2,1) is an eigen vector correspondingto 4 = 6

Problem 13.

Find the eigen values and eigen vectors of the matrix

6 -2 2
A=|-2 3 -1
2 -1 3
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Solution.

The characteristic equation of Ais |[A — AI| = 0

26-D[B-D2-1]1+2[22—-6)+2]+2[2—6+21] =0
6-1)B+12—-61)+41—-8+41—-8=0

48+ 61> —361—81—22+61>+81—16=0

2=A%+ 1212 —= 361 + 32 = 0. Hence A3 — 1242 + 364 —32 =0
Hence(A —2)(1—-2)(A—8) =0

~ A =—-2,2,8 are the three eigen values

Case (i)

Eigen vector correspondingto A = 2

X1

LetX = xz] be an eigen vector corresponding to A = 2
X3

Hence AX = 2X

-'-6x1 - 2x2 + 2x3 = 2x1

—le + 3x2 — X3 = 2x2

le - xz + 3.X3 = ZX3

.'.4x1 - sz + 2x3 = O

_ZX1+xZ_X3:0

le_xZ+X3:0

The above three equations are equivalent to the single equation


Free Hand

Free Hand


2x1_x2+x3:0

The independent eigen vectors can be obtained by giving arbitrary values to any two of the

unknowns x4, X5, X3

Givingx; = 1; x, = 2wegetx; =0

Givingx; = 3; x, = 4wegetx; = —2

Two independent vectors corresponding to A = 2 are (1,2,0) and (3,4, —2)
Case (ii)

Eigen vector corresponding to A = 8.

X1

xz] is got from AX 8X gives
X3

The eigen vector X =

—2x1 — 2x5 + 2x3 = 0...(1)
—2x, — 5x, — x5 = 0....(2)
2xy — x5, — 5x3 = 0...(3)
From (1) and (2) we get

X1 Xz X3

—_— = — = k

12" 65 W)

o xl == Zk, xz - _k, X3 = k

Giveingk = 1(say) (—1,1,—1) is an eigen vector corresponding to 8 as (2, —1,1)

Problem 14.

Find the eigen values and eigen vectors of the matrix

2 =2 2
A=11 1 1
1 3 -1



Free Hand

Free Hand


Solution.

The characteristic equation of Ais |[A — AI| = 0

2—-1 =2 2
1 1-2 1 =0
1 3 -1-2

SR-D[-A-DA+1)-3]+2[-A+H)-1]+23-(1-D]=0
Q-1DA%?-4)-22+1)+22+1)=0

2B +22%+41-8=0

W=A3+ 242 + 41— 8 =0.Hence > — 212 —41+8=0
Hence(1—2)(A1—-2)(A+2)=0

~ A = 2,2,—2 are the three eigen values

Case (i)

Eigen vector correspondingto A = 2

X1

LetX = xz] be an eigen vector correspondingto A = 2
X3

Hence AX = 2X

2 -2 21 [24
1 1 1 ||x|=]2x
1 3 -1l [2x

The eigen vector corresponding to A = 2 is given by the equations

-'-2x1 - 2x2 + 2x3 = 2x1

x1+x2+x3:2x2

x1 + 3x2 _x3 = 2x3

.'._xz + 2x3 = 0...(1)


Free Hand

Free Hand


X1 — Xy + X3 = 0(2)
x1 + 3x2 - 3x3 = 0(3)
From (1) and (2) we get

X X X
5 =7 =7 = kGay)

~x=0;x,=k; x3=k

Giveingk = 1(say) (0,1,1) is an eigen vector corresponding to A = 2

Case (ii)
Eigen vector correspondingto A = —2.

X1
The eigen vector X = xz] isgotfrom AX 8X gives

X3

2x1 - 2x2 + 2x3 - _2x1

x1 + xz + x3 - _2x1
x1 + 3x2 - x3 - _2x1

2x1_x2+x3:0
x1+3xZ+X3:0
x1+3x2+X3:0

Taking the first two equations we get

X1 _ X2 _ﬁ_
a1~ 7 = k(say)
R x1 = —4k, xz = _k, x3 = 7k

Giveingk = 1we get (—4,—1,7) as an eigen vector corresponding to the eigen value 1 = —2.


