ABSTRACT ALGEBRA II (75 Hours) (SMMA51)

Objectives:

- To facilitate a better understanding of vector space
- To solve problems in matrices

Vector Spaces : Definition and examples - elementary properties - subspaces linear transformation - fundamental theorem of homomorphism 16L.

Unit 11 Span of a set - linear dependence and independence - basis and dimension theorems

Unit III Rank and nullity Theorem - matrix of a linear transformation Inner product space : Definition and examples - orthogonality - orthogonal complement - Gram Schmidt orthognalisation process.

Unit IV Matrices : Elementary transformation - inverse - rank -Cayley Hamilton Theorem-Applications of Cayley Hamilton Theorem 15L
Unit V Eigen values and Eigen vectors - Properties and problems-Bilinear FormsQuadratic Forms-Reduction of quadratic form to diagonal form 15L

Text Book:

Arumugam \& Issac - Modern Algebra

Books for Reference :

- Sham .J.N and Vashistha .A.R, "Linear Algebra", Krishna Prakash Nandir, 1981.
- John B. Fraleigh, "A First Course in Abstract Algebra", $7^{\text {th }}$ edition, Pearson, 2002.
- Strang G., "Introduction to Linear Algebra", $4^{\text {th }}$ edition, Wellesly Cambridge Press, Wellesly, 2009.
- Artin M., "Abstract Algebra", $2^{\text {nd }}$ edition, Pearson, 2011

ABSTRACT ALGEBRA - II

UNIT	CONTENT	PAGE Nr
I	VECTOR SPACE	02
II	SPAN OF A SET	15
III	RANK AND NULLITY	30
IV	THEORY OF MATRICES	50
V	EIGEN VALUES AND EIGEN VECTORS	77

UNIT - I
 VECTOR SPACE

Definition and Examples

Definition: A non-empty set V is said to be a vector space over a field Fif
(i) V is an abelian group under an operation called addition which we denote by+.
(ii) For every $\alpha \in F$ and $v \in V$, there is defined an element αv in V subject to the following conditions.
(a) $\alpha(u+v)=\alpha u+\alpha v$ for all $u, v \in V$ and $\alpha \in F$.
(b) $(\alpha+\beta) u=\alpha u+\beta u$ for all $u \in V$ and $\alpha, \beta \in F$.
(c) $\alpha(\beta u)=(\alpha \beta)$ u for all $u \in V$ and $\alpha, \beta \in F$.
(d) $1 u=u$ for all $u \in V$.

Remark

1. The elements of F are called scalars and the elements of V are called vectors.
2. The rule which associates with each scalar $\alpha \in F$ and a vector $v \in V$,a vector αv is called the scalar multiplication. Thus a scalar multiplication gives rise to a function from
$\mathrm{F} \times \mathrm{V} \rightarrow \mathrm{V}$ defined by $(\alpha, \mathrm{v}) \rightarrow \alpha \mathrm{v}$.

Examples

1. $R \times R$ is a vector space over a field R under the addition and scalar multiplication defined by $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$ and $\alpha\left(x_{1}, x_{2}\right)=\left(\alpha x_{1}, \alpha x_{2}\right)$.

Proof.

Clearly the binary operation + is commutative and associative and $(0,0)$ is the zero element.
The inverse of ($\mathrm{x}_{1}, \mathrm{x}_{2}$) is $\left(-\mathrm{x}_{1},-\mathrm{x}_{2}\right)$.
Hence ($R \times R,+$) is an abelian group.
Now, let $u=\left(x_{1}, x_{2}\right)$ and $v=\left(y_{1}, y_{2}\right)$ andlet $\alpha, \beta \in R$.
Then $\alpha(u+v)=\alpha\left[\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right]$
$=\alpha\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
$=\left(\alpha x_{1}+\alpha y_{1}, \alpha x_{2}+\alpha y_{2}\right)$
$=\left(\alpha x_{1}, \alpha x_{2}\right)+\left(\alpha y_{1}, \alpha y_{2}\right)$
$=\alpha\left(x_{1}, x_{2}\right)+\alpha\left(y_{1}, y_{2}\right)$
$=\alpha u+\alpha v$.
Now, $(\alpha+\beta)=(\alpha+\beta)\left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
& =\left((\alpha+\beta) x_{1},(\alpha+\beta) x_{2}\right) \\
& =\left(\alpha x_{1}+\beta x_{1}, \alpha x_{2}+\beta x_{2}\right) \\
& =\left(\alpha x_{1}, \alpha x_{2}\right)+\left(\beta x_{1}, \beta x_{2}\right) \\
& =\alpha\left(x_{1}, x_{2}\right)+\beta\left(x_{1}, x_{2}\right) \\
& =\alpha u+\beta u .
\end{aligned}
$$

Also $\alpha(\beta \mathrm{u})=\alpha\left(\beta\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)=\alpha\left(\beta \mathrm{x}_{1}, \beta \mathrm{x}_{2}\right)=\left(\alpha \beta \mathrm{x}_{1}, \alpha \beta \mathrm{x}_{2}\right)=(\alpha \beta)\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(\alpha \beta) \mathrm{u}$
Obviously $1 \mathrm{u}=\mathrm{u}$
$\therefore \mathrm{R} \times \mathrm{R}$ is a vector space over R .
2. $R^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in R, 1 \leq i \leq n\right\}$. Then R^{n} is a vector space over R under addition and scalar multiplication defined by $\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)=$ $\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$ and $\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)$.

Proof:

Clearly the binary operation + is commutative and associative. $(0,0, \ldots, 0)$ is the zero element.
Theinverseof $\left(x_{1}, x_{2}, \ldots, x_{n}\right) I s\left(-x_{1},-x_{2}, \ldots,-x_{n}\right)$.
Hence $\left(\mathrm{R}^{n},+\right)$ is an abelian group.
Now, let $u=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $v=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and let $\alpha, \beta \in R$.
Then $\alpha(u+v)=\alpha\left[\left(x_{1}, x_{2}, \cdots, x_{n}\right)+\left(y_{1}, y_{2}, \cdots, y_{n}\right)\right]$
$=\alpha\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$
$=\left(\alpha x_{1}+\alpha y_{1}, \alpha x_{2}+\alpha y_{2}, \ldots, \alpha x_{n}+\alpha y_{n}\right)$
$=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)+\left(\alpha y_{1}, \alpha y_{2}, \ldots, \alpha y_{n}\right)$
$=\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\alpha\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\alpha u+\alpha v$.
Similarly $(\alpha+\beta) u=\alpha u+\beta$ uand $\alpha(\beta u)=(\alpha \beta) u$.
$\therefore 1 \mathrm{u}=\mathrm{u}$.
$\therefore \mathrm{R}^{n}$ is vector spaceoverR.

Note :We denote this vector space over by $\mathrm{V}_{n}(\mathrm{R})$.

Theorem: Let V be a vector space over a field F , Then
(i) $\alpha 0=0$ for all $\alpha \in F$.
(ii) $0 v=0$ for all $v \in V$.
(iii) $(-\alpha) v=\alpha(-v)=-(\alpha v)$ for all $\alpha \in F$ and $v \in V$.
(iv) $\alpha v=0 \Rightarrow \alpha=0$ or $v=0$.

Proof:

(i) $\alpha 0=\alpha(0+0)=\alpha 0+\alpha 0$. Hence $\alpha 0=0$.
(ii) $0 v=(0+0) v=0 v+0 v$. Hence $0 v=0$.
(iii) $0=[\alpha+(-\alpha)] v=\alpha v+(-\alpha) v$.

Hence($-\alpha$) v=-(αv).
Similarly $\alpha(-\mathrm{v})=-(\alpha \mathrm{v})$.
Hence $(-\alpha) v=\alpha(-v)=-(\alpha v)$.
(iv) Let $\alpha v=0$. If $\alpha=0$, there is nothing to prove.
\therefore Let $\alpha \mathrm{f}=0$. Then $\alpha^{-1} \in \mathrm{~F}$.
Now, $v=1 v=\left(\alpha^{-1} \alpha\right) v=\alpha^{-1}(\alpha v)=\alpha^{-1} 0=0$.

Subspaces:

Definition: Let V be a vector space over a field F . A non-empty subset W of V is called a subspace of V if W itself is a vector space over F under the operations of V .

Theorem: Let V be a vector space over a field F . A non-empty subset W of V is a subspace of V if and only if W is closed with respect to vector addition and scalar multiplication V.

Proof. Let W be a subspace of V . Then W itself is a vector space and hence W is closed with respect to vector addition and scalar multiplication.

Conversely, let W be a non-empty subset of V such that $u, v \in W \Rightarrow u+v \in W$ and u $\in W$ and $\alpha \in F \Rightarrow \alpha u \in W$.

We prove that W is a subspace of V .
Since W is non-empty, there exists an element $\mathrm{u} \in \mathrm{W}$.
$\therefore \quad 0 u=0 \in W$. Also $v \in W \Rightarrow(-1) v=-v \in W$.
Thus W contains 0 and the additive inverse of each of its element.
Hence W is an additive subgroup of V.
Also $u \in W$ and $\alpha \in F \Rightarrow \alpha u \in W$.
Since the elements of W are the elements of V the other axioms of a vector space are true in W . Hence W is a subspace of V .

Theorem: Let V be a vector space over a field F . A non-empty subset W ofVis a subspace of V if and only if $u, v \in W$ and $\alpha, \beta \in F \Rightarrow \alpha u+\beta v \in W$.

Proof. Let W be a subspace of V .
Letu, v \in Wand $\alpha, \beta \in F$.
Then αu and $\beta v \in W$ and hence $\alpha u+\beta v \in W$.

Conversely, let $u, v \in W$ and $\alpha, \beta \in F \Rightarrow \alpha u+\beta v \in W$.

Taking $\alpha=\beta=1$, we get $u, v \in W \Rightarrow u+v \in W$.

Taking $\beta=0$, we get $\alpha \in F$ and $u \in W \Rightarrow \alpha \in F$ and $u \in W \Rightarrow \alpha u \in W$.

Hence W is a subspace of V.

Examples

1. $\{0\}$ and V are subspaces of any vector space V. They are called the trivial subspaces of V.
2. $W=\{(a, 0,0): a \in R\}$ is a subspace of R^{3},

For, let $u=(a, 0,0), v=(b, 0,0) \in W$ and $\alpha, \beta \in R$.
Then $\alpha u+\beta v=\alpha(a, 0,0)+\beta(b, 0,0)=(\alpha a+\beta b, 0,0) \in W$.
Hence W is a subspace of R^{3}.

Solved problems

Problem:Prove that the intersection of two subspaces of a vector space V is a subspace.

Solution.

Let A and B be two subspaces of a vector space V overa field F.
Weclaim that $A \cap B$ is a subspace of V.
Clearly $0 \in A \cap B$ and hence $A \cap B$ is non-empty.
Now, let $u, v \in A \cap B$ and $\alpha, \beta \in F$. Then $u, v \in A$ and $u, v \in B$.
$\therefore \alpha u+\beta v \in A$ and $\alpha u+\beta v \in B$ (since A and B are subspaces)
$\therefore \alpha u+\beta v \in A \cap B$.
Hence $A \cap B$ is a subspace of V.

Problem. Prove that the union of two subspaces of a vector space need not be a subspace.

Solution. Let $A=\{(a, 0,0): a \in R\}, B=\{(0, b, 0): b \in R\}$.

Clearly A and B are subspaces of R^{3}.
However $A \cup B$ is not a subspace of R^{3}.
For, $(1,0,0)$ and $(0,1,0) \in A \cup B . \operatorname{But}(1,0,0)+(0,1,0)=(1,1,0) \notin A \cup B$.

Problem:If A and B are subspaces of Vprove that $A+B=\{v \in V: v=a+b, a \in A, b \in B\}$ is a subspace of V. Further show that $A+B$ is the smallest subspace containing A and B. (ie.,) If W isany subspace of V containing A and B then W contains $A+B$.

Solution. Let $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~A}+\mathrm{B}$ and $\alpha \in \mathrm{F}$.
Then $v_{1}=a_{1}+b_{1}, v_{2}=a_{2}+b_{2}$ where $a_{1}, a_{2} \in A$, and $b_{1}, b_{2} \in B$.
Now, $v_{1}+v_{2}=\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \in A+B$.
Also $\alpha\left(a_{1}+b_{1}\right)=\alpha a_{1}+\alpha b_{1} \in A+B$.
HenceA+Bis a subspace of V.
Clearly $A \subseteq A+B$ and $B \subseteq A+B$.
Now, let W be any subspace of V containing A andB.
Weshall prove that $A+B \subseteq W$.
Let $\mathrm{v} \in \mathrm{A}+\mathrm{B}$.
Then $v=a+b$ where $a \in A$ and $b \in B$. Since $A \subseteq W, a \in W$.
Similarly $b \in W$ and $a+b=v \in W$.
Therefore $A+B \subseteq W$ sothat $A+B$ is the smallest subspace of V containing A and B.

Problem: Let A and B be subspace of a vector space V. Then $A \cap B=\{0\}$ if and only if every vector $v \in A+B$ can be uniquely expressed in the form $v=a+b w h e r e a \in A$ and b $\in B$.

Solution. Let $\mathrm{A} \cap \mathrm{B}=\{0\}$. Letv $\in \mathrm{A}+\mathrm{B}$.
Let $v=a_{1}+b_{1}=a_{2}+b_{2}$ where $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.
Thena ${ }_{1}-a_{2}=b_{2}-b_{1}$.
But $\mathrm{a}_{1}-\mathrm{a}_{2} \in \mathrm{~A}$ and $\mathrm{b}_{2}-\mathrm{b}_{1} \in \mathrm{~B}$.
Hence $a_{1}-a_{2}, b_{2}-b_{1} \in A \cap B$.
Since $A \cap B=\{0\}, a_{1}-a_{2}=0$ and $b_{2}-b_{1}=0$ so thata $a_{1}=a_{2}$ and $b_{1}=b_{2}$.
Hence the expression of v in the form $a+b$ where $a \in A$ and $b \in B$ is unique.
Conversely suppose that anyelement in $A+B$ can be uniquely expressed in the forma+ b where $a \in A$ and $b \in B$.

We claim that $A \cap B=\{0\}$.

If $A \cap B=\{0\}$, let $v \in A \cap B$ and $v=0$. Then $0=v-v=0+0$.
Thus 0 has been expressed in the form $a+b$ in two different ways which is a contradiction. Hence $A \cap B=\{0\}$

Definition:Let A and B be subspaces of a vector space V. Then V is called the direct sum of A and B if
(i) $\mathrm{A}+\mathrm{B}=V$
(ii) $A \cap B=\{0\}$

If V is the direct sum of A and B we write $\mathrm{V}=\mathrm{A} \bigoplus B$.
Note: $\mathrm{V}=\mathrm{A} \bigoplus \mathrm{B}$ If and only if everyelement of V can be uniquely expressed in the form $a+b w h e r e ~ a \in A$ and $b \in B$.

Examples

1. In $V_{3}(R)$ let $A=\{(a, b, 0): a, b \in R\}$ and $B=\{(0,0, c): c \in R\}$. Clearly A and B are subspaces of V and $A \cap B=\{0\}$. Also let $v=(a, b, c) \in V_{3}(R)$. Then $v=(a, b, 0)+(0,0, c)$ sothat $A+B=V_{3}(R) . \operatorname{HenceV}_{3}(R)=A \oplus B$.

Theorem: Let Vbe a vector space overF and W a subspace of V.
Let $V / W=\{W+v: v \in V\}$.
Then V / W is a vector space over F under the following operations.
(i) $\left(W+v_{1}\right)+\left(W+v_{2}\right)=W+v_{1}+v_{2}$
(ii) $\alpha\left(W+v_{1}\right)=W+\alpha v_{1}$.

Proof. Since W is a subspace of V it is a subgroup of $(V,+)$.
Since ($\mathrm{V},+$) is abelian, W is normal subgroup of $(\mathrm{V},+$)
so that (i) is a well-defined operation.
Now we shallprove that (ii) is a well-defined operation.
$W+v_{1}=W+v_{2} \Rightarrow v_{1}-v_{2} \in W \Rightarrow \alpha\left(v_{1}-v_{2}\right) \in W$
Since W is a subspace $\Rightarrow \alpha v_{1}-\alpha v_{2} \in W \Rightarrow \alpha v_{1} \in W+\alpha v_{2} \Rightarrow W+\alpha v_{1}=W+\alpha v_{2}$.
Hence (ii) is a well-definedoperation.
Now, let $W+v_{1}, W+v_{2}, W+v_{3} \in V / W$.

Then $\left(W+v_{1}\right)+\left[\left(W+v_{2}\right)+\left(W+v_{3}\right)\right]=\left(W+v_{1}\right)+\left(W+v_{2}+v_{3}\right)=W+v_{1}+v_{2}+v_{3}=$
$\left(W+v_{1}+v_{2}\right)+\left(W+v_{3}\right)=\left[\left(W+v_{1}\right)+\left(W+v_{2}\right)\right]+\left(W+v_{3}\right)$

Hence + is associative.
$\mathrm{W}+0=\mathrm{W} \in \mathrm{V} / \mathrm{W}$ is the additive identity element.
For $\left(W+v_{1}\right)+(W+0)=W+v_{1}=(W+0)+\left(W+v_{1}\right)$ forall $v_{1} \in V$.
AlsoW $-\mathrm{v}_{1}$ istheadditiveinverseof $\mathrm{W}+\mathrm{v}_{1}$.
Hence V /W is a group under+.
Further, $\left(W+v_{1}\right)+\left(W+v_{2}\right)=W+v_{1}+v_{2}$
$=W+v_{2}+v_{1}=\left(W+v_{2}\right)+\left(W+v_{1}\right)$
Hence V /W is an abelian group.
Now, let $\alpha, \beta \in \mathrm{F}$.
$\alpha\left[\left(W+v_{1}\right)+\left(W+v_{2}\right)\right]=\alpha\left(W+v_{1}+v_{2}\right)$
$=\mathrm{W}+\alpha\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)$
$=\mathrm{W}+\alpha \mathrm{v}_{1}+\alpha \mathrm{v}_{2}$
$=\left(\mathrm{W}+\alpha \mathrm{v}_{1}\right)+\left(\mathrm{W}+\alpha \mathrm{v}_{2}\right)$
$=\alpha\left(W+v_{1}\right)+\alpha\left(W+v_{2}\right)$
$(\alpha+\beta)\left(W+v_{1}\right)=W+(\alpha+\beta) v_{1}$
$=W+\alpha v_{1}+\beta v_{1}$
$=\left(W+\alpha v_{1}\right)+\left(W+\beta v_{1}\right)$
$=\alpha\left(W+v_{1}\right)+\beta\left(W+v_{1}\right)$
$\alpha\left[\beta\left(W+v_{1}\right)\right]=\alpha\left(W+\beta v_{1}\right)$
$=\mathrm{W}+\alpha \beta \mathrm{v}_{1}$
$1\left(W+v_{1}\right)=W+1 v_{1}$
$=W+\mathrm{v}_{1}$
Hence V/W is a vector space.

The vector space V / W is called the quotient space of V by W .

Linear transformation

Definition Let V and W be a vector space over a field F. A mapping T : $V \rightarrow$ Wis called a homomorphism if
(a) $\mathrm{T}(\mathrm{u}+\mathrm{v})=\mathrm{T}(\mathrm{u})+\mathrm{T}(\mathrm{v})$ and
(b) $T(\alpha u)=\alpha T(u) w h e r e \alpha \in F a n d u, v \in V$.

A homomorphism T of vector space is also called a linear transformation.
(i) If T is 1-1 then T is called monomorphism.
(ii)If T is onto then T is called an epimorphism.
(iii) If T is $1-1$ and onto then T is called an isomorphism.
(iv) TwovectorspacesVandWare said to be isomorphic if there exists an isomorphism Tfrom V toW and we write $\mathrm{V} \cong W$.
(v)A linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{F}$ is called a linear functional.

Examples

1. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ defined by $\mathrm{T}(\mathrm{v})=0$ for all $\mathrm{v} \in \mathrm{V}$ is a trivial linear transformation.
2. $T: V \rightarrow V$ definedby $T(v)=v$ for all $v \in V$ is aidentity linear transformation.

Theorem: Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ bea linear transformation. Then $\mathrm{T}(\mathrm{V})=\{\mathrm{T}(\mathrm{v}): \mathrm{v} \in \mathrm{V}\}$ is a subspace of W

Proof. Let w_{1} and $\mathrm{w}_{2} \in \mathrm{~T}(\mathrm{~V})$ and $\alpha \in \mathrm{F}$.
Then there exist $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}$ such that $\mathrm{T}\left(\mathrm{v}_{1}\right)=\mathrm{w}_{1} \operatorname{and} \mathrm{~T}\left(\mathrm{v}_{2}\right)=\mathrm{w}_{2}$.
Hencew $\mathrm{w}_{1}+\mathrm{w}_{2}=\mathrm{T}\left(\mathrm{v}_{1}\right)+\mathrm{T}\left(\mathrm{v}_{2}\right)=\mathrm{T}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \in \mathrm{T}(\mathrm{V})$.
Similarly, $\alpha w_{1}=\alpha T\left(v_{1}\right)=T\left(\alpha v_{1}\right) \in T(V)$.
Hence $T(V)$ is a subspace of W .
Definition: Let V and W be vector spaces over a field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then the kernel of T is defined to be $\{v: v \in V$ and $T(v)=0\}$ and is denoted by kerT. Thus $\operatorname{kerT}=\{\mathrm{v}: \mathrm{v} \in \mathrm{V}$ and $\mathrm{T}(\mathrm{v})=0\}$.

For example, in example 1, ker T = V. In example 2, $\operatorname{ker} \mathrm{T}=\{0\}$.

Note: Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then T is a monomorphism if and only if kerT $=\{0\}$.

Theorem[Fundamental theorem of homomorphism] Let V and W be vector spaces over a field F andT: $V \rightarrow W$ be an epimorphism. Then
(i) $\operatorname{kerT}=\mathrm{V}_{1}$ is a subspace of Vand
(ii) $\frac{V}{V_{1}} \cong W$

Proof.

(i) Given $\mathrm{V}_{1}=\operatorname{ker} T=\{\mathrm{v}: \mathrm{v} \in \mathrm{V}$ and $\mathrm{T}(\mathrm{v})=0\}$

Clearly $\mathrm{T}(0)=0$.
Hence $0 \in$ kerT= V_{1}
$\therefore \mathrm{V}_{1}$ isnon-emptysubsetofV.
Letu, $v \in$ kerTand $\alpha, \beta \in F$.
$\therefore \mathrm{T}(\mathrm{u})=0$ and $\mathrm{T}(\mathrm{v})=0$.
Now $T(\alpha u+\beta v)=T(\alpha u)+T(\beta v)$
$=\alpha T(u)+\beta T(v)$
$=\alpha 0+\beta 0=0$ and so $\alpha u+\beta v \in$ kerT.
Hence kerT is a subspace of V .
(11) Ve detine a map

$$
\begin{aligned}
& \varphi: \frac{V}{V_{1}} \rightarrow \mathrm{~W} \text { by } \varphi\left(\mathrm{V}_{1}+\mathrm{v}\right) \\
& =\mathrm{T}(\mathrm{v}) .
\end{aligned}
$$

φ is well defined

Let $\mathrm{V}_{1}+\mathrm{v}=\mathrm{V}_{1}+\mathrm{w}$.
$\therefore \mathrm{v} \in \mathrm{V}_{1}+\mathrm{w}$.
$\therefore \mathrm{V}=\mathrm{V}_{1}+\mathrm{w}$ where $\mathrm{v}_{1} \in \mathrm{~V}$.
$\therefore \mathrm{T}(\mathrm{v})=\mathrm{T}\left(\mathrm{v}_{1}+\mathrm{w}\right)$
$=T\left(v_{1}\right)+T(w)=0+T(w)$
$=T(w)$
$\therefore \varphi\left(\mathrm{V}_{1}+\mathrm{v}\right)=\varphi\left(\mathrm{V}_{1}+\mathrm{w}\right)$
$\therefore \varphi$ is1-1.

$$
\begin{aligned}
& \varphi\left(\mathrm{V}_{1}+\mathrm{v}\right)=\varphi\left(\mathrm{V}_{1}+\mathrm{w}\right) \\
& \Rightarrow \mathrm{T}(\mathrm{v})=\mathrm{T}(\mathrm{w}) \\
& \Rightarrow \mathrm{T}(\mathrm{v})-\mathrm{T}(\mathrm{w})=0 \\
& \Rightarrow \mathrm{~T}(\mathrm{v})+\mathrm{T}(-\mathrm{w})=0 \\
& \Rightarrow \mathrm{~T}(\mathrm{v}-\mathrm{w})=0 \\
& \Rightarrow \mathrm{v}-\mathrm{w} \in \mathrm{ker} \mathrm{~T}=\mathrm{V}_{1} \\
& \Rightarrow \mathrm{v} \in \mathrm{~V}_{1}+\mathrm{w} \\
& \Rightarrow \mathrm{~V}_{1}+\mathrm{v}=\mathrm{V}_{1}+\mathrm{w} .
\end{aligned}
$$

Фisonto.

Let $w \in W$.

Since Tisonto, there exists $v \in V$ such that $T(v)=w$ and so $\varphi\left(V_{1}+v\right)=w$.
φ is a homomorphism.

$$
\begin{aligned}
\varphi\left[\left(\mathrm{V}_{1}+\mathrm{v}\right)+\left(\mathrm{V}_{1}+\mathrm{w}\right)\right] & =\varphi\left[\left(\mathrm{V}_{1}+(\mathrm{v}+\mathrm{w})\right]=\mathrm{T}(\mathrm{v}+\mathrm{w})=\mathrm{T}(\mathrm{v})+\mathrm{T}(\mathrm{w})\right. \\
& =\varphi\left(\mathrm{V}_{1}+\mathrm{v}\right)+\varphi\left(\mathrm{V}_{1}+\mathrm{w}\right)
\end{aligned}
$$

Also $\varphi\left[\alpha\left(\mathrm{V}_{1}+\mathrm{v}\right)\right]=\varphi\left[\left(\mathrm{V}_{1}+\alpha \mathrm{v}\right)\right]=\mathrm{T}(\alpha \mathrm{v})=\alpha \mathrm{T}(\mathrm{v})=\alpha \mathrm{T}\left(\mathrm{V}_{1}+\mathrm{v}\right)$.

Hence φ is an isomorphism.

Theorem: Let V be a vector space over a field F . Let A and B be subspaces of V . Then
$\frac{A+B}{A} \cong \frac{B}{A \cap B}$.
Proof. We know that $A+B$ is a subspace of V containing A.

Hence $\frac{A+B}{A}$ is also vector space over F .
An element of $A+B$ is of the form $(a+b)$ where $a \in A$ and $b \in B$. But $A+a=A$.
Hence an element of $\frac{A+B}{A}$ is of the form $\mathrm{A}+\mathrm{b}$.
Now, consider $\mathrm{f}: \mathrm{B} \rightarrow \frac{A+B}{A}$
Defined $\frac{A+B}{A}$ is of the form $\mathrm{A}+\mathrm{b}$.
Now, consider f: $\mathrm{B} \rightarrow \frac{A+B}{A}$ by $\mathrm{f}(\mathrm{b})=\mathrm{A}+\mathrm{b}$.
Clearly f is onto.
Also $f\left(b_{1}+b_{2}\right)=A+\left(b_{1}+b_{2}\right)$
$=\left(A+b_{1}\right)+\left(A+b_{2}\right)$
$=f\left(b_{1}\right)+f\left(b_{2}\right)$ and
$f\left(\alpha b_{1}\right)=A+\alpha b_{1}=\alpha\left(A+b_{1}\right)=\alpha f\left(b_{1}\right)$.
Hence f is a linear transformation.
Let K be the kernel off.
Then $K=\{b: b \in B, A+b=A\}$.

Now, $\mathrm{A}+\mathrm{b}=$ Aifandonlyifb $\in \mathrm{A}$. Hence $\mathrm{K}=\mathrm{A} \cap \mathrm{Band}$ so $\frac{A+B}{A} \cong \frac{B}{A \cap B}$
Theorem:LetVandW
bevectorspacesoverafieldF.LetL(V,W)represent thesetofalllineartransformationsfromVtoW.ThenL(V,W)itselfisavectorspace over F under addition and scalar multiplication defined by $(f+g)(v)=f(v)+g(v)$ and $(\alpha f)(v)$ $=\alpha f(v)$.

Proof. Let $f, g \in L(V, W)$ and $v_{1}, v_{2} \in V$.
Then $(f+g)\left(v_{1}+v_{2}\right)=f\left(v_{1}+v_{2}\right)+g\left(v_{1}+v_{2}\right)$
$=f\left(v_{1}\right)+f\left(v_{2}\right)+g\left(v_{1}\right)+g\left(v_{2}\right)$
$=f\left(v_{1}\right)+g\left(v_{1}\right)+f\left(v_{2}\right)+g\left(v_{2}\right)$
$=(f+g)\left(v_{1}\right)+(f+g)\left(v_{2}\right)$
Also $(f+g)(\alpha v)=f(\alpha v)+g(\alpha v)=\alpha f(v)+\alpha g(v)=\alpha[f(v)+g(v)]=\alpha(f+g)(v)$.
Hence $(f+g) \in L(V, W)$.
Now, $(\alpha f)\left(v_{1}+v_{2}\right)=(\alpha f)\left(v_{1}\right)+(\alpha f)\left(v_{2}\right)=\alpha f\left(v_{1}\right)+\alpha f\left(v_{2}\right)$

$$
=\alpha\left[f\left(v_{1}\right)+f\left(v_{2}\right)\right]=\alpha f\left(v_{1}+v_{2}\right) .
$$

Also $(\alpha f)(\beta v)=\alpha[f(\beta v)]=\alpha[\beta f(v)]=\beta[\alpha f(v)]=\beta[(\alpha f)(v)]$.
Henceaf $\in L(V, W)$. Addition defined on $L(V, W)$ is obviously commutative andassociative.

The function $f: V \rightarrow W$ defined by $f(v)=0$ for all $v \in V$ is clearly a linear transformation and is the additive identity of $\mathrm{L}(\mathrm{V}, \mathrm{W})$.
Further (-f$): \mathrm{V} \rightarrow$ Wdefined by $(-f)(v)=-f(v)$ is the additive inverse of f.
Thus $L(V, W)$ is an abelian group under addition.
The remaining axioms for a vector space can be easily verified.
Hence $L(V, W)$ isavectorspaceoverF.

UNIT-II
 SPAN OF A SET

Definition:

Let V be a vector space over a field F.Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n} \in \mathrm{~V}$. Then an element of the form $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n} w h e r e \alpha_{l} \in F$ is called a linear combination of the vectors v_{1}, v_{2}, \ldots , v_{n}.

Definition: Let S be a non-empty subset of a vector space V . Then the set of all linear combinations of finite sets of elements of S is called the linear span of S and is denoted byL(S).

Note: Any element of $\mathrm{L}(\mathrm{S})$ is of the form $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n} w h e r e \alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n} \in \mathrm{~F}$.

Theorem: Let V be a vector space over a field F and S be a non-empty subset of V . Then
(i) $\mathrm{L}(\mathrm{S})$ is a subspace of V .
(ii) $S \subseteq L(S)$.
(iii) If W is any subspace of V such that $S \subseteq W$, then $L(S) \subseteq W$ (ie.,) S is the smallest subspace of V containing S .

Proof.

(i) Letv, w $\in L(S)$ and $\alpha, \beta \in F$.

Thenv $=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n} w$ herev $_{i} \in$ Sand $\alpha_{i} \in \mathrm{~F}$.
Also, $w=\beta_{1} w_{1}+\beta_{2} w_{2}+\cdots+\beta_{m} w_{m}$ wherew $_{j} \in S \beta_{j} \in F$.
Now, $\alpha v+\beta w=\alpha\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}\right)+\beta\left(\beta_{1} w_{1}+\beta_{2} w_{2}+\cdots+\beta_{m} w_{m}\right)$.
$=\left(\alpha \alpha_{1}\right) \mathrm{v}_{1}+\cdots+\left(\alpha \alpha_{n}\right) \mathrm{v}_{n}+\left(\beta \beta_{1}\right) \mathrm{w}_{1}+\cdots+\left(\beta \beta_{m}\right) \mathrm{w}_{m}$.
$\therefore \alpha v+\beta w$ is also a linear combination of a finite number of elements of S.
Hence $\alpha v+\beta w \in L(S)$ and so $L(S)$ is asubspace of S.
(ii) Let $u \in S$. Then $u=1 u \in L(S)$.

Hence $S \subseteq$ (S).
(iii) Let W be any subspace of V such that $\mathrm{S} \subseteq \mathrm{W}$.

Let $u \in L(S)$.
Then $\mathrm{u}=\alpha_{1} \mathrm{u}_{1}+\alpha_{2} \mathrm{u}_{2}+\cdots+\alpha_{n} u_{n}$ where $\in \in$ Sand $_{i} \in \mathrm{~F}$.

SinceS $\subseteq W$, wehave $u_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{n} \in \mathrm{~W}$ and so $\mathrm{u} \in \mathrm{W}$.

Hence $L(S) \subseteq W$.

Note:L(S) is called the subspace spanned(generated) by the setS.

Examples

1.In $\mathrm{V}_{3}(\mathrm{R})$ let $\mathrm{e}_{1}=(1,0,0) ; \mathrm{e}_{2}=(0,1,0)$ and $\mathrm{e}_{3}=(0,0,1)$
(a) Let $S=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$ Then $\mathrm{L}(\mathrm{S})=\left\{\alpha \mathrm{e}_{1}+\beta \mathrm{e}_{2}: \alpha, \beta \in \mathrm{R}\right\}=\{(\alpha, \beta, 0): \alpha, \beta \in \mathrm{R}\}$
(b)Let $S=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$. ThenL $(S)=\left\{\alpha \mathrm{e}_{1}+\beta \mathrm{e}_{2}+\gamma \mathrm{e}_{3}: \alpha, \beta, \gamma \in R\right\}=\{(\alpha, \beta, \gamma): \alpha, \beta, \gamma \in R\}=V_{3}(R)$ Thus $V_{3}(R)$ is spanned by $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$.
2.In $V_{n}(R)$ let $e_{1}=(1,0, \cdots, 0) ; e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 1)$.

Let $S=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}$.ThenL(S) $=\left\{\alpha_{1} \mathrm{e}_{1}+\alpha_{2} \mathrm{e}_{2}+\alpha_{n} \mathrm{e}_{n}: \alpha_{i} \in \mathrm{R}\right\}=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): \alpha_{i} \in \mathrm{R}\right\}=\mathrm{V}_{n}(\mathrm{R})$
$\operatorname{Thus}_{n}(\mathrm{R})$ isspannedby $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}$.

Theorem: Let V be a vector space over a field F . Let $\mathrm{S}, \mathrm{T} \subseteq \mathrm{V}$. Then
(a) $\mathrm{S} \subseteq \mathrm{T} \Rightarrow \mathrm{L}(\mathrm{S}) \subseteq \mathrm{L}(\mathrm{T})$.
(b) $L(S \cup T)=L(S)+L(T)$.
(c) $L(S)=S$ if and only if S is a subspace of V.

Proof.

(a) Let $S \subseteq T$. Let $s \in L(S)$.

Then $s=\alpha_{1} s_{1}+\alpha_{2} s_{2}+\cdots+\alpha_{n} s_{n} w h e r e s_{i} \in S$ and $\alpha_{i} \in F$.
Now, since $S \subseteq T, s_{i} \in T$.
Hence $\alpha_{1} s_{1}+\alpha_{2} s_{2}+\cdots+\alpha_{n} s_{n} \in L(T)$.
Thus $L(S) \subseteq L(T)$.
(b) Lets $\in L(S U T)$.

Thens $=\alpha_{1} s_{1}+\alpha_{2} s_{2}+\cdots+\alpha_{n} s_{n} w h e r e s_{i} \in$ SUTand $_{i} \in F$.
Withoutlossofgeneralitywecanassumethats ${ }_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{m} \in$ Sands $_{m+1}, \ldots, \mathrm{~s}_{n} \in \mathrm{~T}$.
Hence $\alpha_{1} s_{1}+\alpha_{2} s_{2}+\cdots+\alpha_{m} s_{m} \in L(S)$ and $\alpha_{m+1} s_{m+1}+\cdots+\alpha_{n} s_{n} \in L(T)$.
Therefore $S=\left(\alpha_{1} s_{1}+\alpha_{2} s_{2}+\cdots+\alpha_{m} s_{m}\right)+\left(\alpha_{m+1} s_{m+1}+\cdots+\alpha_{n} s_{n}\right) \in L(S)+L(T)$.
Also by $(\mathrm{a}) \mathrm{L}(\mathrm{S}) \subseteq \mathrm{L}(\mathrm{S} \cup T)$ and $\mathrm{L}(\mathrm{T}) \subseteq \mathrm{L}(\mathrm{S} \cup \mathrm{T})$.

Hence $L(S)+L(T) \subseteq L(S \cup T)$.
Hence $L(S)+L(T)=L(S U T)$.
(c) Let $\mathrm{L}(\mathrm{S})=\mathrm{S}$. Then $\mathrm{L}(\mathrm{S})=\mathrm{S}$ is a subspace of V .

Conversely, let Sbe asubspace of V.
Then the smallest subspace containing S is S itself.
HenceL(S)=S.
Corollary:L[L(S)] =S.

Linear Independence

In $V_{3}(R)$, let $S=\left\{e_{1}, e_{2}, e_{3}\right\}$. We have seen that $L(S)=V_{3}(R)$. Thus S is a subset of $V_{3}(R)$ which spans the whole space $V_{3}(R)$.

Definition:Let V be a vector space over a field F. V is said to be finite dimensional if there exists a finite subset S of V such that $L(S)=V$.

Examples

1. $\quad V_{3}(R)$ is a finite dimensional vector space.
2. $\quad V_{n}(R)$ is a finite dimensional vector space, since $S=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}$ is a finite sub- set of $\mathrm{V}_{n}(\mathrm{R})$ such that $\mathrm{L}(\mathrm{S})=\mathrm{V}_{n}(\mathrm{R})$. In general if F is any field $\mathrm{V}_{n}(\mathrm{~F})$ is a finite dimensional vector space over F.

Definition:Let V be a vector space over a field F. A finite set of vectors $\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{n}$ inVissaidtobelinearlyindependentif $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{~V}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n}=$ $0 \Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0 . I f v_{1}, v_{2}, \ldots, v_{n}$ are not linearly independent , then they are said to be linearly dependent.

Note:If $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}$ are called linearly dependent then there exists scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ not all zero such that $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n}=0$.

Examples:

1. $\ln \mathrm{V}_{n}(\mathrm{~F}),\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}$ is a linearly independent set of vectors, for $\alpha_{1} \mathrm{e}_{1}+\alpha_{2} \mathrm{e}_{2}+\cdots+\alpha_{n} \mathrm{e}_{n}=0$.

$$
\begin{aligned}
& \Rightarrow \alpha_{1}(1,0, \ldots, 0)+\alpha_{2}(01, \ldots, 0)+\cdots+\alpha_{n}(0,0, \ldots, 1)=(0,0, \ldots, 0) \\
& \Rightarrow\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=(0,0, \ldots, 0) \Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0
\end{aligned}
$$

2. $\operatorname{In} V_{3}(R)$ thevectors(1,2,1),(2,1,0) and(1,-1,2) arelinearlyindependent.

For,let $\alpha_{1}(1,2,1)+\alpha_{2}(2,1,0)+\alpha_{3}(1,-1,2)=(0,0,0)$
$\therefore\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}, 2 \alpha_{1}+\alpha_{2}-\alpha_{3}, \alpha_{1}+2 \alpha_{3}\right)=(0,0,0)$
$\therefore \quad \alpha_{1}+2 \alpha_{2}+\alpha_{3}=0$
$2 \alpha_{1}+\alpha_{2}-\alpha_{3}=0$
$\alpha_{1}+2 \alpha_{3}=0$
Solving equations (1),(2) and (3) we get $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$.
\therefore The given vectors are linearlyindependent.
3. $\operatorname{InV} V_{3}(R)$ thevectors $(1,4,-2),(-2,1,3)$ and $(-4,11,5)$ arelinearlydependent. For, let $\alpha_{1}(1,4,-2)+\alpha_{2}(-2,1,3)+\alpha_{3}(-4,11,5)=(0,0,0)$
$\therefore \quad \alpha_{1}-2 \alpha_{2}-4 \alpha_{3}=0$
$4 \alpha_{1}+\alpha_{2}+11 \alpha_{3}=0 \cdots(2)$
$-2 \alpha_{1}+3 \alpha_{2}+5 \alpha_{3}=0 \cdots(3)$
From (1) and (2),
$\alpha_{1}=-18 k, \alpha_{2}=-27 k, \alpha_{3}=9 k$. These values of α_{1}, α_{2} and α_{3}, for any k satisfy (3) also.
Taking $k=1$ we get $\alpha_{1}=-18, \alpha_{2}=-27, \alpha_{3}=9$ as a non-trivial solution. Hence the three vectors are linearly dependent.