Free Hand

Free Hand
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(o this chapte! we stady bilinear forms on finite

d
e

pefinition.

In other words /s line

gilinear forms

|“(rmlm'ﬂnn

4 finite dimenstonal, inner product space V
W ol peal numbers The inner product s
Vo Bosintistying the tallowing

jet
e 1€
jon from

“\[W

ey A P vh iy, V) A e, v)
(i, V) b)) )
words the inner product non sealar val
ol the (wo viariables woand v ound s

function 10 ench of the two variablen, This
wenlm vilued tunctions are ealled bilinear

jonal veCLor SPRces,

gilincar forms

et V be avector space over a field I,

sear form on Vis a function [ Vox Vo F

hat
oy A fua, v) = af (1, v) + S (g, V)

f(u, o fuy) = af () pru, v

where o, pe Foand wy, uao v V2 eV,

ar as a function of any one
(wo variables when the other 18 fixed,

Examples

[ ot V be a vector space over R, Then an inner
product on V' is a bilincar formon V.

Let V be any vector space overa field F'. Then
the zero function 0:V xV - Fgiven by
O(u, v) = 0 is a bilinear form.

For, '

0 m“"l 4 Buz, v) =0 ‘
 mal + PO
i c’ré (L\¢-.| ; u)%ﬂﬁ(ug(p).
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Similarly

6(u, avy + Bvz) =al (u, vy) + ﬂé (u,v2) *

3. Suppose V is a vector space over a field F.
Let f; and f> be two linear functionalson V.
(ie) f1 and f, are linear transformations from
Vito F. Then f : VxV = F defined by

fQz,v)= fiw) fr(v)isa bilinear form.

For, f(auj+ Buz,v)
= filauy + Buz) f2(v)
= [afi (1) + Bfi)]f2(V)
(since f1 is linear)
= afi (1) 2(v) + Bfi (u2) f2(v)
= af(ui,v) + Bf (u2,v)-

Similarly,

fu,avy + Bv2) =af(u, vy) + Bf (u, v2).

Exercises

1. Show that the function f defined by
flx,y) = xiy +xay2 e
....Xxp) and

where x = (x1, X2, .-
y,) is a bilinear form

y= (Y2 Baonns
on V,(F).
2. Which of the following are bilinear forms on
V2(R)?
Let x = (x;,x2) and y = (y1, y2)-
@ fl,y=L

(b) f(x,y)=(x1- y1)? + x2y2-
@ fx.N=@x+ yi)? = =y~
(d) fl(x,y)=xiy2 — X2

Answers. (c) and (d) are bilinear forms.
e over a field F.

Notation. Let V be a vector spac
V is denoted by

Then the set of all bilinear forms on
LV, ¥V, F).
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Theorem 8.1. Let V be a vector space over a figq
I Then L(V, V, F) is a vector space over F under
addition and scalar multiplication defined by

(f + @)= f(u,v)+ gu,v) ang
(@), v) = af(u,v),

Proof. Let fig e L(V,V,F)anda, € F.
We claim that f + g and @) f € L(V, v, F).

(f + g)auy + Buy, v)
= flauy + Buz, v) + glauy + Bua, v)
= f G, v) 4+ Bf w2, )+ g1, v) + Bg(uy, )
= alf(ur, v)+gQuy, v)]+BLf (us, V)+g(ua, v))
=al(f + @), M1+ BI(f + ) (uy, V1.

Similarly we can prove that

(f +8)u, av| + By = al(f + g)(u, vl _
+BI(f + 8w, v))
Herce (f +g) € L(V, V, F).

Also (g f)(euy + Buy, v)
= f(aui + Buy, v) |
= arlaf(uy, v) + Bf (us, v)]
= aaf(uy, v) + o1 81 (u, v)
= (o1 )i, v)] + Bl f)us, V)]

Similarly

() f)(u, v + Buy) = a[(dl‘f(u, vl
+ Bl f)(u, v)]
o felL(V,V, F).

The remaining axioms of a vector space can be
easily verified.