Theorem:Anysubsetofalinearlyindependentsetislinearlyindependent.
Proof: LetVbeavectorspaceoverafieldF.
LetS $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ bealinearly independent set.
Let S^{\prime} be a subset of S. Without loss of generality we take $S^{\prime}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{k}\right\}$ where $\mathrm{k} \leq \mathrm{n}$. Suppose S'is a linearly dependent set.
Then there exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ inFnotallzero, suchthat $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0$.
 vector. Here S is a linearly dependent set which is a contradiction.
Hence S'islinearlyindependent.

Theorem: Anysetcontainingalinearlydependentsetisalsolinearlydependent.
Proof. Let V be a vector space. Let Sbe a linearly dependent set. Let $\mathrm{S}^{\prime} \supset \mathrm{S}$.
If S^{\prime} is linearly independent S is also linearly independent (by theorem) which is a contradiction. Hence S'islinearlydependent.

Theorem:
vectorspaceVoverafieldF.

LetS $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ bealinearlyindependentsetofvectorsina TheneveryelementofL(S)canbeuniquelywrittenin
theform $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n}$, where $\alpha_{i} \in \mathrm{~F}$.
Proof.BydefinitioneveryelementsofL(S)isoftheform $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n}$.
Now, $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n}=\beta_{1} \mathrm{v}_{1}+\beta_{2} \mathrm{v}_{2}+\cdots+\beta_{n} \mathrm{v}_{n}$.
Hence $\left(\alpha_{1}-\beta_{1}\right) \mathrm{v}_{1}+\left(\alpha_{2}-\beta_{2}\right) \mathrm{v}_{2}+\cdots+\left(\alpha_{n}-\beta_{n}\right) \mathrm{v}_{n}=0$.
SinceSisalinearlyindependentset, $\alpha_{i}-\beta_{i}=$ Oforalli.
$\therefore \alpha_{i}=\beta_{i}$ for all i. Hencethetheorem.

Theorem: $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{n}\right\}$ bealinearlyindependentsetofvectorsina vector space V if and only if there exists a vector $v_{k} \in S$ such that $v_{k} i s$ a linear combinationoftheprecedingvectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{k-1}$.

Proof:Supposev ${ }_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}$ arelinearlydependent.
Thenthereexist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathrm{~F}$, not all zero, such that $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n}=0$.
Let k be the largest integer for which $\alpha_{k} f=0$.
Then $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0 . \therefore \alpha_{k} v_{k}=-\alpha_{1} v_{1}-\alpha_{2} v_{2}-\cdots-\alpha_{k-1} v_{k-1}$.
$\therefore v_{k}=\left(-\alpha^{-1} \alpha_{1}\right) \mathrm{v}_{1}+\cdots+\left(-\alpha^{-1} \alpha_{k-1}\right) v_{k-1}$.
$\therefore \mathrm{v}_{\mathrm{k}}$ is a linear combination of thepreceding vectors.
Conversely,
suppose there exists a vector $\mathrm{v}_{k} s u c h$ thatv $+\mathrm{k}=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{k-1} \mathrm{v}_{k-1}$.
Hence $-\alpha_{1} \mathrm{v}_{1}-\alpha_{2} \mathrm{v}_{2}-\cdots-\alpha_{k-1} \mathrm{v}_{\mathrm{k}-1}+\mathrm{v}_{k}+0 \mathrm{v}_{k+1}+\cdots+0 \mathrm{v}_{n}=0$.
Sincethecoefficientofv $\mathrm{v}_{\mathrm{k}}=1$, wehaveS $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ islinearlydependent.

Example: $\operatorname{InV}_{3}(R)$, letS $=[(1,0,0),(0,1,0),(0,0,1),(1,1,1)] \cdot \operatorname{Here}(1,1,1)=(1,0,0)+(0,1,0)+(0,0$, 1). Thus $(1,1,1)$ is a linear combination of the preceding vectors. Hence S is a linearly dependentset.

Theorem:LetVbeavectorspaceoverF.LetS $=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{n}\right\}$ and
$\mathrm{L}(\mathrm{S})=\mathrm{W}$. Thenthereexists alinearlyindependent subsetsS'of SsuchthatL(S')=W.

Proof: Let $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$.
If S is linearly independent there is nothing to prove.
If not, let v_{k} be the first vector in S which is a linear combination of the precedingvectors.LetS ${ }_{1}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{k-1}, \mathrm{~V}_{k+1}, \ldots, \mathrm{~V}_{n}\right\}$.(ie.,) S_{1} isobtainedby deleting the vector v_{k} from S . Weclaim that $\mathrm{L}\left(\mathrm{S}_{1}\right)=\mathrm{L}(\mathrm{S})=\mathrm{W}$.

Since $\mathrm{S}_{1} \subseteq \mathrm{~S}, \mathrm{~L}\left(\mathrm{~S}_{1}\right) \subseteq \mathrm{L}(\mathrm{S})$.
Now, let $\mathrm{v} \in \mathrm{L}(\mathrm{S})$.
Then $\mathrm{v}=\alpha_{1} \mathrm{v}_{1}+\cdots+\alpha_{k} \mathrm{v}_{\mathrm{k}}+\cdots+\alpha_{n} \mathrm{v}_{n}$.
Now, v_{k} is a linear combination of the preceding vectors.
Let $v_{k}=\beta_{1} v_{1}+\cdots+\beta_{k-1} v_{k-1}$. Hencev $=\alpha_{1} v_{1}+\cdots+\alpha_{k-1} v_{k-1}+\alpha_{k}\left(\beta_{1} v_{1}+\cdots+\beta_{k-1} v_{k-1}\right)+\alpha_{k+1} v_{k+1}+\cdots+\alpha_{n} v_{n}$.
$\therefore \mathrm{v}$ can be expressed as a linear combination of the vectors of $\mathrm{S}_{1} \mathrm{so}$ that $\mathrm{v} \in \mathrm{L}\left(\mathrm{S}_{1}\right)$.
Hence $L(S) \subseteq L\left(S_{1}\right)$.
Thus $\mathrm{L}(\mathrm{S})=\mathrm{L}\left(\mathrm{S}_{1}\right)=\mathrm{W}$.
Now, if S_{1} is linearly independent, the proof is complete.
If not, we continue the above process of removing a vector from S_{1}, which is a linear combination of the preceeding vectors until we arrive at a linearly independent subset S'of S such that $L\left(S^{\prime}\right)=W$.

Basis and dimension:

Definition:A linearly independent subset S of a vector space V which spans thewholespaceViscalledabasis ofthevectorspace.

Theorem:

Any finite dimensional vector space V contains a finite number of linearlyindependentvectorswhichspanV.(ie.,)Afinitedimensionalvectorspacehas abasisconsistingofafinitenumberofvectors.

Proof: Since V is finite dimensional there exists a finite subset S of V such that $\mathrm{L}(\mathrm{S})=\mathrm{V}$. ClearlythissetScontainsalinearlyindependentsubsetS ${ }^{\prime}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ suchthatL(S')=L(S)=VHenceS'isabasisforV.

Theorem:LetVbeavectorspaceoverafieldF.ThenS $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ is
abasisforVifandonlyifeveryelementofVcanbeuniquelyexpressedasalinear combination of element ofS.

Proof: Let S be a basis for V .
Then by definition S is linearly independent and $L(S)=V$.
HencebytheoremeveryelementofV canbeuniquelyexpressedasa linear combination of elements ofS.

Conversely, suppose every element of V can be uniquely expressed as a linearcombinationofelementsofS.

ClearlyL(S)=V.
Now, let $\alpha_{1} \mathrm{~V}_{1}+\alpha_{2} \mathrm{~V}_{2}+\cdots+\alpha_{n} \mathrm{~V}_{n}=0$.
Also, $0 \mathrm{v}_{1}+0 \mathrm{v}_{2}+\cdots+0 \mathrm{v}_{n}=0$.
Thuswehaveexpressed Oasalinearcombinationof vectors of S in two ways.
By hypothesis $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0$.
Hence S is linearly independent. Hence S isabasis.

Examples

1.S $=\{(1,0,0),(0,1,0),(0,0,1)\}$ isabasisfor $V_{3}(R)$ for,$(a, b, c)=a(1,0,0)+b(0,1,0)+c(0,0,1)$.

Any vector (a, b, c) of $V_{3}(R)$ has been expressed uniquely as a linear combination of the elements of S and hence S is a basis for $V_{3}(R)$.
2.S $=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}$ is a basis for $\mathrm{V}_{n}(\mathrm{~F})$. This is known as the standard basis for $\mathrm{V}_{n}(\mathrm{~F})$.
3. $S=\{(1,0,0),(0,1,0),(1,1,1)\}$ is a basis for $V_{3}(R)$.
4. $\{1, i\}$ a basis for the vector space C overR.

Theorem: Let V be a vector space over a field F. LetS $=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ spanV.LetS $=$ $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ bealinearlyindependentsetofvectorsin V.Then $m \leq n$.

Proof.Since $\mathrm{L}(\mathrm{S})=\mathrm{V}$, every vector in V and in particular w_{1}, is a linear combination of $\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{n}$.
Hence $S_{1}=\left\{w_{1}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a linear independent set of vectors. Hence there exists a vector $v_{k} f=$ W_{1} in S_{1} which is a linear combination of the preceding vectors.

LetS $_{2}=\left\{\mathrm{w}_{1}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{k-1}, \mathrm{v}_{k+1}, \ldots, \mathrm{v}_{n}\right\}$.
Clearly, $\mathrm{L}\left(\mathrm{S}_{2}\right)=\mathrm{V}$.
Hencew $_{2}$ is a linearcombinationofthevectorsinS 2 .
HenceS ${ }_{3}=\left\{w_{2}, w_{1}, v_{1}, \ldots, v_{k-1}, v_{k+1}, \ldots, v_{n}\right\}$ is linearly dependent. Hence there exists a vector in $S_{3} w h i c h$ is a linear combination of the preceding vectors. Since the w_{i} 's are linearly independent, this vectorcannotbe $w_{2} \mathrm{Or}^{2} \mathrm{w}_{1}$ and hence must be some v_{j} wherejk(say, with j $>k$).

Deletionofv v_{j} fromthesetS ${ }_{3}$ givesthesetS $S_{4}=\left\{\mathrm{w}_{2}, \mathrm{w}_{1}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{k-1}, \mathrm{v}_{k+1}, \ldots, \mathrm{v}_{j-1}, \mathrm{v}_{j+1}, \ldots, \mathrm{v}_{n}\right\}$ of n vectors spanningV.

Inthisprocess,ateachstepweinsertonevectorfrom $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{m}\right\}$ and delete one vector from $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$.

If $\mathrm{m}>\mathrm{n}$ after repeating this process n times, we arrive at the set $\left\{\mathrm{w}_{n}, \mathrm{w}_{n-1}, \ldots, \mathrm{w}_{1}\right\}$ which spans V.

Hencew $_{n+1}$ isalinearcombinationofw $_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{n}$.
Hence $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{n}, \mathrm{w}_{n+1}, \ldots, \mathrm{w}_{n}\right\}$ is linearly dependent which is a contradiction.
Hence $m \leq n$.

Theorem:Any two bases of a finite dimensional vector space V have the same number ofelements.

Proof. Since V is finite dimensional, it has a basis say $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$.

Let $S^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be any other basis for V.

Now, $L(S)=V$ and S^{\prime} is a set of m linearly independent vectors. Hence $m \leq n$.

Also, since $L\left(S^{\prime}\right)=V$ and S is a set of n linearly independent vectors, $n \leq m$. Hence $m=n$.

Definition:Let V be a finite dimensional vector space over a field F . The number of elements in any basis of V is called the dimension of V and is denoted by $\operatorname{dim} \mathrm{V}$.

Theorem: Let V be a vector space of dimension n . Then
(i) anysetofmvectorswherem>n is linearlydependent.
(ii) anyset of m vectors where $m<n$ cannot span V.

Proof.

(i) Let $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{n}\right\}$ be a basis for V . Hence $\mathrm{L}(\mathrm{S})=\mathrm{V}$.

Let S^{\prime} be any set consisting of m vectors where $m>n$. Suppose S^{\prime} is linearly independent. Since S spansV,m<nwhichisacontradiction.

HenceS'islinearlydependent.
(ii) Let S'be a set consisting of m vectors where $m<n$. Suppose $L\left(S^{\prime}\right)=V$.

Now, $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for V and hence linearly independent.
Hence by theoremn $\leq m$ which is a contradiction. HenceS'cannot span V.

Theorem:

LetVbeafinitedimensionalvectorspaceoverafieldaF.Any
linearindependentsetofvectorsinVispartofabasis.
Proof. Let $\mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{r}}\right\}$ be a linearly independent set of vectors.
If $\mathrm{L}(\mathrm{S})=\mathrm{V}$ then S itself is a basis.

If $\mathrm{L}(\mathrm{S})=\mathrm{V}$, choose an element $\mathrm{v}_{r+1} \in \mathrm{~V}-\mathrm{L}(\mathrm{S})$.
Now, consider $\mathrm{S}_{1}=\left\{\mathrm{v}_{1,2}, \ldots, \mathrm{v}_{r}, \mathrm{~V}_{r+1}\right\}$.
We shall prove that S_{1} is linearly independent by showingthatnovectorinS isalinearcombinationoftheprecedingvectors. $_{\text {is }}$.

Since $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is linearly independent $v_{i} w h e r e 1 \leq i \leq r$ is not a linear combination of the preceding vectors.

Also $\mathrm{v}_{r+1} \in \mathrm{~L}(\mathrm{~S})$ and hence v_{r+1} is not a linear combination of $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{r}$.
Hence S_{1} is linearly independent.
If $L\left(S_{1}\right)=V$, then S_{1} is a basis for V. If not we take an element $v_{r+2} \in V-L\left(S_{1}\right)$ and proceed as before. Since the dimension of V is finite, this process must stop at a certain stage giving the required basiscontainingS.

Theorem: Let V be a finite dimensional vector space over a field F. Let Abe a subspace of V. Then there exists a subspace B of V such that $V=A \bigoplus B$.

Proof. Let $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{r}\right\}$ be a basis of A .

By theorem, we can find $w_{1}, w_{2}, \ldots, w_{s} \in V$ suchthatS ${ }^{\prime}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{r}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{s}\right\}$ isabasisofV.Now, let $B=L\left(\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}\right)$.

We claim that $A \cap B=\{0\}$ and $V=A+B$.

Now, let $v \in A \cap B$. Thenv $\in A a n d v \in B$.

Hence $\mathrm{v}=\alpha_{1} \mathrm{v}_{1}+\cdots+\alpha_{r} \mathrm{v}_{r}=\beta_{1} \mathrm{w}_{1}+\cdots+\beta_{s} \mathrm{w}_{s}$
$\therefore \alpha_{1} \mathrm{v}_{1}+\cdots+\alpha_{r} \mathrm{v}_{r}-\beta_{1} \mathrm{~W}_{1}-\cdots-\beta_{s} \mathrm{~W}_{s}=0$.
Now, sinceS'islinearlyindependent, $\alpha_{i}=0=\beta_{j}$ for all i and j.

Hence $v=0$. Thus $A \cap B=\{0\}$.

Now, let $v \in V$.

Then $\mathrm{v}=\left(\alpha_{1} \mathrm{v}_{1}+\cdots+\alpha_{r} \mathrm{v}_{r}\right)+\left(\beta_{1} \mathrm{w}_{1}+\cdots+\beta_{s} \mathrm{w}_{s}\right) \in \mathrm{A}+\mathrm{B}$.
Hence $A+B=V$ so that $V=A \bigoplus B$.

Definition:Let V be a vector space and $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set of independent vectors
in V. Then S is called a maximal linear independent set ifforeveryv $\in \mathrm{V}-\mathrm{S}$, theset $\left\{\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ islinearlydependent.

Definition.LetS $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ beasetofvectorsinVandletL(S) $=\mathrm{V}$. ThenSiscalledaminimal generatingsetIf forany $v_{i} \in S, L\left(S-\left\{\mathrm{v}_{i}\right\}\right)=\mathrm{V}$.

Theorem: LetV beavectorspaceoverafieldF.LetS $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\} \subseteq \mathrm{V}$. Then the following areequivalent.
(i) S is a basis for V .
(ii) S is a maximal linearly independentset.
(iii) S is a minimal generatingset.

Proof.(i) \Rightarrow (ii)LetS $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ beabasisforV. Thenbytheoremany
$\mathrm{n}+1$ vectorsinVarelinearlydependentandhenceSisamaximallinearlyindependent set.
(ii) \Rightarrow (iii)LetS $=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{n}\right\}$ beamaximallinearlyindependentset.thatS is a basis for V we shall prove that $\mathrm{L}(\mathrm{S})=\mathrm{V}$.

Obviously $\mathrm{L}(\mathrm{S}) \subseteq \mathrm{V}$.
Now, letvEV.
IfveS, thenv $\in L(S) .($ since $S \subseteq L(S))$
Ifv $\notin S, S^{\prime}=\left\{v_{1}, V_{2}, \ldots, v_{n}, v\right\}$ is a linearly dependent set (since S is a maximal independent set)
\therefore There exists a vectorinS'whichisalinearcombinationofthepreceedingvectors.Sincev ${ }_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}$ are linearly independent, this vector must be v. Thus v is a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$. Therefore $v \in L(S)$.

Hence $V \subseteq L(S)$. Thus $V=L(S)$.
(i) \Rightarrow (iii) Let $S=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{n}\right\}$ be a basis. Then $\mathrm{L}(\mathrm{S})=\mathrm{V}$.

If S is not minimal, there exists $v_{i} \in S$ such that $L\left(S-\left\{v_{i}\right\}\right)=V$.
Since S is a linearly independent, $S-\left\{v_{i}\right\}$ is also linearly independent. Thus $S-\left\{v_{i}\right\}$ is a basis consisting of $n-1$ elementswhichisacontradiction.

HenceSisaminimalgeneratingset.
(iii) $\Rightarrow($ (i)

LetS $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ be a minimal generating set. To prove that S is a basis, we haveto show that S is linearly independent.

If S is linearly dependent, there exists a vector $\quad v_{k} w h i c h$ is a linear combination of the preceeding vectors.

Clearly $\mathrm{L}\left(\mathrm{S}-\left\{\mathrm{v}_{k}\right\}\right)=\mathrm{V}$ contradicting the minimality of S .
Thus S is linearly independent and since $L(S)=V, S$ is a basis for V.

Theorem:Anyvectorspaceof dimensionnoverafieldFisisomorphictoV ${ }_{n}(\mathrm{~F})$.
Proof.LetVbeavectorspaceofdimensionn.Let $\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{n}\right\}$ beabasisforV.
Thenweknowthatifv $\in \mathrm{V}$, vcanbewrittenuniquelyasv $=\alpha_{1} \mathrm{~V}_{1}+\alpha_{2} \mathrm{~V}_{2}+\cdots+\alpha_{n} \mathrm{~V}_{n}$, where $\alpha_{i} \in \mathrm{~F}$.
Now,considerthemapf: $\mathrm{V} \rightarrow \mathrm{V}_{n}(\mathrm{~F})$ givenbyf $\left(\alpha_{1} \mathrm{~V}_{1}+\cdots+\alpha_{n} \mathrm{v}_{n}\right)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.
Clearlyfis1-1andonto.
Letv, $w \in V$.
Thenv $=\alpha_{1} \mathrm{v}_{1}+\cdots+\alpha_{n} \mathrm{v}_{n} \mathrm{andw}=\beta_{1} \mathrm{v}_{1}+\cdots+\beta_{n} \mathrm{v}_{n}$.
$f(v+w)=f\left[\left(\alpha_{1}+\beta_{1}\right) v_{1}+\left(\alpha_{2}+\beta_{2}\right) v_{2}+\cdots+\left(\alpha_{n}+\beta_{n}\right) v_{n}\right]$
$=\left(\left(\alpha_{1}+\beta_{1}\right),\left(\alpha_{2}+\beta_{2}\right), \cdots,\left(\alpha_{n}+\beta_{n}\right)\right)$
$=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)+\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)$
$=f(v)+f(w)$
Alsof($\alpha \mathrm{v})=f\left(\alpha \alpha_{1} \mathrm{v}_{1}+\cdots+\alpha \alpha_{n} \mathrm{v}_{n}\right)$
$=\left(\alpha \alpha_{1}, \alpha \alpha_{2}, \cdots, \alpha \alpha_{n}\right)$
$=\alpha\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$
$=\alpha f(v)$.
Hence f is an isomorphism of V to $V_{n}(F)$.

Corollary :Any two vector spaces of the same dimension over a field F are isomorphic, For, if the vector spaces are of dimension n, each is isomorphic to $V_{n}(F)$ and hence they areisomorphic.

Theorem:. Let V and W be vector spaces over a field F . Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be an isomorphism. Then T maps a basis of V onto a basis of W .

Proof. Let $\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{n}\right\}$ beabasisforV.
Weshallprovethat $T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)$ are linearly independent and that they span W. Now, $\alpha_{1} \mathrm{~T}\left(\mathrm{v}_{1}\right)+\alpha_{2} \mathrm{~T}\left(\mathrm{v}_{2}\right)+\cdots+\alpha_{n} \mathrm{~T}\left(\mathrm{v}_{n}\right)=0$

```
\(\Rightarrow \mathrm{T}\left(\alpha_{1} \mathrm{v}_{1}\right)+\mathrm{T}\left(\alpha_{2} \mathrm{v}_{2}\right)+\cdots+\mathrm{T}\left(\alpha_{n} \mathrm{v}_{n}\right)=0\)
\(\Rightarrow \mathrm{T}\left(\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n}\right)=0\)
\(\Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0(\) since \(T\) is \(1-1)\)
\(\Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0\) (since \(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\) arelinearlyindependent).
\(\therefore \mathrm{T}\left(\mathrm{v}_{1}\right), \mathrm{T}\left(\mathrm{v}_{2}\right), \ldots, \mathrm{T}\left(\mathrm{v}_{n}\right)\) arelinearlyindependent.
Now, let \(w \in W\). Then since \(T\) is onto, there exists a vector \(v \in V\).
suchthat \(\mathrm{T}(\mathrm{v})=\mathrm{w}\).
Let \(\mathrm{v}=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{\mathrm{n}}\).
Thenw \(=\mathrm{T}(\mathrm{v})=\mathrm{T}\left(\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n}\right)\)
\(=\alpha_{1} \mathrm{~T}\left(\mathrm{v}_{1}\right)+\alpha_{2} \mathrm{~T}\left(\mathrm{v}_{2}\right)+\cdots+\alpha_{n} \mathrm{~T}\left(\mathrm{v}_{n}\right)\).
```

Thuswisa linear combinationofthevectors $\mathrm{T}\left(\mathrm{v}_{1}\right), \mathrm{T}\left(\mathrm{v}_{2}\right) \ldots, \mathrm{T}\left(\mathrm{v}_{n}\right)$.
$\therefore \mathrm{T}\left(\mathrm{v}_{1}\right), \mathrm{T}\left(\mathrm{v}_{2}\right) \ldots, \mathrm{T}\left(\mathrm{v}_{n}\right) \mathrm{spanW}$ and hence is a basis forW.

Corollary: Two finite dimensional vector space V and W over a field F are isomorphicifandonlyiftheyhavethesamedimension.

Theorem:Let V and W be finite dimensional vector spaces over a field F . Let $\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \cdots, \mathrm{v}_{n}\right\}$ beabasisforVandlet $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{n}$ beanynvectorsinW(not necessarilydistinct)ThenthereexistsauniquelineartransformationT:V \rightarrow Wsuch that $T\left(v_{i}\right)=w_{i}, i=1,2, \ldots, n$.

Proof. Letv $=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n} \in \mathrm{~V}$.
Wedefine $T(v)=\alpha_{1} W_{1}+\alpha_{2} W_{2}+\cdots+\alpha_{n} W_{n}$.
Now,letx,y f V.
Let $=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n} a n d y=\beta_{1} \mathrm{v}_{1}+\beta_{2} \mathrm{v}_{2}+\cdots+\beta_{n} \mathrm{v}_{n}$
$\therefore(\mathrm{x}+\mathrm{y})=\left(\alpha_{1}+\beta_{1}\right) \mathrm{v}_{1}+\left(\alpha_{2}+\beta_{2}\right) \mathrm{v}_{2}+\cdots+\left(\alpha_{n}+\beta_{n}\right) \mathrm{v}_{n}$
$\therefore \mathrm{T}(\mathrm{x}+\mathrm{y})=\left(\alpha_{1}+\beta_{1}\right) \mathrm{w}_{1}+\left(\alpha_{2}+\beta_{2}\right) \mathrm{w}_{2}+\cdots+\left(\alpha_{n}+\beta_{n}\right) \mathrm{w}_{n}$.
$=\left(\alpha_{1} W_{1}+\alpha_{2} W_{2}+\cdots+\alpha_{n} W_{n}\right)+\left(\beta_{1} W_{1}+\beta_{2} W_{2}+\cdots+\beta_{n} W_{n}\right)$
$=\mathrm{T}(\mathrm{x})+\mathrm{T}(\mathrm{y})$

Similarly $\mathrm{T}(\alpha x)=\alpha \mathrm{T}(\mathrm{x})$.
Hence T is a linear transformation.

Also $\mathrm{v}_{1}=1 \mathrm{v}_{1}+\mathrm{Ov}_{2}+\cdots+0 \mathrm{v}_{n}$.
HenceT $\left(\mathrm{v}_{1}\right)=1 \mathrm{w}_{1}+0 \mathrm{w}_{2}+\cdots+0 \mathrm{w}_{n}=\mathrm{w}_{1}$.
Similarly $\mathrm{T}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{w}_{\mathrm{i}}$ foralli=1,2,..,n.
Now,toprovetheuniqueness, let $T^{\prime}: V \rightarrow W b e a n y$ otherlineartransformationsuchthat $T^{\prime}\left(v_{i}\right)=w_{i}$.
Letv $=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{n} \mathrm{v}_{n} \in \mathrm{~V}$.
$T^{\prime}(v)=\alpha_{1} T^{\prime}\left(v_{1}\right)+\alpha_{2} T^{\prime}\left(v_{2}\right)+\cdots+\alpha_{n} T^{\prime}\left(v_{n}\right)$
$=\alpha_{1} W_{1}+\alpha_{2} W_{2}+\cdots+\alpha_{n} W_{n}$
$=T(v)$.
Hence $T=T^{\prime}$.
Remark: The above theorem shows that a linear transformation is completely determinedbyitsvaluesonthe elements ofabasis.

Theorem: Let V be a finite dimensional vector space over a field F . LetWbe a subspace of V . Then
(i) $\operatorname{dim} \mathrm{W} \leq \operatorname{dim} \mathrm{V}$.
(ii) $\operatorname{dim}\left(\frac{V}{W}\right)=\operatorname{dim} V-\operatorname{dim} W$

Proof.

(i) LetS $=\left\{\mathrm{w}_{1}, \mathrm{~W}_{2}, \ldots, \mathrm{w}_{m}\right\}$ beabasisforW.SinceWisasubspaceofV,Sisapart of a basis for V . Hence $\operatorname{dim} \mathrm{W} \leq \operatorname{dim} \mathrm{V}$.
(ii) Letdim $V=$ nanddim $W=m$.

LetS $=\left\{\mathrm{w}_{1}, \mathrm{~W}_{2}, \ldots, \mathrm{w}_{m}\right\}$ beabasisforW.Clearly S is a linearly independent set of vectors in V .
Hence S is a part of a basis in V. Let $S=\left\{w_{1}, w_{2}, \ldots, w_{m}, v_{1}, v_{2}, \cdots, v_{r}\right\}$ be abasisforV.Thenm+r=n.Now, weclaim $S^{\prime}=\left\{W+v_{1}, W+v_{2}, \ldots, W+v_{r}\right\}$ is a basis for $\frac{V}{W}$.

Suppose $\alpha_{1}\left(W+v_{1}\right)+\alpha_{2}\left(W+v_{2}\right)+\cdots+\alpha_{r}\left(W+v_{r}\right)=W+0$
$\Rightarrow\left(W+\alpha_{1} \mathrm{v}_{1}\right)+\left(\mathrm{W}+\alpha_{2} \mathrm{v}_{2}\right)+\cdots+\left(\mathrm{W}+\alpha_{r} \mathrm{v}_{r}\right)=\mathrm{W}$
$\Rightarrow \mathrm{W}+\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{r} \mathrm{v}_{r}=\mathrm{W}$
$\Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{r} v_{r} \in W$.

Now,since $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \cdots, \mathrm{w}_{m}\right\}$ isabasisforW, $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{r} \mathrm{v}_{r}=\beta_{1} \mathrm{w}_{1}+\beta_{2} \mathrm{w}_{2}+\cdots+\beta_{m} \mathrm{w}_{m}$.

Therefore $\alpha_{1} \mathrm{~V}_{1}+\alpha_{2} \mathrm{~V}_{2}+\cdots+\alpha_{r} \mathrm{~V}_{r}-\beta_{1} \mathrm{~W}_{1}-\beta_{2} \mathrm{~W}_{2}-\cdots-\beta_{m} \mathrm{~W}_{m}=0$.

Hence $\alpha_{1}=\alpha_{2}=\cdot \cdot=\alpha_{r}=\beta_{1}=\beta_{2}=\cdots=\beta_{m}=$ OandsoS'isalinearlyindependentset.

$$
\begin{aligned}
& \text { Now, letW }+\mathrm{v} \in \frac{V}{W} . \\
& \text { Letv }=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{r} \mathrm{v}_{r}+\beta_{1} \mathrm{~W}_{1}+\beta_{2} \mathrm{~W}_{2}+\cdots+\beta_{m} \mathrm{~W}_{m} \text {. Then } \\
& \begin{array}{r}
\mathrm{W}+\mathrm{v}=\mathrm{W}+\left(\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{r} \mathrm{v}_{r}+\beta_{1} \mathrm{~W}_{1}+\beta_{2} \mathrm{~W}_{2}+\cdots+\beta_{m} \mathrm{~W}_{m}\right) \\
=\mathrm{W}+\left(\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{r} \mathrm{v}_{r}\right)\left(\operatorname{since} \beta_{1} \mathrm{~W}_{1}+\beta_{2} \mathrm{~W}_{2}+\cdots+\beta_{m} \mathrm{~W}_{m} \in \mathrm{~W}\right.
\end{array} \\
& =\left(\mathrm{W}+\alpha_{1} \mathrm{v}_{1}\right)+\left(\mathrm{W}+\alpha_{2} \mathrm{v}_{2}\right)+\cdots+\left(\mathrm{W}+\alpha_{r} \mathrm{v}_{r}\right) \\
& =\alpha_{1}\left(\mathrm{~W}+\mathrm{v}_{1}\right)+\alpha_{2}\left(\mathrm{~W}+\mathrm{v}_{2}\right)+\cdots+\alpha_{r}\left(\mathrm{~W}+\mathrm{v}_{r}\right)
\end{aligned}
$$

Hence S'spans $\frac{V}{W}$ of thatS' isabasisfor $\frac{V}{W}$ and $\operatorname{dim} \frac{V}{W}=\mathrm{r}=\mathrm{n}-\mathrm{m}=\operatorname{dim} V-\operatorname{dimW}$.

Theorem:Let V be a finite dimensional vector space over a field F . LetA
and B be subspaces of V. Then $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)$
Proof. A and B are subspaces ofV. Hence $A \cap B$ is subspace of V.
Let $\operatorname{dim}(A \cap B)=r$
Let $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{r}\right\}$ be a basis for $\mathrm{A} \cap \mathrm{B}$
Since $A \cap B$ is a subspace of A and B, S is a part of a basis for A and B.
Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{r}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{s}\right\}$ be a basis for A andn $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{r}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{t}\right\}$ be a basis for B.

Weshallprovethat $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{r}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{s}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{t}\right\}$ beabasisforA+B.
Let $\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\cdots+\alpha_{r} \mathrm{v}_{r}+\beta_{1} \mathrm{u}_{1}+\beta_{2} \mathrm{u}_{2}+\cdots+\beta_{s} \mathrm{u}_{s}+\gamma_{1} \mathrm{w}_{1}+\gamma_{2} \mathrm{w}_{2}, \cdots+\gamma_{t} \mathrm{w}_{t}=0$.
Then $\beta_{1} u_{1}+\beta_{2} u_{2}+\cdots+\beta_{s} u_{s}=-\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{r} v_{r}\right)-\left(\gamma_{1} w_{1}+\gamma_{2} w_{2}, \cdots+\gamma_{t} w_{t}\right) \in B$.

Hence $\beta_{1} u_{1}+\beta_{2} u_{2}+\cdots+\beta_{s} u_{s} \in B$.
Also $\beta_{1} u_{1}+\beta_{2} u_{2}+\cdots+\beta_{s} u_{s} \in A$.

Hence $\quad \beta_{1} u_{1}+\beta_{2} u_{2}+\cdots+\beta_{s} u_{s s s s_{s} \in A \cap B \text { andso } \beta_{1} u_{1}+\beta_{2} u_{2}+\cdots+\beta_{s} u_{s}=\delta_{1} v_{1}+\delta_{2} v_{2}+\cdots+\delta_{r} v_{r} .}$
$\beta_{1} u_{1}+\beta_{2} u_{2}+\cdots+\beta_{s} u_{s}-\delta_{1} v_{1}-\delta_{2} v_{2}-\cdots-\delta_{r} v_{r}=0$.

$$
\text { Thus } \beta_{1}=\beta_{2}=\cdots=\beta_{s}=\delta_{1}=\delta_{2}=\cdots=\delta_{r}=0\left(\text { Since }\left\{u_{1}, u_{2}, \ldots, u_{s}, v_{1}, v_{2}, \ldots, v_{r}\right\} \text { islinearlyindependent }\right)
$$

\therefore Similarly we canprove $\gamma_{1}=\gamma_{2}=\cdots=\gamma_{t}=0$.
Thus $\alpha_{i}=\beta_{j}=\gamma_{k}=0$ for all $1 \leq i \leq r ; 1 \leq j \leq s ; 1 \leq k \leq t$. Thus S'is a linearly independent set.
Clearly S'spans $A+B$ and so S^{\prime} is a basis for $A+B$. Hence $\operatorname{dim}(A+B)=r+s+t$.
Also $\operatorname{dim} A=r+s ; \operatorname{dim} B=r+\operatorname{tanddim}(A \cap B)=r$.
HencedimA+dim $B-\operatorname{dim} A \cap B=(r+s)+(r+t)-r=r+s+t=\operatorname{dim}(A+B)$.

Corollary $\quad \mathrm{IfV}=\mathrm{A} \oplus \mathrm{B}, \operatorname{dimV}=\operatorname{dim} \mathrm{A}+\operatorname{dimB}$.
Proof. $V=A \oplus B \Rightarrow A+B=V$ and $A \cap B=\{0\}$.
$\therefore \operatorname{dim}(\mathrm{A} \cap \mathrm{B})=0$.
HencedimV=dimA+dimB.

UNIT - III
 RANK AND NULLITY

Definition:

Let $T: V \rightarrow W$ be a linear transformation. Then the dimension of $T(V)$ is called the rank of T. The dimension of $\operatorname{ker} T$ is called the nullity of T.

Theorem. Let $T: V \rightarrow W$ be a linear transformation. Then $\operatorname{dim} V=\operatorname{rank} T+$ nullity T.
Proof.
We know that $V /$ ker $T=T(V)$

$$
\begin{aligned}
& \therefore \operatorname{dim} V-\operatorname{dim}(\operatorname{ker} T)=\operatorname{dim}(T(V)) \\
& \therefore \operatorname{dim} V-\text { nullity } T=\operatorname{rank} T \\
& \therefore \operatorname{dim} V=\text { nullity }+\operatorname{rank} T
\end{aligned}
$$

Note. $\operatorname{ker} T$ is also called null space of T.

Example. Let V denote the set of all polynomials of deg ree $\leq n$ in $R[x]$. Let $T: V \rightarrow V$ be defined by $T(f)=\frac{d f}{d x}$. We know that T is a linear transformation. Since $\frac{d f}{d x}=0 \Leftrightarrow f$ is constant, ker T consists of all constant polynomials. The dimension of this subspace of V is 1 . Hence nullity T is 1. Since $\operatorname{dim} V=n+1, \operatorname{rank} T=n$

Definition. A linear transformation $T: V \rightarrow W$ is called non-singular if T is $1-1$; otherwise T is called singular.

Matrix of a Linear Transformation.

Let V and W be finite dimensional vector spaces over a field F . Let $\operatorname{dim} V=m$ and $\operatorname{dim} W=n$. Fix an ordered basis $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ for V and an ordered basis $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ for W.

Let $T: V \rightarrow W$ be a linear transformation. We have seen that T is completely specified by the elements $T\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ Now, let

$$
\begin{align*}
& T\left(v_{1}\right)=a_{11} w_{1}+a_{12} w_{2}+\ldots+a_{1 n} w_{n} \\
& T\left(v_{2}\right)=a_{21} w_{1}+a_{22} w_{2}+\ldots+a_{2 n} w_{n} \tag{1}
\end{align*}
$$

$T\left(v_{m}\right)=a_{m 1} w_{1}+a_{m 2} w_{2}+\ldots+a_{m n} w_{n}$
Hence $T\left(v_{1}, v_{2}, \ldots, v_{m}\right)$ are completely specified by the $m n$ elements $a_{i j}$ of the field F. These $a_{i j}$ can be conveniently arranged in the form of m rows and n columns as follows.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Such an array of $m n$ elements of F arranged in m rows and n columns is know as $m \times n$ matrix over the field F and is denoted by $a_{i j}$. Thus to every linear transformation T there is associated with it an $\mathrm{m}_{m \times n}$ matrix over F . Conversely and $m \times n$ matrix over F defines a linear transformation $T: V \rightarrow W$ given by the formula (1).

Note. The $m \times n$ matrix which we have associated with a linear transformation $T: V \rightarrow W$ depends on the choice of the basis for V and W
For example, consider the linear transformation $T: V_{2}(R) \rightarrow V_{2}(R)$ given by $T(a, b)=(a, a+b)$. Choose $\left\{e_{1}, e_{2}\right\}$ as a basis both for the domain and the range.

$$
T\left(e_{1}\right)=(1,1)=e_{1}+e_{2}
$$

Then

$$
T\left(e_{2}\right)=(0,1)=e_{2}
$$

Hence the matrix representing T is $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
Now, we choose $\left\{e_{1}, e_{2}\right\}$ as a basis for the domain and $\{(1,1),(1,-1)\}$ as a basis for the range.
Let $w_{1}=(1,1)$ and $w_{2}=(1,-1)$.

$$
T\left(e_{1}\right)=(1,1)=w_{1}
$$

Then

$$
T\left(e_{2}\right)=(0,1)=(1 / 2) w_{1}-(1 / 2) w_{2}
$$

Hence the matrix representing T is $\left[\begin{array}{cc}1 & 0 \\ 1 / 2 & -1 / 2\end{array}\right]$

Solved Problems

Problem 1.
Obtain the matrix representing the linear transformation $T: V_{3}(R) \rightarrow V_{3}(R)$ given by $T(a, b, c)=(3 a \cdot a-b, 2 a+b+c)$ w.r.t. the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$.

Solution.

$T\left(e_{1}\right)=T(1,0,0)=(3,1,2)=3 e_{1}+e_{2}+2 e_{3}$
$T\left(e_{2}\right)=T(0,1,0)=(0,-1,1)=-e_{2}+e_{3}$
$T\left(e_{3}\right)=T(0,0,1)=(0,0,1)=e_{3}$
Thus the matrix representing T is $\left[\begin{array}{ccc}3 & 1 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 1\end{array}\right]$
Problem 2.
Find the linear transformation $T: V_{3}(R) \rightarrow V_{3}(R)$ denoted by the matrix $\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right]$ w.r.t. the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$

Solution.
$T\left(e_{1}\right)=e_{1}+2 e_{2}+e_{3}=(1,2,1)$
$T\left(e_{2}\right)=0 e_{1}+e_{2}+e_{3}=(0,1,1)$
$T\left(e_{3}\right)=-e_{1}+3 e_{2}+4 e_{3}=(-1,3,4)$
Now, $(a, b, c)=a(1,0,0)+b(0,1,0)+c(0,0,1)$

$$
=a e_{1}+b e_{2}+c e_{3}
$$

$\therefore T(a, b, c)=T\left(a e_{1}+b e_{2}+c e_{3}\right)$

$$
=a T\left(e_{1}\right)+b T\left(e_{2}\right)+c T\left(e_{1}\right)
$$

$$
=a(1,2,1)+b(0,1,1)+c(-1,3,4)
$$

$\therefore T(a, b, c)=(a-c, 2 a+b+3 c, a+b+4 c)$
This is the required linear transformation.