Matrix of a bilinear form. Lt J be a bilinear form

on V. Fix a basis {v}, vy, ...... , V) for V.
' Letu = 2 TRV RO + ayv, and
v Bivi 4., + Bnvy.
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el

Then [t V)
= f(al ‘,'I + .........
+ Buvn) '

S i)

i=l j::l

n !
- Z Za,'_,'ol,'ﬂj where f(v;, V) =a.,
i=l j=1 < 4

e,
= (e , ) ' ......... B
Anl ... Gy ﬁ

The n x n matrix A'is called the matrix of th
pilinear form with respect to the chosen basis 4

Conversely, given any n x n matrix A = (a;;) th
f:VxV — Fdefinedby f(u,v) = XA‘;”%" is:
bilinear form on V and f(vi.v;) = ajj. Alsciif g s
any other bilinear form on V such that g (v;, v;) = ;
then f = g (verify)., i

Solved Problems

Problem 1. Let f be the bilinear form defined on -
Va(R) by f(x,y) = X1y1 +xay2 where x = (x1, %)
and y = (y1, y2)- Find the matrix of f.

(i) w.r.t. the standard basis {e1, ez}.‘
(i) w.r.t. the basis {(1, 1), (1,2)}.

Solution. ‘
i) fleien = (0,10
=1x1+0x0=l

Similarly

fle, e =0
f(ez, 1) =0
f(e2, €2) =1
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rixoffis[ 10 ]

e mal
The m 0 |

v wili?) and vy = (1,2).
) 'rhcn ./.("I) "]) = | -} l - 2

fvi,vm)=142=3}
fv,v)=142=13
f,n)=1+4=5

it

The matrix of f is [ i g ]

he matrix of the bilinear form

Find t :
) F(Xs y) = Xl}’z — xy1 with respect to the
qandard pasis in Va(R).

he matrix of the bilinear from f defined
R) by f(x,y) =xiy1+ X33 where
2, X3) and y = (y1, Y2 y3) W.r.t.

(a) standard basis
(1, 1,0), 0,1, ), (1,0, D}

ector space of dimension n

Theorem 8.2. Let V beav

wera field F. Fix a basis (v, V2o vy for V.

Then the function ¢ : L(V,V,F)— M,;(F) which
L(V,V,F)

sciates with each bilinear form f €
ben x n matrix (ajj) where f(vi,vj) = Gij 18 an
morphism. ,
hoof. Clearly g is 1 — 1 and onto.

Now, let f, g € L(V, V, F) and @ e F.

Letg(f) = (a;j) and (8) = (bij)-

T ' i

hen (f+g)vi,vj) = f i, vj)t g(vi, vj)

= a;j + Dij
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aumear ferms

el + g)=

8= (ajj + bij) = (a;;) + (b))
- =@(f)+ ).

i (\h. L'l) o U./.("i- p’) =

@laf)= (waj;) = alajj) = ap(f):

Also

Thus ¢ |
S®isani
%15 an isomorphism

oroll

C a ,
& . FY. L(V,V,F)isa vector s L
ston n<, ' s a vector space of dimen-

8.2. Quadratic forms "

Definiti .

tor Spazn'v A bilinear form f defined on a vec

Flv) = is called a symmetric bilinear form if
) ) - f(\)’ M) for all U, v e V.

Examples

(i) LetV beavectorspaceoverR. Then any inner
product defined on V is a symmetric bilinear
form. |
(i) The bilinear form 6 defined in example 2 of ;i
8.1 is a symmetric bilinear form. |
(iii) Let f bea bilinear form on V. Then the bilin- |
ear form f| defined by |
filu,v) = fl,v)+ f (v, u)isasym

bilinear form.

metric

Theorem 8.3. A bilinear form ' f defined on V is
symmetric iff its matrix (a;j) w.r.t any one basis

(Up, V2yoeeeeen , Vn)is symmetric. |

/ |

x

Proof. Let fbea symmetric bilinear form.

Now, dij = fi,vj)

= f(vj, y;)  (since fis symmetric) ‘

= aji

(ajj) isa symmetric matrix.
Conversely, let (di j)bea s‘ymmetric matrix. |

Hence A = AT (by theorem 7.5)
Then
Fu,v) =XAr"

= (XAYT),T (since yAYTisalx l.matr.ix)
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e Y/\T XT
= YAXT
= f(v,u)

. f is a symmetric bilinear form.