Definition. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two $m \times n$ matrices. We define the sum of these two matrices by $A+B=\left(a_{i j}+b_{i j}\right)$

Note that we have defined addition only for two matrices having the same number of rows and the same number of columns.

Definition. Let $A=\left(a_{i j}\right)$ be an arbitrary matrix over a field F. Let $\alpha \in F$. We define $\alpha A=\left(\alpha a_{i j}\right)$

Theorem.

The set $M_{n \times n}(F)$ of all $m \times n$ matrices over the field F is a vector space of dimension mnover F under matrix addition and scalar multiplication defined above.

Proof

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two $m \times n$ matrices over a field F . The addition of $m \times n$ matrices is a binary operation which is both commutative and associative. The $m \times n$ matrix whose entries are 0 is the identity matrix and $\left(-a_{i j}\right)$ is the inverse matrix of $\left(a_{i j}\right)$. Thus the set of all $m \times n$ matrices over the field F is an abelian group with respect to addition. The verification of the following axioms are straight forward.
(a) $\alpha(A+B)=\alpha(A)+\alpha(B)$
(b) $(\alpha+\beta) A=\alpha(A)+\beta(A)$
(c) $(\alpha \beta) A=\alpha(\beta A)$
(d) $I A=A$

Hence the set of all $m \times n$ over F is a vector space over F .
Now, we shall prove that the dimension of this vector space is $m n$. Let $E_{i j}$ be the matrix
 any matrix $A=\left(a_{i j}\right)$ can be written as $A=\sum a_{i j} E_{i j}$. Hence A is a linear combination of the matrices $E_{i j}$ are linearly independent. Hence these $m n$ matrices form a bases for the space of all $m \times n$ matrices. Therefore the dimension of the vector space is $m n$.

Theorem

Let V and W be two finite dimensional vector spaces over a field F . Let $\operatorname{dim} V=m$ and $\operatorname{dim} W=n$. Then $L(V, W)$ is a vector space of dimension $m n$ over F .

Proof.
$L(V, W)$ is a vector space of dimension $m n$ over F . Now, we shall prove that the vector space $L(V, W)$ is isomorphic to the vector space $M_{n \times x n}(F)$ is of dimension $m n$, it follows that $L(V, W)$ is also of dimension $m n$

Fix a basis $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ for V and an ordered basis $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ for W.
We know that any linear transformation
$T \in L(V, W)$ can be represented by an $m \times n$ matrix over F .
Let T be represented by $M(T)$. This function $M: L(V, W) \rightarrow M_{n \times x}(F)$ is clearly 1-1 and onto Let $T_{1}, T_{2} \in L(V, W)$ and $M\left(T_{1}\right)=\left(a_{i j}\right)$ and $M\left(T_{2}\right)=\left(b_{i j}\right)$
$M\left(T_{1}\right)=\left(a_{i j}\right) \Rightarrow T_{1}\left(v_{i}\right)=\sum_{j=1}^{n} a_{i j} w_{j}$
$M\left(T_{2}\right)=\left(b_{i j}\right) \Rightarrow T_{2}\left(v_{i}\right)=\sum_{j=1}^{n} b_{i j} w_{j} \mathrm{~s}$
$\therefore\left(T_{1}+T_{2}\right)\left(v_{i}\right)=\sum_{j=1}^{n}\left(a_{i j} b_{i j}\right) w_{j}$
$\therefore M\left(T_{1}+T_{2}\right)=\left(a_{i j}+b_{i j}\right)$
$=\left(a_{i j}\right)+\left(b_{i j}\right)$
$=M\left(T_{1}\right)+M\left(T_{2}\right)$
Similarly $M\left(\alpha T_{1}\right)=\alpha M\left(T_{1}\right)$
Hence M is the required isomorphism from $L(V, W)$ to $M_{n 凶 x}(F)$

Definition and examples

Definition. Let V be a vector space over F . An inner product of V is a function which assigns to each ordered pair of vectors u, v in V a scalar in F denoted by $\langle u, v\rangle$ satisfying the following conditions.
(i) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
(ii) $\langle\alpha u, v\rangle=\alpha\langle u, v\rangle$
(iii) $\langle u, v\rangle=\overline{\langle u, v\rangle}$, where $\overline{\langle u, v\rangle}$ is the complex conjugate of $\langle u, v\rangle$.
(iv) $\langle u, v\rangle \geq 0$ and $\langle u, u\rangle=0$ iff $u=0$.

A vector space with an inner product defined on it is called an inner product space. An inner product space is called an Euclidean space or unitary space according as F is the field of real numbers or complex numbers.

Note 1. If F is the field of real numbers then condition (iii) takes the form $\langle u, v\rangle=\langle v, u\rangle$. Further (iii) asserts that $\langle u, u\rangle$ is always real and hence (iv) is meaningful whether F is the field of real or complex numbers

Note 2. $\langle u, \alpha v\rangle=\bar{\alpha}\langle u, v\rangle$

$$
\text { For, } \begin{aligned}
&\langle u, \alpha v\rangle=\overline{\langle\alpha u, v\rangle} \\
&= \overline{\alpha\langle u, v\rangle} \\
&= \bar{\alpha} \overline{\langle u, v\rangle} \\
&= \bar{\alpha}\langle u, v\rangle
\end{aligned}
$$

Note 3. $\langle u, v+w\rangle=\langle u, v\rangle+\langle v, w\rangle$

$$
\begin{aligned}
& \text { For, }\langle u, v+w\rangle=\overline{\langle v+w, u\rangle} \\
& =\overline{\langle v, u\rangle+\langle w, u\rangle} \\
& =\overline{\langle v, u\rangle}+\overline{\langle w, u\rangle} \\
& =\langle u, v\rangle+\langle u, w\rangle
\end{aligned}
$$

Note 4. $\langle u, 0\rangle=\langle 0, v\rangle=0$

For, $\langle u, 0\rangle=\langle u, 00\rangle=0\langle u, 0\rangle=0$
Similarly $\langle 0, v\rangle=0$.

Examples.

1. $\quad V_{n}(R)$ is a real inner product space with inner product defined by $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$ $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots y_{n}\right)$

This is called the standard inner product on $V_{n}(R)$.
Proof.
Let $x, y, z \in V_{n}(R)$ and $\alpha \in R$.
(i) $\langle x+y, z\rangle=\left(x_{1}+y_{1}\right) z_{1}+\left(x_{2}+y_{2}\right) z_{2}+\ldots+\left(x_{n}+y_{n}\right) z_{n}$ $=\left(x_{1} z_{1}+x_{2} z_{2}+\ldots+x_{n} z_{n}\right)+\left(y_{1} z_{1}+y_{2} z_{2}+\ldots+y_{1} z_{n}\right)$
$=\langle x, z\rangle+\langle y, z\rangle$
(ii) $\langle\alpha x, y\rangle=\alpha x_{1} y_{1}+\alpha x_{2} y_{2}+\ldots+\alpha \alpha_{n} y_{n}$
$=\alpha\left(x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}\right)$
$=\alpha\langle x, y\rangle$
(iii) $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$
$=y_{1} x_{1}+y_{2} x_{2}+\ldots+y_{n} x_{n}$
$=\langle y, x\rangle$
(iv) $\langle x, x\rangle=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \geq 0$ and
$\langle x, x\rangle=0$ iff $x_{1}^{2}=x_{2}^{2}=\ldots=x_{n}^{2}=0$
$\langle x, x\rangle=0$ iff $x=0$
2. $\quad V_{n}(C)$ is a complex inner product space with inner product defined by $\langle x, y\rangle=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\ldots+x_{n} \overline{y_{n}}$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$

Proof.

Let $x, y, z \in V_{n}(C)$ and $\alpha \in C$
(i) $\langle x+y, z\rangle=\left(x_{1}+y_{1}\right) \overline{z_{1}}+\left(x_{2}+y_{2}\right) \overline{z_{2}}+\ldots+\left(x_{n}+y_{n}\right) \overline{z_{n}}$ $=\left(x_{1} \overline{z_{1}}+x_{2} \overline{z_{2}}+\ldots+x_{n} \overline{z_{n}}\right)+\left(y_{1} \overline{z_{1}}+y_{2} \overline{z_{2}}+\ldots+y_{1} \overline{z_{n}}\right)$
$=\langle x, z\rangle+\langle y, z\rangle$
(ii) $\quad\langle\alpha x, y\rangle=\alpha x_{1} \overline{y_{1}}+\alpha x_{2} \overline{y_{2}}+\ldots+\alpha x_{n} \overline{y_{n}}$
$=\alpha\left(x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\ldots+x_{n} \overline{y_{n}}\right)$
$=\alpha\langle x, y\rangle$
(iii) $\overline{\langle y, x\rangle}=\overline{y_{1} \overline{x_{1}}+y_{2} \overline{x_{2}}+\ldots+y_{n} \overline{x_{n}}}$
$=\overline{y_{1}} x_{1}+\overline{y_{2}} x_{2}+\ldots+\overline{y_{n}} x_{n}$
$=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\ldots+x_{n} \overline{y_{n}}$
$=\langle x, y\rangle$
(iv) $\langle x, x\rangle=x_{1} \overline{x_{1}}+x_{2} \overline{x_{2}}+\ldots+x_{n} \overline{x_{n}}$
$=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2} \geq 0$ and
$\langle x, x\rangle=0$ iff $x_{1}^{2}=x_{2}^{2}=\ldots=x_{n}^{2}=0$
$\langle x, x\rangle=0$ iff $x=0$
3. Let V be the set of all continuous real valued functions defined on the closed interval
$[0,1] . \mathrm{V}$ is a real inner product space with inner product defined by $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$
Proof.
Let $f, g, h \in V$ and $\alpha \in R$
(i) $\langle f+g, h\rangle=\int_{0}^{1} f(t)+g(t) h(t) d t$
$=\int_{0}^{1} f(t) h(t) d t+\int_{0}^{1} g(t) h(t) d t$
$=\langle f, h\rangle+\langle g, h\rangle$
(ii) $\langle\alpha f, g\rangle=\int_{0}^{1} \alpha f(t) g(t) d t$
$=\alpha \int_{0}^{1} f(t) g(t) d t$
$=\alpha\langle g, h\rangle$
(iii) $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$
$=\int_{0}^{1} g(t) f(t) d t$
$=\langle g, h\rangle$
(iv) $\langle f, f\rangle=\int_{0}^{1}[f(t)]^{2} d t \geq 0$ and
$\langle f, f\rangle=0$ iff $f=0$

Definition. Let V be an inner product space and let $x \in V$. The norm or length of x , denoted by $\|x\|$, is defined by $\|x\|=\sqrt{\langle x, x\rangle} \cdot \mathrm{X}$ is called a unit vector if $\|x\|=1$.

Solved Problems

Problem 1.

Let V be the vector space of polynomials with inner product given by $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Let $f(t)=t+2$ and $g(t)=t^{2}-2 t-3$. Find (i) $\langle f, g\rangle$ (ii) $\|f\|$

Solution.

(i) $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$
$=\int_{0}^{1}(t+2)\left(t^{2}-2 t-3\right) d t$
$=\int_{0}^{1}\left(t^{3}-7 t-6\right) d t$
$=\left[\frac{t^{4}}{4}-\frac{7 t^{2}}{2}-6 t\right]_{0}^{1}$
$=\frac{1}{4}-\frac{7}{2}-6$
$=-\frac{37}{4}$
(ii) $\quad\|f\|^{2}=\langle f, f\rangle$
$=\int_{0}^{1}[f(t)]^{2} d t$
$=\int_{0}^{1}(t+2)^{2} d t$
$=\int_{0}^{1}\left(t^{3}-7 t-6\right) d t$
$=\int_{0}^{1}\left(t^{3}+4 t+4\right) d t$
$=\left[\frac{t^{3}}{3}+2 t^{2}+4 t\right]_{0}^{1}$
$=\frac{1}{3}+2+4$
$=\frac{19}{3}$
$\|f\|=\frac{\sqrt{19}}{\sqrt{3}}$

Theorem. The norm defined in an inner product space V has the following properties.
(i) $\quad\|x\| \geq 0$ and $\|x\|=0$ iff $x=0$.
(ii) $\quad\|\alpha x\|=\mid \alpha\|x\|$.
(iii) $\quad|\langle x, y\rangle| \leq\|x\|\|y\|$ (Schwartz's inequality).
(iv) $\quad\|x+y\|=\|x\|+\|y\|$ (Triangle inequality).

Proof.
(i) $\quad\|x\|=\sqrt{\langle x, x\rangle} \geq 0$ and $\|x\|=0$ iff $x=0$.
(ii) $\quad\|\alpha x\|^{2}=\langle\alpha x, \alpha x\rangle$

$$
=\alpha\langle x, \alpha x\rangle
$$

$$
=\alpha \bar{\alpha}\langle x, x\rangle
$$

$$
=|\alpha|^{2}\|x\|^{2}
$$

$$
\|\alpha x\|=\mid \alpha\|x\|
$$

(iii) The inequality is trivially true when $x=0$ or $y=0$. Hence let $x \neq 0$ and $y \neq 0$

Consider $z=y-\frac{\langle y, x\rangle}{\|x\|^{2}} x$.
Then $0 \leq\langle z, z\rangle$

$$
\begin{aligned}
& =\left\langle y-\frac{\langle y, x\rangle}{\|x\|^{2}} x, y-\frac{\langle y, x\rangle}{\|x\|^{2}} x\right\rangle \\
& =\langle y, y\rangle-\frac{\overline{\langle y, x\rangle}}{\|x\|^{2}}\langle y, x\rangle-\frac{\langle y, x\rangle}{\|x\|^{2}}\langle x, y\rangle+\frac{\langle y, x \overline{\langle y, x\rangle}}{\|x\|^{2}\|x\|^{2}}\langle x, x\rangle \\
& =\left\|y^{2}\right\|-\frac{\overline{\langle y, x\rangle}\langle y, x\rangle}{\|x\|^{2}}-\frac{\langle y, x\rangle\langle x, y\rangle}{\|x\|^{2}}+\frac{\langle y, x\rangle \overline{\langle y, x\rangle}}{\|x\|^{2}} \\
& =\left\|y^{2}\right\|-\frac{\langle x, y\rangle \overline{\langle x, y\rangle}}{\|x\|^{2}} \\
& \therefore 0 \leq\|x\|^{2}\|y\|^{2}-|\langle x, y\rangle|^{2} \\
& \therefore|\langle x, y\rangle| \leq\|x\|\|y\|
\end{aligned}
$$

$$
\text { (iv) } \quad\|x+y\|^{2}=\langle x+y, x+y\rangle
$$

$$
=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle
$$

$$
=\|x\|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle}+\|y\|^{2}
$$

$$
=\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}
$$

$$
\leq\|x\|^{2}+2|\langle x, y\rangle|+\|y\|^{2}
$$

$$
\leq^{2}+2\|x\| y\|+\| y \|^{2}
$$

$$
\leq(\|x\|+\|y\|)^{2}
$$

$$
\therefore\|x+y\|=\|x\|+\|y\|
$$

Orthogonality

Definition. Let V be an inner product space and $x, y \in V$ let x is said to be orthogonal to yif $\langle x, y\rangle=0$

Note 1. x is orthogonal to $y \Rightarrow\langle x, y\rangle=0$
$\Rightarrow \overline{\langle x, y\rangle}=\overline{0}$
$\Rightarrow\langle y, x\rangle=0$
$\Rightarrow y$ is orthogonal to x
Thus x and y are orthogonal iff $\langle x, y\rangle=0$

Note 2. xis orthogonal to $y \Rightarrow \alpha x$ is orthogonal to y

Note 3. x_{1} and x_{2} are orthogonal to $y \Rightarrow x_{1}+x_{2}$ is orthogonal to y

Note $\mathbf{4 . 0}$ is orthogonal to every vector in V and is the only vector with this property

Definition. Let V be an inner product space. A set S of vectors in V is said to be an orthogonal set if any two distinct vectors $\mathrm{n} S$ are orthogonal

Definition. S is said to be an orthonormal set if S is orthogonal and $\|x\|=1$ for all $x \in S$

Example. The standard basis $\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$ in R^{n} or C^{n} is an orthogonal set with respect to the standard inner product.

Theorem. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthogonal set of non zero vectors in an inner product space V. then S is linearly independent.

Proof.

Let $\alpha_{1} v_{1}, \alpha_{2} v_{2}, \ldots, \alpha_{n} v_{n}=0$
Then $\left\langle\alpha_{1} v_{1}, \alpha_{2} v_{2}, \ldots, \alpha_{n} v_{n}, v_{1}\right\rangle=\left\langle 0, v_{1}\right\rangle=0$

$$
\begin{gathered}
\therefore \alpha_{1}\left\langle v_{1}, v_{1}\right\rangle+\alpha_{2}\left\langle v_{2}, v_{1}\right\rangle+\ldots+\alpha_{n}\left\langle v_{n}, v_{1}\right\rangle=0 \\
\therefore \alpha_{1}\left\langle v_{1}, v_{1}\right\rangle=0(\text { since } \mathrm{S} \text { is orthogonal) } \\
\therefore \alpha_{1}=0\left(\text { since } v_{1} \neq 0\right)
\end{gathered}
$$

Similarly $\alpha_{2}=\alpha_{3}=\ldots=\alpha_{n}=0$

Hence S is linearly independent.

Theorem. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthogonal set of non zero vectors in an inner product space V. let $v \in V$ and $v=\alpha_{1} v_{1}, \alpha_{2} v_{2}, \ldots, \alpha_{n} v_{n}$. Then $\alpha_{k}=\frac{\left\langle v, v_{k}\right\rangle}{\left\|v_{k}\right\|^{2}}$
Proof. $\left\langle v, v_{k}\right\rangle=\left\langle\alpha_{1} v_{1}, \alpha_{2} v_{2}, \ldots, \alpha_{n} v_{n}, v_{k}\right\rangle$

$$
\begin{aligned}
& =\alpha_{1}\left\langle v_{1}, v_{k}\right\rangle+\alpha_{2}\left\langle v_{2}, v_{k}\right\rangle+\ldots+\alpha_{k}\left\langle v_{k}, v_{k}\right\rangle+\ldots+\alpha_{n}\left\langle v_{n}, v_{k}\right\rangle \\
& =\alpha_{k}\left\langle v_{k}, v_{k}\right\rangle \text { (since } \mathrm{S} \text { is orthogonal) } \\
& =\alpha_{k}\left\|v_{k}\right\|^{2} \\
& \therefore \alpha_{k}=\frac{\left\langle v, v_{k}\right\rangle}{\left\|v_{k}\right\|^{2}}
\end{aligned}
$$

Theorem. Every finite dimensional inner product space has an orthonormal basis Proof.
Let V be a finite dimensional inner product space. Let $\left\{v_{1}, v_{2}, \ldots y_{n}\right\}$ be a basis for V . From this basis we shall construct an orthonormal basis $\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$ by means of a construction know as

Gram-Schmidt orthogonalisation process

First we take $w_{1}=v_{1}$
Let $w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} w_{1}$
We claim that $w_{2} \neq 0$. For, if $w_{2}=0$ then v_{2} is a scalar multiple of w_{1} and hence of v_{1} which is a contradiction since v_{1}, v_{2} are linearly independent

Also, $\left\langle w_{2}, w_{1}\right\rangle=\left\langle v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} w_{1}, w_{1}\right\rangle$
$=\left\langle v_{2}-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}, v_{1}\right\rangle\left(\because w_{1}=v_{1}\right)$
$=\left\langle v_{2}, v_{1}\right\rangle-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}\left\langle v_{1}, v_{1}\right\rangle$
$=\left\langle v_{2}, v_{1}\right\rangle-\left\langle v_{2}, v_{1}\right\rangle$
$=0$
Now, suppose that we have constructed non zero orthogonal vectors $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$. Then put
$w_{k+1}=v_{k+1}-\sum_{j=1}^{k} \frac{\left\langle v_{k+1}, w_{j}\right\rangle}{\left\|w_{k}\right\|^{2}} w_{k}$
We claim that $w_{k+1} \neq 0$. For, if $w_{k+1}=0$ then v_{k+1} is a linear combination of $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ and hence is a linear combination of $\left\{v_{1}, v_{2}, \ldots y_{k}\right\}$ which is a contradiction since $\left\{v_{1}, v_{2}, \ldots, y_{k+1}\right\}$ are linearly independent

Also
$\left\langle w_{k+1}, w_{1}\right\rangle=\left\langle v_{k+1}, w_{1}\right\rangle-\sum_{j=1}^{k} \frac{\left\langle v_{k+1}, w_{j}\right\rangle}{\left\|w_{j}\right\|^{2}}\left\langle w_{j}, w_{i}\right\rangle$
$=\left\langle v_{k+1}, w_{i}\right\rangle-\frac{\left\langle v_{k+1}, w_{i}\right\rangle}{\left\|w_{i}\right\|^{2}}\left\langle w_{i}, w_{i}\right\rangle$
$=\left\langle v_{k+1}, w_{i}\right\rangle-\left\langle v_{k+1}, w_{i}\right\rangle$
$=0$
Thus, continuing in this way we ultimately obtain a non zero orthogonal set $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
By theorem this set is linearly independent and hence a basis
To obtain an orthonormal basis we replace each w_{i} by $\frac{w_{i}}{\left\|w_{i}\right\|}$

Solved Problems

Problem 1. Apply Gram-Schmidt orthogonalisation process to construct an orthonormal basis for $V_{3}(R)$ with the standard inner product for the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ where $v_{1}=(1,0,1) ; v_{2}=(1,3,1)$ and $v_{3}=(3,2,1)$

Solution.