Definition. Let j be a symmetric' biliney, form
defined by V. Then the quadratic forp a880cCiateq
with f is the mapping ¢ : V — defineq by
q(v) = f(v,v). The matrix of the bilin

ear form
is called the matrix of the associated quadratic forpy, q

-

4
Examples

1. Consider the bilinear form f defineq onV,(F)
by flu,v) =xiy1+xoyy + .. + Xny,:
u = (xy,...... yXn), v

: = (yl,...,yn).
Then the quadratic form 9 associated with, f
is given by

W= fuw =t 2

Let A be a symmetric matrix of order associ-

ated with the symmetric bilinear form f.Then

the corresponding  quadratic form ig given
by

q(X) = XAxT = i

a,-jx;.xj
i,j=l1

) Ex
For example, censider the Symmetric matrix

(12 3
A=247
37 6

The quadratic, form q determined by A w.rt,
the standard basis for V3(R) is given by

: 1 2 3 X
qV) = (x,x2,x3| 2 4 7 X7
: e e X3

=x{+42 + 612 + dxyxp+ 14x3x346x13.

Consider the diagonal matrix

1. 049
A=Y 0 2 0
0 9 3

Sbahhéd W|th 1CamScanner



pe quadratic form g determineq y,

Th dard basis for V‘! (R) 18 °IVen b

the stan

q(U) = (.X|,x2,x3) ’
00 . l

—Xl +2/‘-2 +3x3

We say that this quadratic vfonﬁ -

diagonal form. 718 in g
4. Considerthe quadratic form define d

by q(x, X’)) l +x|X2+ xz (')IIIV(R)

symmetric- matnx associated Wlth hen

found as follows, 9 can p,

Let
25 X102 + 07 = (x, xz)[ ] [ ]

= axj + 2bx1x; cxs,

1

53¢ L.
%
: 1
2

Exercises

1. Find the quadratic forms associated with the
- following matrices: w.r.t. the standard basis.

[ 2 =3
(a) -3 2 4
1 4rEs

(1 i

(b) 2 -2 —4
3 -4 -3

2. Find the matrices for the followipg quadratic

forms- - |
(8) - xf 4x1xz + 3x2 in V2(R)
(b) 2)-'1 + x + 3x1x2 in Vz(R

(C) zxr +x 6_,(]),") ln V?(R) I . ,:. b
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il TR N "v’-"“.l

;‘iiﬁ‘v
{ed Py A y“‘,n‘ g;t\,n‘!
‘"A.rﬂ'*
(#) "’l{ 1 "}'i '\"’a Gryny ¢ Kegug & Jyyxy
(b nf ’l; § '1.1:;" 4 Axixy - Basvs 4 6yt
I 2 ‘ 7 1
9 a) { ¢
S I i
0 1/2 00 @
2 =30 i . (A i:
1/2 0 00 dis
3 1=3 00 e /e
! - 0 0 00
0 01
0 0 00 In
¢
0 0120 Wv
ac
0O 0 0 0o
(©) 1/20 0 0
0o o0 0 1 W
i _ th
Theorem 8.4. Let [ be a symmetric bilinear ‘inrm fi
jefined on V. Let g be the associated quadratic form. 1
d

(i) Slu,v)= ::-{q(u +v) = q(u = v)}

(i) flu,v)= %{q(u 4+ v) = qu) ~ q(v))
proof. (i) %{q(u +v) = qu—v))
gta) = Jran)

(f(u+v,utv) = fu=vu=v)

— o (fu,u) + [, )+ f )+ [(vv)

B e~ L

— flu,u)+ [, v)+ [V, w) ~ fvov)
|

s 2(4/(“. v))

= f(u,v).
Proof of (i) is similar.