Take $w_{1}=v_{1}=(1,0,1)$

Then $\left\|w_{1}\right\|^{2}=\left\langle w_{1}, w_{1}\right\rangle=1^{2}+0^{2}+1^{2}=2$ and

$$
\begin{aligned}
&\left\langle w_{1}, v_{2}\right\rangle=1+0+1=2 \\
& \text { Put } \begin{aligned}
w_{2} & =v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} w_{1} \\
& =(1,3,1)-(1,0,1) \\
& =(0,3,0)
\end{aligned} \$=\text {. }
\end{aligned}
$$

$\left\|w_{2}\right\|^{2}=9$
Also, $\left\langle w_{2}, w_{3}\right\rangle=0+6+0=6$ and $\left\langle w_{1}, v_{3}\right\rangle=3+0+1=4$
Now, $w_{3}=v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} w_{1}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\|w_{2}\right\|^{2}} w_{2}$
$=(3,2,1)-\frac{4}{2}(1,0,1)-\frac{6}{9}(0,3,0)$
$=(3,2,1)-2(1,0,1)-\frac{2}{3}(0,3,0)$
$=(1,0,-1)$
$\therefore\left\|w_{3}\right\|^{2}=2$
\therefore The orthogonal basis is $\{(1,0,1),(0,3,0),(1,0,-1)\}$
Hence the orthonormal basis is
$\left\{\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),(0,1,0),\left(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}\right)\right\}$

Problem 2. Let V be the set of all polynominals of degree ≤ 2 together with the zero polynomial. V is a real inner product space with inner product defined by $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$.
Starting with the basis $\left\{1, x, x^{2}\right\}$, obtain an orthonormal basis for V .

Solution.

Let $v_{1}=1 ; v_{2}=x$ and $v_{3}=x$
Let $w_{1}=v_{1}$

Then $\left\|w_{1}\right\|^{2}=\left\langle w_{1}, w_{1}\right\rangle=\int_{-1}^{1} 1 d x=2$
$\left\|w_{1}\right\|=\sqrt{2}$
$w_{3}=v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} w_{1}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\|w_{2}\right\|^{2}} w_{2}$
$=x^{2}-\frac{1}{2} \int_{-1}^{1} x^{2} d x-\left[\frac{3 x}{2}\right]_{-1}^{1} x^{3} d x$
$=x^{2}-\frac{1}{3}$
$\left\|w_{3}\right\|^{2}=\left\langle w_{3}, w_{3}\right\rangle=\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\frac{8}{45}$
Hence the orthogonal basis is $\left\{1, x, x^{2}-\frac{1}{3}\right\}$
The required orthonormal basis is $\left\{\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2} x, \frac{\sqrt{10}}{4}\left(3 x^{2}-1\right)\right\}$

Orthogonal Complement

Definition. Let V be an inner product space. Let S be a subset of V. The orthogonal complement of S denoted by S^{\perp}, is the set of all vectors in V which are orthogonal to every vector of S
(i.e) $S^{\perp}=\{x / x \in V$ and $\langle x, u\rangle=0$ forall $u \in S\}$

Examples

1. $V^{\perp}=\{0\}$ and $\{0\}^{\perp}=V$ since 0 is the only vector which is orthogonal to every vector
2. Let $S=\{(x .0 .0) / x \in R\} \subseteq V_{3}(R)$ with standard inner product. Then $S^{\perp}=\{(0, y, z) / y, z \in R\}$
(i.e) The orthogonal complement of the x-axis is the $y z$ plane

Theorem

If S is any subset of V then S^{\perp} is a subspace of V.
Proof.
Clearly $0 \in S^{\perp}$ and hence $S^{\perp} \neq \Phi$

Now, let $x, y \in S^{\perp}$ and $\alpha, \beta \in F$
Then $\langle x, u\rangle=\langle y, u\rangle=0$ for all $u \in S$
$\therefore\langle\alpha x+\beta y, u\rangle=\alpha\langle x, u\rangle+\beta\langle y, u\rangle=0$ for all $u \in S$
$\therefore \alpha x+\beta y \in S^{\perp}$ Hence S^{\perp} is a subspace of V.

Theorem

Let V be a finite dimensional inner product space. Let W be a subspace of S. Then V is the direct sum of W and W^{\perp} (i.e) $V=W \oplus W^{\perp}$

Proof.
(i) $W \cap W^{\perp}=\{0\}$ and
(ii) $\quad W+W^{\perp}=V$
(i) Let $v \in W \cap W^{\perp}$. Then $v \in W$ and $v \in W^{\perp}$

Now, $v \in W^{\perp} \Rightarrow v$ is orthogonal to every vector in W .
In particular, v is orthogonal to itself.
$\therefore\langle v, v\rangle=0$ and hence $v=0$
Hence $W \cap W^{\perp}=\{0\}$
(ii) Let $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be an orthonormal bases for W . Let $v \in V$

Consider $v_{0} \in \mathcal{v}-\left\langle v, v_{1}\right\rangle v_{1}-\left\langle v, v_{2}\right\rangle v_{2}-\ldots-\left\langle v, v_{r}\right\rangle v_{r}$
$\therefore\left\langle v_{0}, v_{i}\right\rangle=\left\langle v, v_{i}\right\rangle-\left\langle v, v_{i}\right\rangle\left\langle v_{i}, v_{i}\right\rangle$ (since $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$
$=\left\langle v, v_{i}\right\rangle-\left\langle v, v_{i}\right\rangle\left(\right.$ since $\left.\left\langle v_{i}, v_{j}\right\rangle=1\right)$
$=0$
$\therefore v_{0}$ is orthogonal to each of $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and hence is orthogonal to every vector in W. Hence $v_{0} \in W^{\perp}$ and $v=\left[\left\langle v, v_{1}\right\rangle v_{1}+\left\langle v, v_{2}\right\rangle v_{2}+\ldots+\left\langle v, v_{r}\right\rangle v_{r}\right]+v_{0} \in W+W^{\perp} V=W \oplus W^{\perp}$

Hence the theorem.

Corollary. $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$
Proof. $\operatorname{dim} V=\operatorname{dim}\left(W \oplus W^{\perp}\right)=\operatorname{dim} W+\operatorname{dim} W^{\perp}$

Theorem. Let V be a finite dimensional inner product space. Let W be a subspace of V . Then $\left(W^{\perp}\right)^{\perp}=W$

Proof.
Let $w \in W$. Then for any $u \in W^{\perp},\langle w, u\rangle=0$
Hence $w \in\left(W^{\perp}\right)^{\perp}$. Thus $W \subseteq\left(W^{\perp}\right)^{\perp} \ldots$ (1)
Now by theorem $V=W \oplus W^{\perp}$
Also $V=W^{\perp} \oplus\left(W^{\perp}\right)^{\perp}$
Hence $\operatorname{dim} W=\operatorname{dim}\left(W^{\perp}\right)^{\perp}$...(2)
From (1) and (2) we get $\left(W^{\perp}\right)^{\perp}=W$

Solved problems

Problem 1.

Let V be an inner product space and let S_{1} and S_{2} be subsets of V . Then $S_{1} \subseteq S_{2} \Rightarrow S_{2}^{\perp} \subseteq S_{1}^{\perp}$
Solution. Let $u \in S_{2}^{\perp}$
Then $\langle u, v\rangle=0$ for all $u \in S_{2}$
But $S_{1} \subseteq S_{2}$. Hence $\langle u, v\rangle=0$ for all $u \in S_{1}$
Hence $u \in S_{1}^{\perp}$. Thus $S_{2}^{\perp} \subseteq S_{1}^{\perp}$

Problem 2.

Let W_{1} and W_{2} be subspaces of a finite dimensional inner product space. Then
(i) $\quad\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$
(ii) $\quad\left(W_{1} \cap W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}$

Solution.

(i) We know that $W_{1} \in W_{1}+W_{2}$
$\therefore\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp}$ (by the problem 1).
Similarly, $\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{2}^{\perp}$
Hence $\left(W_{1}+W_{2}\right)^{\perp} \subseteq W_{1}^{\perp} \cap W_{2}^{\perp}$.
Now, Let $w \in W_{1}^{\perp} \cap W_{2}^{\perp}$
Then $w \in W_{1}^{\perp}$ and $w \in W_{2}^{\perp}$
$\therefore\langle w, u\rangle=0$ for all $u \in W_{1}$ and W_{2}

Now, let $v \in W_{1}+W_{2}$
Then $v=v_{1}+v_{2}$ where $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$
$\therefore\langle w, u\rangle=\left\langle w, v_{1}+v_{2}\right\rangle$
$=\left\langle w, v_{1}\right\rangle+\left\langle w, v_{2}\right\rangle$

$$
=0+0\left(\text { since } v_{1} \in W_{1} \text { and } v_{2} \in W_{2}\right) \quad=0
$$

Hence $w \in\left(W_{1}+W_{2}\right)^{\perp}$
$W_{1}^{\perp} \cap W_{2}^{\perp} \in\left(W_{1}+W_{2}\right)^{\perp}$
From (10 and (2) we get
$\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp}$
(ii) Proof is similar to that of (i)

UNIT - IV

THEORY OF MATRICES

Introduction

In this chapter we shall develop the general theory of matrices. Throughout this chapter we deal with matrices whose entries are from the field F of real or complex numbers.

Algebra of Matrices

We have already seen that an $m \times n$ matrix A is an arrat of $m n$ numbers $a_{i j}$ where
$i \leq m, 1 \leq j \leq n$ arranged in m rows and n columns as follows

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

We shall denote this matrix by the symbol $\left(a_{i j}\right)$. If $m=n, \mathrm{~A}$ is called a square matrix of order n

Definition. Two matrices $\mathrm{A}=\left(a_{i j}\right)$ and $\mathrm{B}=\left(b_{i j}\right)$ are said to be equal if A and B have the same number of rows and columns and the corresponding entries in the two matrices are same.
Additional of matrices. We have already defined the addition of two $m \times n$ matrix $\mathrm{A}=a_{i j}$ and $\mathrm{B}=\left(b_{i j}\right)$ by $\mathrm{A}+\mathrm{B}=\left(a_{i j}+b_{i j}\right)$

We note that we can add two matrices iff they have the same number of rows and columns.
Example. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 9 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 4 \\ 2 & 1 \\ -1 & 0\end{array}\right]$ then $A+B=\left[\begin{array}{ll}1 & 6 \\ 5 & 5 \\ 8 & 5\end{array}\right]$
Remark. The set of all $m \times n$ matrices is an abelian group under matrix addition. The $m \times n$ matrix with each entry 0 is the zero matrix and is denoted by 0 and the additive inverse of matrix $\mathrm{A}=\left(a_{i j}\right)$ is $\left(-a_{i j}\right)$ and is denoted by $-A$

If $\mathrm{A}=a_{i j}$ is any matrix and α is any number (real or complex) we have defined the matrix αA by $\alpha A=\left(\alpha a_{i j}\right)$
The set of all $m \times n$ matrices over the field R under matrix addition and scalar multiplication defined above is a vector space. This result is true if R is replaced by C or by any field F

We now proceed to define multiplication of matrices. We have already defined the multiplication of 2×2 matrices, which we generalise in the following definition

Definition. Let $\mathrm{A}=a_{i j}$ be an $m \times n$ matrix and $\mathrm{B}=\left(b_{i j}\right)$ be an $n \times p$ matrix. We define the product AB as the $m \times p$ matrix $\left(c_{i j}\right)$ where the $i j^{\text {th }}$ entry $\left(c_{i j}\right)$ is given by

$$
c_{i j}=a_{i 1} b_{1 i}+a_{i 2} b_{2 i}+\cdots+a_{i n} b_{n i}=\sum_{k=1}^{n} a_{i k} b_{k i}
$$

Note 1. The product $A B$ of two matrices is defined only when the number of columns of A is equal to the number of rows of B.

Note 2. The entry $c_{i j}$ of the product AB is found by multiplying $i^{\text {th }}$ row of A and the $j^{\text {th }}$ column of B. To multiply a row and a column, we multiply the corresponding entries and add.

Solved Problems

Problem 1. Show that the matrix $A=\left[\begin{array}{ccc}2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4\end{array}\right]$ satisfies the equation $A(A-I)(A+2 I)=0$

Solution

$$
\begin{aligned}
& A-I=\left[\begin{array}{ccc}
2 & -3 & 1 \\
3 & 1 & 3 \\
-5 & 2 & -4
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & -3 & 1 \\
3 & 0 & 3 \\
-5 & 2 & -5
\end{array}\right] \\
& A-2 I=\left[\begin{array}{ccc}
4 & -3 & 1 \\
3 & 3 & 3 \\
-5 & 2 & -2
\end{array}\right]
\end{aligned}
$$

Now
$A(A-I)(A+2 I)=\left[\begin{array}{ccc}2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4\end{array}\right]\left[\begin{array}{ccc}1 & -3 & 1 \\ 3 & 0 & 3 \\ -5 & 2 & -5\end{array}\right]\left[\begin{array}{ccc}4 & -3 & 1 \\ 3 & 3 & 3 \\ -5 & 2 & -2\end{array}\right]$

$$
=\left[\begin{array}{ccc}
-12 & -4 & -12 \\
-9 & -3 & -9 \\
21 & 7 & 21
\end{array}\right]\left[\begin{array}{ccc}
4 & -3 & 1 \\
3 & 3 & 3 \\
-5 & 2 & -2
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=0
$$

$A(A-I)(A+2 I)=0$

Problem 2.

Prove that $\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]^{\mathrm{n}}=\left[\begin{array}{cc}\lambda^{n} & \mathrm{n} \lambda^{\mathrm{n}-1} \\ 0 & \lambda^{\mathrm{n}}\end{array}\right]$
Solution. We prove this result by induction of n. when $n=1$ result is obviously true. Let us assume that the result is true for $n=k$
$\therefore\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]^{\mathrm{k}}=\left[\begin{array}{cc}\lambda^{\mathrm{k}} & \mathrm{k} \lambda^{\mathrm{k}-1} \\ 0 & \lambda^{\mathrm{k}}\end{array}\right]$
$\therefore\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]^{\mathrm{k}}\left[\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right]=\left[\begin{array}{cc}\lambda^{\mathrm{k}} & \mathrm{k} \lambda^{\mathrm{k}-1} \\ 0 & \lambda^{\mathrm{k}}\end{array}\right]\left[\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right]$
$=\left[\begin{array}{cc}\lambda^{k+1} & \lambda^{k}+k \lambda^{k} \\ 0 & \lambda^{k+1}\end{array}\right]$
$=\left[\begin{array}{cc}\lambda^{k+1} & (k+1) \lambda^{k} \\ 0 & \lambda^{k+1}\end{array}\right]$
\therefore The result is true for $n=k+1$
Hence the result is true for all positive integers n.

Definition. Let $\mathrm{A}=\left(a_{i j}\right)$ be an $m \times n$ matrix. Then the $n \times m$ matrix $\mathrm{B}=\left(b_{i j}\right)$ where $b_{i j}=a_{i j}$ is called the transpose of the matrix A and it is denoted by A^{T}. Thus A^{T} is obtained from the matrix A by interchanging its rows and columns and the $\left(i j^{\text {th }}\right)$ entry of $A^{T}=\left(j i^{\text {th }}\right)$ entry of A .
For example, if $A=\left[\begin{array}{l}1234 \\ 2101 \\ 0315\end{array}\right]$ then $A^{T}=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 3 \\ 3 & 0 & 1 \\ 4 & 1 & 5\end{array}\right]$ clearly if A is an $m \times n$ matrix. Then the $n \times$ m matrix

Theorem. Let A and B be two $m \times n$ matrices. Then
(i) $\quad\left(A^{T}\right)^{T}=A$
(ii) $\quad(A+B)^{T}=A^{T}+B^{T}$

Proof.
(i) The $\left(i j^{\text {th }}\right)$ entry of $\left(A^{T}\right)^{T}$

$$
\begin{array}{r}
\quad=\left(i j^{t h}\right) \text { entry of } A^{T} \\
\quad=\left(i j^{t h}\right) \text { entry of } A \\
\therefore\left(A^{T}\right)^{T}=A
\end{array}
$$

(ii) The $\left(i j^{\text {th }}\right)$ entry of $(A+B)^{T}$

$$
\begin{aligned}
& =\left(j i^{t h}\right) \text { entry of } A+B \\
& =\left(j i^{t h}\right) \text { entry of } A+\left(j i^{\text {th }}\right) \text { entry of } B \\
& =\left(i j^{t h}\right) \text { entry of } A^{T}+\left(j i^{t h}\right) \text { entry of } B^{T} \\
& =\left(i j^{t h}\right) \text { entry of } A^{T}+B^{T} \\
& \therefore(A+B)^{T}=A^{T}+B^{T}
\end{aligned}
$$

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Then $(A B)^{T}=B^{T} A^{T}$

Proof.

By hypothesis AB is defined and it is an $m \times p$ matrix. Hence $(A B)^{T}$ is a $p \times m$ matrix
Further B^{T} is a $p \times n$ matrix and A^{T} is an $n \times m$ matrix
Hence, the product $B^{T} A^{T}$ is defined and it is a $p \times m$ matrix.
Now, let $\mathrm{A}=\left(a_{i j}\right), \mathrm{B}=\left(b_{i j}\right)$ and $(A B)=\left(c_{i j}\right)$
Then $(i, j)^{\text {th }}$ entry of
$(A B)=\left(c_{i j}\right)=\sum_{k=1}^{n} a_{i k} b_{k j}$
$(A B)^{T}=\left(c_{j i}\right)=\sum_{k=1}^{n} a_{j k} b_{k i}$
Now the $i^{\text {th }}$ row of B^{T} is the $i^{\text {th }}$ column of B and it consists of the elements $b_{1 i}, b_{2 i}, \ldots b_{n i}$. Also the $j^{\text {th }}$ column of B^{T} is the $j^{\text {th }}$ row of A and it consists of the elements $a_{1 i}, a_{2 i}, \ldots a_{n i}$
$=\sum_{k=1}^{n} b_{k i} a_{j k}$
$=(i, j)^{t h}$ entry of $(A B)^{T}$
Hence $(A B)^{T}=B^{T} A^{T}$
Definition. Let $\mathrm{A}=\left(a_{i j}\right)$ be a matrix with entries from the field of complex numbers. The conjugate of A , denoted by \bar{A}, is defined by $\bar{A}=\overline{\left(a_{\iota \jmath}\right)}$.
\bar{A}^{T} is called the conjugate transpose of the matrix A.
For example if $A=\left[\begin{array}{ccc}2 & 2+i & -i \\ 1+i & -3 & 4+3 i\end{array}\right]$ then $\bar{A}=\left[\begin{array}{ccc}2 & 2-i & i \\ 1-i & -3 & 4-3 i\end{array}\right]$
Theorem. Let A and B matrices with entries from C. Then
(i) $\overline{(\bar{A})}=A$.
(ii) $\overline{A+B}=\bar{A}+\bar{B}$
(iii) $\overline{k A}=\bar{k} \bar{A}$, where $k \in C$.
(iv) $A=\bar{A} \Leftrightarrow$ all entries of A are real
(v) $\overline{A B}=\bar{A} \bar{B}$
(vi) $\quad(\bar{A})^{T}=\overline{A^{T}}$

The proof of the above results are immediate consequences of the corresponding properties of complex numbers.

Types of Matrices

Definition. An $1 \times n$ matrix is called a row matrix. Thus a row matrix is consists of 1 row and columns.

It is of the form $\left(a_{11}, a_{12}, \ldots a_{1 n}\right)$
Definition. Anm $\times 1$ matrix is called a column matrix. Thus a column matrix is consists of 1 column and rows.

It is of the form $\left[\begin{array}{l}a_{11} \\ a_{12} \\ \cdot \\ \cdot \\ a_{1 n}\end{array}\right]$
Definition. Let $\mathrm{A}=\left(a_{i j}\right)$ be a square matrix. Then the elements ($a_{11}, a_{22}, \ldots a_{n n}$) are called the diagonal elements of A and the diagonal elements constitute what is known as the principal diagonal of the matrix A. A square matrix is called a diagonal matrix if all the entries which do not belong to the principal are zero. Hence in a diagonal matrix $a_{i j}=0$ if $i \neq j$

For example $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$ is a diagonal matrix
Definition. A diagonal matrix in which all the entries of the principal diagonal are equal is called a scalar matrix

For example $\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$ is a scalar matrix
Definition. A square matrix $\left(a_{i j}\right)$ is called an upper triangular matrix if all the entries above the principal diagonal are zero

Hence $a_{i j}=0$ whenever $i<j$ is an upper triangle matrix.
Definition. A square matrix $\left(a_{i j}\right)$ is called a lower triangle matrix if all the entries below the principal diagonal are zero

Hence $a_{i j}=0$ whenever $i>j$ in an lower triangular matrix
For example $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right]$ is an lower triangular matrix $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 2 & 3 & 2 & 4\end{array}\right]$ is upper triangular
Clearly a square matrix is a diagonal matrix iff it is both lower triangular and upper triangular.
Definition. A square matrix $A=\left(a_{i j}\right)$ is said to be symmetric if $a_{i j}=a_{j i}$ for all i, j

Example.

$\left[\begin{array}{ll}a & b \\ b & a\end{array}\right],\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right],\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 0 & 0 & 5 \\ 3 & 0 & 6 & 7 \\ 4 & 5 & 7 & 8\end{array}\right]$ are symmetric matrices.
Theorem. A square matrix A is symmetric iff $A=A^{T}$
Proof. Let A be a symmetric matrix
Then the $(i, j)^{\text {th }}$ entry of A
$=(j, i)^{t h}$ entry of A
$=(i, j)^{t h}$ entry of A^{T}
Hence $A=A^{T}$
Conversely let $A=A^{T}$
Then $(i, j)^{t h}$ entry of A
$=(i, j)^{\text {th }}$ entry of A^{T}
$=(j, i)^{t h}$ entry of A
Hence A is symmetric
Theorem. Let A be any square matrix. Then $A+A^{T}$ is symmetric
Proof. $\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}$
$=A^{T}+A$
$=A+A^{T}$
Hence $A+A^{T}$ is symmetric
Theorem. Let A and B be symmetric matrices of order n . Then
(i) $A+B$ is symmetric
(ii) $A B$ is symmetric iff $A B=B$
(iii) $A B+B A$ is symmetric
(iv) If A is symmetric, then $k A$ is symmetric where $k \in F$.

Proof.
(i) $\quad(A+B)^{T}=A^{T}+B^{T}$
$=A+B \quad$ (since A and B are symmentric)
$\therefore A+B$ is symmetric
(ii) $A B$ is symmetric

$$
\begin{aligned}
& \Leftrightarrow(A B)^{T}=A B \\
& \Leftrightarrow B^{T} A^{T}=A B
\end{aligned}
$$

$$
\Leftrightarrow B A=A
$$

(iii) $\quad(A B+B)^{T}=(A B)^{T}+(B A)^{T}$
$=(B)^{T}(A)^{T}+(A)^{T}(B)^{T}$
$=B A+A \quad$ (since A and B are symmetric)
$=A B+B$
$\therefore A B+B A$ is symmetric
(iv) $\quad(k A)^{T}=k A^{T}=k \quad$ since A is symmetric
$\therefore k A$ is symmetric

Definition. A square matrix $A=\left(a_{i j}\right)$ is said to be skew symmetric if $a_{i j}=-a_{j i}$, for all i, j
Note. Let A be a skew symmetric matrix. Then $a_{i j}=-a_{j i}$. Hence $2 a_{i j}=0$ (ie) $a_{i j}=0$, for all
i. Thus in a skew symmetric matrix all the diagonal entries are zero
$\left[\begin{array}{cc}0 & -a \\ a & 0\end{array}\right],\left[\begin{array}{ccc}0 & -2 & 1 \\ 2 & 0 & -3 \\ -1 & 3 & 0\end{array}\right]$ Are examples of skew symmetric matrices
Theorem. A square matrix A is skew symmetric matrix iff $A=-A^{T}$
Proof is similar to that of by theorem
Theorem. Let A be any square metrix. Then $A-A^{T}$ is skew symmetric
Proof.
$\left(A=-A^{T}\right)^{T}=A^{T}-\left(A^{T}\right)^{T}$
$=A^{T}-A$
$=-\left(A^{T}-A\right)$
Hence $A-A^{T}$ is skew symmetric
Theorem. Any square matrix A can be expressed uniquely as the sum of a symmetric matrix and a skew symmetric matrix.

Proof. Let A be any square matrix
Then $A+A^{T}$ is skew symmetric matrix (by Theorem)
$\therefore \frac{1}{2}\left(A+A^{T}\right)$ is also a symmetric matrix
Also $\frac{1}{2}\left(A-A^{T}\right)$ is also a symmetric matrix (by above theorem)
Now, $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$
$\therefore \mathrm{A}$ is the sum of a symmetric matrix and a skew symmetric matrix

Now, to prove the uniqueness, let $A=R+S$ where S is a symmetric matrix and R is a skew symmetric matrix. We claim that $S=\frac{1}{2}\left(A+A^{T}\right)$ and $R=\frac{1}{2}\left(A-A^{T}\right)$
$A=S+R$
$\therefore A^{T}=(S+R)^{T}$
$=S^{T}+R^{T}$
$=S-R$ (since S is symmetric and R is skew symmetric)
$\therefore A^{T}=S-R \ldots$ (ii)
From (i) and (ii) we get $S=\frac{1}{2}\left(A+A^{T}\right)$ and $R=\frac{1}{2}\left(A-A^{T}\right)$
Theorem. Let A and B be skew symmetric matrices of order n. Then
(i) $\mathrm{A}+\mathrm{B}$ is skew symmetric
(ii) kA is skew symmetric where $k \in F$
(iii) $\quad \mathrm{A}^{2 \mathrm{n}}$ is a symmetric matrix and $A^{2 n+1}$ is a skew symmetric matrix where n is any positive integer.

Proof.
Let A, B be skew symmetric
(i) $(A+B)$
$=-A-B$
$=-(A+B)$
$\therefore A+B$ is skew symmetric
(ii) Proof is similar to that of (i)
(iii) Let m be any positive integer

Then $\left(A^{m}\right)^{T}=(A A \ldots m \text { times })^{T}$
$=A^{T} A^{T} \ldots A^{T}(m$ times $)$
$=(-A)(-A) \ldots(-A)(m$ times $)\left(\right.$ since $\left.A^{T}=-A\right)$
$=(-1)^{m} A^{m}$
$\left(A^{m}\right)^{T}=\left\{\begin{array}{l}A^{m} \text { if } m \text { is even } \\ -A^{m} \text { if } m \text { is odd }\end{array}\right.$
A^{m} is symmetric when m is even and skew symmetric when m is odd

Definition. A square matrix $A=\left(a_{i j}\right)$ is said to be Hermitian matrix if $a_{i j}=-a_{i j}$ for all i, j. A is said to be a skew Hermitian matrix iff $a_{i j}=-\overline{a_{\imath \jmath}}$ for all i, j.

Note

1. Any hermitian matrix over R is a symmetric matrix and any skew Hermitian matrix over R is a skew symmetric matrix.
2. Let $A=\left(a_{i j}\right)$ be a hermitian matrix. Then $a_{i i}=-\overline{a_{l l}}$ and hence $a_{i i}$ is real for all i.
3. Let $A=\left(a_{i j}\right)$ be a skew hermitian matrix. Then $a_{i i}=-\overline{a_{l ı}}$ and hence $a_{i i}=0$ or purely imaginary for all i.

Theorem. Let A be a square matrix
(i) A is Hermitianiff $A=\bar{A}^{T}$
(ii) A is skew Hermitianiff $A=-\bar{A}^{T}$

Proof. The result is an immediate consequence of the definition
Theorem. Let A and B be square matrices of the same order. Then
(i) A, B are Hermitian $\Rightarrow A+B$ is Hermitian
(ii) A, B are skew Hermitian $\Rightarrow A+B$ is skew Hermitian
(iii) A is Hermitian $\Rightarrow i A$ is Hermitian
(iv) A is skew Hermitian $\Rightarrow i A$ is skew Hermitian
(v) A is Hermitian and k is real $\Rightarrow k A$ is Hermitian
(vi) A is skew Hermitian and k is real $\Rightarrow k A$ is skew Hermitian
(vii) A, B are Hermitian $\Rightarrow A B+B A$ is Hermitian
(viii) A, B are Hermitian $\Rightarrow A B-B A$ is Hermitian

Proof. We shall prove (i), (iii) and (vii)
(i) $\overline{(A+B)^{T}}=(\bar{A}+\bar{B})^{T}$

$$
=\bar{A}+\bar{B}
$$

$=A+B$ (since A and B are Hermitian)
$\therefore A+B$ is Hermitian
(ii) $\overline{-(\iota A)^{T}}=-(\bar{l})^{T}$

$$
=\bar{A}^{T}
$$

$=i A$ (since A is Hermitian)
\therefore iAis skew Hermitian
(vii) $\overline{(A B+B A)^{T}}=(\overline{A B}+\overline{B A})^{T}$

$$
\begin{gathered}
=(\bar{A} \bar{B}+\bar{B} \bar{A})^{T} \\
=(\bar{A} \bar{B})^{T}+(\bar{B} \bar{A})^{T} \\
=\bar{B}^{T} \bar{A}^{T}+\bar{A}^{T} \bar{B}^{T} \\
=B A+A B \\
=A B+B
\end{gathered}
$$

$\therefore A B+B$ is Hermitian

Theorem. Let A be any square matrix. Then
(i) $A+\bar{A}^{T}$ is Hermitian
(ii) $A-\bar{A}^{T}$ is skew Hermitian

Proof.
(i) Let $A+\bar{A}^{T}=B$

$$
\begin{gathered}
\bar{B}=\bar{A}+A^{T} \\
\therefore \bar{B}^{T}=\bar{A}+A^{T^{T}} \\
=\bar{A}^{T}+A
\end{gathered}
$$

(ii) Proof is similar to that of (i)

Theorem. Any square matrix A can be uniquely expressed as the sum of a Hermitian matrix and a skew Hermitian matrix.

Proof.
The proof is similar to that of the Theorem
Definition. A real square matrix A is said to be orthogonal if $A A^{T}=A^{T} A=I$

Example

$A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is an orthogonal matrix (verify).
Theorem. Let A and B be orthogonal matrices of the same order. Then
(i) $\quad A^{T}$ is orthogonal
(ii) $A B$ is orthogonal

Proof
(i) $A^{T}\left(A^{T}\right)^{T}=A^{T} A=I$ (since A is orthogonal)
similarly we can prove $\left(A^{T}\right)^{T} A^{T}=I$
$\therefore A^{T}$ is orthogonal
(ii) $\quad(A B)(A B)^{T}=(A B)\left(B^{T} A^{T}\right)$

$$
\begin{gathered}
=A\left(B B^{T}\right) A^{T} \\
=A I A^{T} \\
=A A^{T} \\
=I
\end{gathered}
$$

Similarly $(A B)(A B)^{T}=I$
Hence $A B$ is orthogonal
Definition. A square matrix A is said to be an unitary matrix if $A \bar{A}^{T}=\bar{A}^{T} A=I$
For example $\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$ is unitary.
Note. Any matrix over R is an orthogonal matrix
Theorem. If A and B are unitary matrices of the same order, then $A B$ is also an unitary matrix
Proof. Similar to the proof of (ii) of the above theorem
The Inverse of a Matrix.
A 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ has an inverse iff $|A|=a d-b \quad 0$ and the inverse of A is given by $\frac{1}{|A|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$. Such matrices are called non-singular. In this section we shall describe the method of finding the inverse of any non-singular matrix of order n.

Determinants. We can associate with any $n \times n$ matrix $A=\left(a_{i j}\right)$ over a field F an element of F given by the determinant $\left|\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right|$
If value can be determined in the usual way and it is denoted by $|A|$
For example
(i) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $|A|=a d-b c$
(ii) If $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 1\end{array}\right]$ then $A=\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 1\end{array}\right|=1$

Definition. A square matrix A is said to be singular if $|A|=0$
A is called a non singular matrix if $|A| \neq 0$
Theorem. The rule of multiplying two matrices is same as the rule for multiplying two determinants.

Hence if A and B are two $n \times n$ matrices. $|A B|=|A||B|$.
Theorem. The product of any two non-singular matrices is non-singular.
Proof. Let A and B be two non-singular matrices of the same order. Then $|A| \neq 0$ and $|B| \neq 0$
$\therefore|A B|=|A||B|$
Hence $A B$ is non singular matrix.
Note. Sum of two non-singular matrices need not be non-singular. For, if A is non-singular matrix then $-A$ is also a non-singular matrix and $A+(-A)$ is the zero matrix which is obviously a singular matrix

Definition. Let $A=\left(a_{i j}\right)$ be an $n \times n$ metrix. If we delete the row and the column containing the element $\left(a_{i j}\right)$ we obtain a square matrix of order $n-1$ and the determinant of this square matrix is called the minor of the element $\left(a_{i j}\right)$ and is denoted by $\left(M_{i j}\right)$

The minor $M_{i j}$ multiplied by $(-1)^{i+j}$ is called the cofactor of the element $a_{i j}$ and is denoted by $A_{i j}$
$\therefore A_{i j}=(-1)^{i+j} M_{i j}$
Example. Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Corresponding to the 9 elements $a_{i j}$, we get 9 minors of A. For example, the minor of a_{11} is
$M_{11}=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$ and the minor of a_{23} is $M_{23}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|$
The cofactor of a_{11} is $A_{11}=(-1)^{2} M_{11}=M_{11}$
The cofactor of a_{23} is $A_{23}=(-1)^{2+3} M_{23}=-M_{23}$
Definition. Let $A=\left(a_{i j}\right)$ be a square matrix. Let $A_{i j}$ denote the co-factor of $a_{i j}$. The transpose of the matrix $A_{i j}$ is called the adjoint to adjugate of the matrix A and is denoted be $\operatorname{adj} A$
Thus the $(i, j)^{t h}$ entry of adjA is $A_{j i}$
Note. If A is a square matrix of order n then $\operatorname{adj} A$ is also a square matrix of order n .
Example. Let $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & -1 \\ -2 & 1 & 3\end{array}\right]$

Then $A_{11}=\left|\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right|=4$
$A_{12}=\left|\begin{array}{cc}3 & -1 \\ -2 & 3\end{array}\right|=-7$
Similarly other co-factors can be calculated and we get

$$
\left.\operatorname{adj} A=\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
4 & 2 & -2 \\
-7 & 7 & 7 \\
5 & -1 & 1
\end{array}\right]
$$

We notice that
Aadj $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & -1 \\ -2 & 1 & 3\end{array}\right]\left[\begin{array}{ccc}4 & 2 & -2 \\ -7 & 7 & 7 \\ 5 & -1 & 1\end{array}\right]=\left[\begin{array}{ccc}14 & 0 & 0 \\ 0 & 14 & 0 \\ 0 & 0 & 14\end{array}\right]=(\operatorname{adj} A) A$ (verify)
Theorem. Let A be any square matrix of order n . Then $(\operatorname{adj} A) A=A(\operatorname{adj} A)=|A| I$ where I is the identity matrix of order n.

Proof. The $(i, j)^{t h}$ element of $(A(\operatorname{adj} A))$
$=\sum_{k=1}^{n} a_{i k} A_{j k}$
$=\left\{\begin{array}{c}0 \text { if } i \neq j \\ |A| \text { if } i=j\end{array}\right.$
$\therefore A(\operatorname{adj} A)=\left[\begin{array}{cccc}|A| & 0 & \ldots & 0 \\ 0 & |A| & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & a_{n 2} & \ldots & |A|\end{array}\right]=|A| I$
Similarly $(\operatorname{adj} A) A=|A| I$
Hence $(\operatorname{adj} A) A=A(\operatorname{adj} A)=|A| I$
Note. Suppose $|A| \neq 0$. Now, consider the matrix $B=\frac{1}{|A|}$ adj A
Then $A B=A\left[\frac{1}{|A|} \operatorname{adj} A\right]$
$=\frac{1}{|A|}(\operatorname{A} \operatorname{adj} A)$
$=\frac{1}{|A|}|A| I$
$=I$
Similarly $B A=I$. Thus $A B=B A=I$
Definition. Let A be a square matrix of order n . A is said to be invertible in there exists a square matrix B of order n such that $A B=B A=I$ and B is called the inverse of A and is denoted by A^{-1}

Note. The invertible matrices are precisely the units of the ring $M_{n}(F)$
Theorem. A square matrix A of order n is non singulariff A is invertible
Proof. Suppose A is invertible.
Then there exists a matrix B such that $A B=B A=I$
Hence $|A B|=|I|=1$
$\therefore|A||B|=1$
Hence $|A| \neq 0$ so that A is non-singular.
Conversely, let A be non-singular. Hence $|A| \neq 0$
Now, consider the matrix $B=\frac{1}{|A|}$ adj A
Then $A B=B A \quad$ (refer the above Note)
$\therefore \mathrm{A}$ is invertible and A is the inverse of A .

Solved problem

Problem1. Compute the inverse of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$

Solution.

$|A|=\left|\begin{array}{ccc}2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right|=-1$
Since $|A| \neq 0, \mathrm{~A}$ is non-singular
Hence A^{-1} exist and is given by $A^{-1}=\frac{\operatorname{adj} A}{|A|}$
Now, we find $a d j A=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right]$ where $A_{i j},(i, j=1,2,3)$ are cofactors of $a_{i j}$
$A_{11}=\left|\begin{array}{cc}6 & -5 \\ -2 & 2\end{array}\right|=2$;
$A_{12}=-\left|\begin{array}{cc}15 & -5 \\ 5 & 2\end{array}\right|=5$
$A_{13}=\left|\begin{array}{cc}-15 & 6 \\ 5 & -2\end{array}\right|=0$
$A_{21}=-\left|\begin{array}{ll}-1 & 1 \\ -2 & 2\end{array}\right|=0$
$A_{22}=\left|\begin{array}{ll}2 & 1 \\ 5 & 2\end{array}\right|=-1$
$A_{23}=-\left|\begin{array}{ll}2 & -1 \\ 5 & -2\end{array}\right|=-1$
$A_{31}=\left|\begin{array}{cc}-1 & 1 \\ 6 & -5\end{array}\right|=-1$
$A_{32}=-\left|\begin{array}{cc}2 & 1 \\ -15 & -5\end{array}\right|=-5$
$A_{33}=\left|\begin{array}{cc}2 & -1 \\ -15 & 6\end{array}\right|=-3$
Hence adj $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & -1 & -5 \\ 0 & -1 & -3\end{array}\right]$
$A^{-1}=\frac{1}{-1}=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & -1 & -5 \\ 0 & -1 & -3\end{array}\right]=\left[\begin{array}{ccc}-2 & 0 & 1 \\ -5 & 1 & 5 \\ 0 & 1 & 3\end{array}\right]$
Problem 2.
if $\omega=e^{2 \pi i / 3}$ find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]$
solution.
We note that $\omega^{3}=1$
$\therefore|A| \neq 0$, A is non-singular. Hence A^{-1} exists and is given by $A^{-1}=\frac{\operatorname{adj} A}{|A|}$
Now, adj $A=\left[\begin{array}{ccc}\omega^{2}-\omega & \omega^{2}-\omega & \omega^{2}-\omega \\ \omega^{2}-\omega & \omega-1 & 1-\omega^{2} \\ \omega^{2}-\omega & 1-\omega^{2} & \omega-1\end{array}\right]$
$\therefore A^{-1}=\frac{1}{3\left(\omega^{2}-\omega\right)}\left[\begin{array}{ccc}\omega^{2}-\omega & \omega^{2}-\omega & \omega^{2}-\omega \\ \omega^{2}-\omega & \omega-1 & 1-\omega^{2} \\ \omega^{2}-\omega & 1-\omega^{2} & \omega-1\end{array}\right]$

$$
=\frac{1}{3 \omega}\left[\begin{array}{ccc}
\omega & \omega & \omega \\
\omega & 1 & -1-\omega \\
\omega & -1-\omega & 1
\end{array}\right]
$$

Problem 3.
Show that a square matrix A is orthogonal iff $A^{-1}=A^{T}$

Solution.