Note,  the above theorem shows thatitf f isa symmet-
ficbilinear form and ¢ the assovated quadratic form,
then £ (u, v) can be determined fromg. '
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Exercises

atic form prove that

I If g 1s aquadr
] (v4w)— gt

glu+v+w) =gt v —q
w) + g(u) + g(v) + g(w) = 0. |
Show that if gy 1s the quadratic form uf«snu-
ated with the bilincar form f, and g2 18 the
quadratic form associated with the hilinear

form f> then g + ¢2 18 the qu;@.-;nm form
associated with the bilinear form i+ f2

ra

Reduction of a quadratic form to the
diagonal form o .

jadratic form in section 8.2

In example 3 of the qu -
associated witn

we have seen that a quadratic form
a diagonal matrix of order 7 is of the form

) hl . :
ajxy +axx3 + . + anpXy
which is known as the diagonal form. Now, we prove
he diagonal

that any quadratic form can be reduced to t
form by means of anon- singular linear transformation.
The method of reduction which we describe below 1s
due to Lagrange.

e —

Consider the quadratic form
: n

@ =@, X2, .. , Xn) = Z aijXiXj

i.j=I
2 2
=apxp+...... + apuxy + 2a)2x).%2
+...... + 2a o
“Apn-NAntn--1-

Case (i) Suppose at least one of ajy, ..., ay, is not
zero. We assume, without loss of generality, that

a| # 0.
Then
¢ = (anxy + 2apx X+ + 2ay,x1x,)
n :
+ Z AdijXiX;
{,fj=2
- 2 a > |
=day (,\, +2—xpxr4...... +2-(-{2.\‘1\‘
; iy i) %
+oi(x2,. ..., xp) (say) |

£ |
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g6 Mode Algebra
a 2
a2 _ _,Iﬂ
= djl (x| 4 — X2 + o ln)
- arl
g (X2 e , Xp) (say)
a1z din
,y = X ——fx:)_-{—__.,*.____,
Now, putting Vi xyp + a0 anx"
g IR L Yn =Xm ¥ reduces to
@ =1y +¢2(y2, - yn) . (D
where @] = dll
Case (ii) Suppose @il =ap = = nn = 0. We
still have aij # 0 for some i, Jj such thati # J.
ume that a12 +0.

without loss of generally we ass
sformation

Then the non-singular linear tran
n=>Yn

......

=y x=n+tI*¥= Y3

X1 =
changes the quadratlc form ¢ to another quadratic form

in which the term v is present.
Now applying the method of case (i) ¢ can be
reduced to the form (1). Treating 2 in the same way

we get
)
v = 279 + 903(Z2, ave s’ § Zn) SO that

,,
=027 + adZ% + <p3(zz, cee s Zn)-

Continuing this process of reduction we obtam (p in
2

the formg = @ wi +...... + o wy.

Solved problems

Problem 1. Reduce the quadratic form

X7+ dxyxg + dxpx3 + 4x2
+ diagaenal form. s T tRay 4x32 igxihe

Solution. Let

¢ & x, + 4xxp +4x|xq + 4x2 + 16x9x3 + 4x2
= (x1 +2x, + ZX3) + 8x2x3 3

Wege( 1, A2 = VYo, x%-g-‘»-y.;
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= xl +2
22 = 5(x2 + x3) 24y,
2 :
43 = X3 — xo,

Problem 2, Reduce the qu
XX = X3+ xyxg —
Lagrange’s meth od.

drath f()r 2

2)( X4 to the di

a2ong ” l’]ﬁ«

Solution, Let g = 2x1xy X|xq 4.
xlX4 <

Putting x| =

% 2)’4 3y

. 1 1%
Putting 7; = y; + T aBtswa=yy;
B=yyandzg =y, weget

TS S |

2 2
=222——z — 5= =l — 3%
®» |. 2 2 ) 3 24

1 1 i
= 2212 - 52% - E(z_% +22324 + 23)

1 1 2
2 2
= 221 - 522 b '2‘(23 +Z4).

. ) o =1y,
Putting w = z), wy = 2, w3 = 23+ 24, w“. g

2 1 ‘201w2 E
weget ¢ =2uj-z¥—3 o
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whcl'c
1 +l 1 1
e MR AR LR

lW,.-cises Reduce the following quadratic forms to
dingO“"l form.

. 942
1. 312 + le - 7x§ —4x1x2 + 8x1x3

2 2
2. 2xy+5x5+ 19x% - 24x}' + 8x1x3 + 12x1x3
+8x1x4 + 18x9x3 — 8x9x4 — 16x3x4

3. 2x1x2 — X|X3 4 x93

4. —2x1x2 + 2x2x3 — 2x3x4 + 2x x4

5. (xyx9x3) 2 6 =2

6. (x1x2x3) 1 1 -1

T
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