Suppose A is orthogonal. Then $A A^{T}=I$
$\therefore\left|A A^{T}\right|=|I|=1$
$\therefore|A|\left|A^{T}\right|=1$
$\therefore|A||A|=1$
$\therefore|A| \neq 0$ and hence A is non-singular
$\therefore A^{-1}$ exists.
Now, $A^{-1}\left(A A^{T}\right)=A^{-1} I$
$\therefore\left(A^{-1} A\right) A^{T}=A^{-1}$
$\therefore I A^{T}=A^{-1}$
$\therefore A^{T}=A^{-1}$
Conversely, let $A^{T}=A^{-1}$
Then $A A^{T}=A A^{-1}=I$ similarly $A A^{T}=I$
Hence A is orthogonal
Problem 4. Show that a square matrix A is involutoryiff $A=A^{-1}$
Solution. Suppose A is involutory. Then $A^{2}=I$.
Hence $\left|A^{2}\right|=1$
$\therefore\left|A^{2}\right|=|A||A|=1$
$\therefore|A| \neq 0$ and hence A is non-singular
$\therefore A^{-1}$ exists
Now, $A^{-1}(A A)=A^{-1} I$
$\therefore\left(A^{-1} A\right) A=A^{-1}$
$\therefore I A=-1$
$\therefore A=A^{-1}$
Conversely, let $A=A^{-1}$
Then $A^{2}=A A-A^{-1}=1$
\therefore Ais involutory.

Elementary Transformations

Definition. Let A be an $m \times n$ matrix over a field F. An elementary row-operation on A is of any one of the following three types.

1. The interchange of any two rows
2. Multiplication of a row by a non-zero element c in F
3. Addition of any multiple of one row with any other row.

Similarly we define an elementary column operation on A as any one of the following three types.

1. The interchange of any two columns.
2. Multiplication of a column by a non-zero element c in F
3. Addition of any multiple of one column with any other column

Example. Let $A=\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ 3 & -1\end{array}\right] A_{1}=\left[\begin{array}{cc}3 & -1 \\ 2 & 1 \\ 1 & 2\end{array}\right]$
$A_{2}=\left[\begin{array}{cc}2 & 2 \\ 4 & 1 \\ 6 & -1\end{array}\right] A_{3}=\left[\begin{array}{cc}1 & 2 \\ 5 & 7 \\ 3 & -1\end{array}\right] A_{1}$ is obtained from A by interchanging the first and third rows.
A_{2} is obtained from A by multiplying the first Column of A by 2.
A_{3} is obtained from A by adding to the second row the multiple by 3 of the first row.
Notation. We shall employ the following notations for elementary transformations. Interchange of $i^{\text {th }}$ and $j^{\text {th }}$ rows will be denoted by $R_{i} \leftrightarrow R_{j}$

Multiplication of $i^{\text {th }}$ row by a non-zero element $c \in F$ will be denoted by $R_{i} \rightarrow c R_{j}$ Addition of k times the $j^{\text {th }}$ row to the $i^{\text {th }}$ row will be denoted by $R_{i} \rightarrow R_{i}+k R_{j}$

The corresponding column operations will be denoted by writing C in the place of R
Definition. Anm $\times n$ matrix B is said to be row equivalent (column equivalent) to $m \times n$ matrix A if B can be obtained from A by a finite succession of elementary row operations (column operations).
A and B are said to be equivalent if B can be obtained from A by a finite succession of elementary row or column operations.

If A and B are equivalent. We write $A \sim B$
Exercise. Prove that row equivalence, column equivalence and equivalence are equivalence relations in the set of all $m \times n$ matrices.

Definition. A matrix obtained form the identity matrix by applying a single elementary row or column operation is called an elementary matrix
For example, $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right]$ are elementary matrices obtained from the identity matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ by applying the elementary operations $R_{1} \leftrightarrow R_{2}$
$R_{1} \rightarrow 4 R_{1}, R_{3} \rightarrow R_{3}+2 R_{2}$ respectively
Exercise. Give examples of elementary matrices of order 4.
Theorem. Any elementary matrix is non-singular.
Proof.
The determinant of the identity matrix of any order is 1 . Hence the determinant of an elementary matrix obtained by interchanging any two rows is -1 . The determinant of an
interchanging any two obtained by multiplying any row by $k \neq 0$ is k. The determinant of an elementary matrix obtained by adding a multiple of one row with another row is 1 . Hence any elementary matrix is non-singular.

Solved problems.

Problem 1.
Reduce the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 1 & 2 \\ 2 & 4 & -2\end{array}\right]$ to the canonical form.
Solution. $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 1 & 2 \\ 2 & 4 & -2\end{array}\right]$

$$
\begin{gathered}
\sim\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3 \\
0 & 0 & 0
\end{array}\right] R_{2} \rightarrow R_{2}-R_{1} \& R_{3} \rightarrow R_{3}-R_{1} \\
\sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 3 \\
0 & 0 & 0
\end{array}\right] C_{2} \rightarrow C_{2}-2 C_{1} \& C_{3} \rightarrow C_{3}-C_{1} \\
\sim \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] C_{2} \rightarrow C_{3}+3 C_{2} \\
\sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] R_{2} \rightarrow-R_{2}
\end{gathered}
$$

Problem 2. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & -1 \\ -2 & 1 & 3\end{array}\right]$

Solution.

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 0 & 2 \\
3 & 1 & -1 \\
-2 & 1 & 3
\end{array}\right]=} & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A } \\
& \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -7 \\
0 & 1 & 7
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] A R_{2} \rightarrow R_{2}-3 R_{1} \& R_{3} \rightarrow R_{3}+2 R_{1} \\
& \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -7 \\
0 & 0 & 14
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
5 & -1 & 1
\end{array}\right] A R_{3} \rightarrow R_{3}-R_{2}
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\frac{2}{7} & \frac{1}{7} & -\frac{1}{7} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{5}{14} & -\frac{1}{14} & \frac{1}{14}\end{array}\right] A R_{1} \rightarrow R_{1}-\frac{1}{7} R_{3}, \quad R_{2} \rightarrow R_{2}+\frac{1}{2} R_{3} \& R_{3} \rightarrow \frac{1}{14} R_{3}$
$\Rightarrow A^{-1}=\left[\begin{array}{ccc}\frac{2}{7} & \frac{1}{7} & -\frac{1}{7} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{5}{14} & -\frac{1}{14} & \frac{1}{14}\end{array}\right]$
Definition.Let A and B be two square matrices of order n. B is said to be similar to A if there exists a $n \times n$ non-singular matrix P such that $B=P^{-1} A P$.

Rank of a Matrix.

We now proceed to introduce the concept of the rank of a matrix.
Definition. Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix. The rows $R_{i}=\left(a_{i 1}, a_{i 2}, \ldots a_{i n}\right)$ of A can be thought of as elements of F^{n}. The subspace of F^{n} generated by the m rows of A is called the row space of A .

Similarly, the subspace of F^{m} generated by the n columns of A is called the Column space of A .
The dimension of the row space (column space) of A is called the row rank (column rank) of A.
Definition. The rank of a matrix A is the common value of its row and column rank

Solved Problems

Problem 1.
Find the rank of the matrix $A=\left[\begin{array}{llll}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 7\end{array}\right]$

Solution.

$A=\left[\begin{array}{llll}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 7\end{array}\right]$

$$
\sim\left[\begin{array}{llll}
1 & 2 & 4 & 3 \\
4 & 3 & 6 & 7 \\
0 & 1 & 2 & 7
\end{array}\right] C_{1} \leftrightarrow C_{3}
$$

$\sim\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 4 & -5 & -10 & -5 \\ 0 & 1 & 2 & 7\end{array}\right] C_{1} \rightarrow C_{2}+2 C_{1}, \quad C_{3} \rightarrow C_{3}+4 C_{1}, \quad C_{4} \rightarrow C_{4}+3 C_{1}$

$$
\sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -5 & -10 & -5 \\
0 & 1 & 2 & 7
\end{array}\right] R_{2} \rightarrow R_{2}+4 R_{1}
$$

$\sim\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 1 & 0 & 6\end{array}\right] C_{3} \rightarrow C_{3}-2 C_{2}, C_{4} \rightarrow C_{4}-C_{2}$

$$
\sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & 0 & 6
\end{array}\right] R_{3} \rightarrow R_{3}+\frac{1}{5} R_{2}
$$

$\sim\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -5 & 0 & 0 \\ 0 & 0 & 6 & 0\end{array}\right] C_{2} \leftrightarrow C_{3}$
$\sim\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] R_{2} \rightarrow-\frac{1}{5} R_{2}, R_{3} \rightarrow \frac{1}{6} R_{3}$
\therefore Rank of $A=3$
Problem 2. Find the rank of the matrix $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 4 & 2\end{array}\right]$ by examining the determinant minors.

Solution.

$\left[\begin{array}{lll}1 & 1 & 1 \\ 4 & 1 & 0 \\ 0 & 3 & 4\end{array}\right]=0=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 4 & 2\end{array}\right]$
$\left[\begin{array}{lll}1 & 1 & 1 \\ 4 & 1 & 2 \\ 0 & 3 & 2\end{array}\right]=0=\left[\begin{array}{lll}1 & 1 & 1 \\ 4 & 0 & 2 \\ 0 & 4 & 2\end{array}\right]$
\therefore Every 3×3 submatrix of A has determinant zero.
Also $\left|\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right|=-3 \neq 0$
\therefore Rank of $A=2$

Characteristic Equation and Caylay Hamilton Theorem

Definition. An expression of the form $A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{n} x^{n}$ where $A_{0}, A_{1}, \ldots, A_{n}$ are square matrices of the same order and $A_{n} \neq 0$ is called matrix polynomial of degree n .
For example, $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)+\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right) x+\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right) x^{2}$ is a matrix polynomial of degree 2 and it is simply the matrix $\left(\begin{array}{cc}1+x+2 x^{2} & 2+x \\ 2 x+3 x^{2} & 3+x+x^{2}\end{array}\right)$
Definition. Let A be any square matrix of order n and let I be the identity matrix of order n . Then
the matrix polynomial given by $A-x I$ is called the characteristic matrix of A
The determinant $|A-x I|$ which is an ordinary polynomial in x of degree n is called the characteristic polynomial of A.

The equation $|A-x I|=0$ is called the characteristic equation of A .

Example 1.

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.
Then the characteristic matrix of A is $A-x I$ given by

$$
\begin{aligned}
& \left.A-x I=\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)-x\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) . \\
& =\left(\begin{array}{cc}
1-x & 2 \\
3 & 4-x
\end{array}\right) .
\end{aligned}
$$

\therefore The characteristic polynomial of A is $|A-x I|=\left|\begin{array}{cc}1-x & 2 \\ 3 & 4-x\end{array}\right|$
$=(1-x)(4-x)-6$
$=x^{2}-5 x-2$
\therefore The characteristic equation of A is $|A-x I|=0$
$\therefore x^{2}-5 x-2=0$ is the characteristic equation of A .
Example 2. Let $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right)$
The characteristic matrix of A is $A-x I$ given by

$$
\left.A-x I=\begin{array}{ccc}
1-x & 0 & 2 \\
0 & 1-x & 2 \\
1 & 2 & -x
\end{array}\right)
$$

The Characteristic polynomial of A is

$$
\begin{aligned}
& |A-x I|=\left|\begin{array}{ccc}
1-x & 0 & 2 \\
0 & 1-x & 2 \\
1 & 2 & -x
\end{array}\right| \\
& =(1-x)[(1-x)(-x)-4]-2(1-x) \\
& =-x(1-x)^{2}-4(1-x)-2+2 x \\
& =-x^{3}+2 x^{2}-x-4+4 x-2+2 x \\
& =-x^{3}+2 x^{2}+5 x-6
\end{aligned}
$$

\therefore The characteristic equation of A is
$-x^{3}+2 x^{2}+5 x-6=0$
(i.e) $x^{3}-2 x^{2}-5 x+6=0$

Theorem (Cayley Hamilton Theorem)

Any square matrix A satisfies its Characteristic equation.
(i.e) if $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ is the characteristic polynomial of degree n of A then $a_{0}+a_{1} A+a_{2} A^{2}+\cdots+a_{n} A^{n}=0$

Proof

Let A be a square matrix of order n.
Let $|A-x I|=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \ldots .$. (i)
Be the characteristic polynomial of A
Now, $\operatorname{adj}(A-x I)$ is a matrix polynomial of degree $n-1$ since each entry of the matrix $\operatorname{adj}(A-x I)$ is a cofactor of $A-x I$ and hence is a polynomial of degree $\leq n-1$
\therefore Let $\operatorname{adj}(A-x I)=B_{0}+B_{1} x+B_{2} x^{2}+\cdots+B_{n-1} x^{n-1}$
Now, $(A-x I) \operatorname{adj}(A-x I)=|A-x I| I($ since $(\operatorname{adj} A) A=A(\operatorname{adj} A)=|A| I)$
($\left.a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)$ Iusing (1) and (2)
\therefore Equating the coefficients of the corresponding powers of x we ger
$A B_{0}=a_{0} I$
$A B_{1}-B_{0}=a_{1} I$
$A B_{2}-B_{1}=a_{2} I$
\qquad
\qquad
$A B_{n-1}-B_{n-2}=a_{n-1} I$
$-B_{n-1}=a_{n} I$
Pre-multiplying the above equations by $I, A, A^{2}, \ldots, A^{n}$ respectively and adding we get $a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{n} A^{n}=0$

Note. The inverse of a non-singular matrix can be calculated by using the cayley Hamilton theorem as follows.

Let $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ be the characteristic polynomials of A
Then by theorem we have $a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{n} A^{n}=0$
Since $|A-x I|=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ we get $a_{0}=|A|$ (by putting $x=0$)
$\therefore a_{0} \neq 0$ (since A is a non singular matrix)
$\therefore I=-\frac{1}{a_{0}}\left[a_{1} A+a_{2} A^{2}+\cdots+a_{n} A^{n}\right]($ by (3))
$\therefore A^{-1}=-\frac{1}{a_{0}}\left[a_{1} I+a_{2} A+\cdots+a_{n} A^{n-1}\right]$

Solved problems.

Problem 1.

Find the characteristic equation of the matrix $A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$
Solution.
The characteristic equation of A is given by $|A-\lambda I|=0$
(i.e.) $\left|\begin{array}{ccc}8-\lambda & -6 & 2 \\ -6 & 7-\lambda & -4 \\ 2 & -4 & 3-\lambda\end{array}\right|=0$
$(8-\lambda)[(7-\lambda)(3-\lambda)-16]+6[-6(3-\lambda)+8]+2[24-2(7-\lambda)]=0$
(i.e.) $(8-\lambda)\left(\lambda^{2}-10 \lambda+5\right)+6(6 \lambda-10)+2(2 \lambda+10)=0$
(i.e.) $\left(8 \lambda^{2}-80 \lambda+40-\lambda^{3}+10 \lambda^{2}-5 \lambda\right)+(36 \lambda-60)+(4 \lambda+10)=0$
(i.e.) $\lambda^{3}-18 \lambda^{2}+45 \lambda=0$ which represents the characteristic equation of A.

Problem 2. Show that the non-singular matrix $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$ satisfies the equation $A^{2}-2 A-5 I=0$. Hence evaluate A^{-1}.

Solution.

The characteristic polynomial of A is $|A-x I|=\left|\begin{array}{cc}1-x & 2 \\ 3 & 1-x\end{array}\right|=x^{2}-2 x-5$
\therefore By Cayley-Hamilton theorem $A^{2}-2 A-5 I=0$
$\therefore I=\frac{1}{5}\left(A^{2}-2 A\right)$
$\therefore A^{-1}=\frac{1}{5}(A-2 I)$
$=\frac{1}{5}\left[\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)-2\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right]$
$=\frac{1}{5}\left(\begin{array}{cc}-1 & 2 \\ 3 & -1\end{array}\right)$

Problem 3.

Show that the matrix $A=\left[\begin{array}{ccc}2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4\end{array}\right]$ satisfies the equation $A(A-I)(A+2 I)=0$
Solution.

The characteristic polynomial of A is $|A-\lambda I|=\left|\begin{array}{ccc}2-\lambda & -3 & 1 \\ 3 & 1-\lambda & 3 \\ -5 & 2 & -4-\lambda\end{array}\right|$
$=-\lambda^{3}-\lambda^{2}+2 \lambda$ (verify)
\therefore Bycaylay-Hamilton theorem $-A^{3}-A^{2}+2 A=0$
(i.e.) $A^{3}+A^{2}-2 A=0$. Hence $A\left(A^{2}+A-2 I\right)=0$
$\therefore A(A+2 I)(A-I)=0$

Problem 4.

Using Cayley-hamilton theorem find the inverse of the matrix $\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$

Solution.

Let $A=\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$
The characteristic polynomial of $A=|A-x I|=\left|\begin{array}{ccc}7-x & 2 & -2 \\ -6 & -1-x & 2 \\ 6 & 2 & -1-x\end{array}\right|$
$=(7-x)\left[(1+x)^{2}-4\right]-2[6(1+x)-12]-2[-12+6(1+x)]$
$=(7-x)\left(x^{2}+2 x-3\right)-12(x-1)-12(x-1)$
$=7 x^{2}+12 x-21-x^{3}-2 x^{2}+3 x-12 x+12-12 x+12$
$=-x^{3}+5 x^{2}-7 x+3$
\therefore byCayley-Hamilton Theorem
$-A^{3}+5 A^{2}-7 A+3 I_{3}=0$
$\therefore A^{3}-5 A^{2}+7 A-3 I_{3}=0$
$\therefore 3 I_{3}=A^{3}-5 A^{2}+7 A$
$\therefore I_{3}=\frac{1}{3}\left(A^{3}-5 A^{2}+7 A\right)$
Pre (or post) multiplying by A^{-1} on both sides we get
$\therefore A^{-1}=\frac{1}{3}\left(A^{2}-5 A+7 I_{3}\right) \ldots$
Now, $A^{2}=\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$
$=\left[\begin{array}{ccc}25 & 8 & -8 \\ -24 & -7 & 8 \\ 24 & 8 & -7\end{array}\right]$
\therefore from (1)

$$
\begin{aligned}
& A^{-1}=\frac{1}{3}\left(\left[\begin{array}{ccc}
25 & 8 & -8 \\
-24 & -7 & 8 \\
24 & 8 & -7
\end{array}\right]-\left[\begin{array}{ccc}
35 & 10 & -10 \\
-30 & -5 & 10 \\
30 & 10 & -5
\end{array}\right]+7\left[\begin{array}{lll}
7 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 7
\end{array}\right]\right) \\
& =\frac{1}{3}\left[\begin{array}{ccc}
-3 & -2 & 2 \\
6 & 5 & -2 \\
-6 & -2 & 5
\end{array}\right]
\end{aligned}
$$

Problem 5.

Find the inverse of the matrix $\left[\begin{array}{ccc}3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ using Caylay-Hamilton theorem.

Solution.

The characteristic polynomial of $A=|A-x I|=\left[\begin{array}{ccc}3-x & 3 & 4 \\ 2 & -3-x & 4 \\ 0 & -1 & 1-x\end{array}\right]$
$=-x^{3}+x^{2}+11 x-11$
\therefore byCayley-Hamilton Theorem
$-A^{3}+A^{2}+11 A-11=0$
$\therefore A^{3}-A^{2}-11 A+11 I_{3}=0$
Hence $11 I_{3}=-\left(A^{3}-A^{2}-11 A\right)$
$I_{3}=-\frac{1}{11}\left(A^{3}-A^{2}-11 A\right)$
Pre (post) multiplying by A^{-1} on both sides we get
$A^{-1}=-\frac{1}{11}\left(A^{2}-A-11 I_{3}\right)$
$=-\frac{1}{11}\left[\left[\begin{array}{ccc}15 & -4 & 28 \\ 0 & 11 & 0 \\ -2 & 2 & -3\end{array}\right]-\left[\begin{array}{ccc}3 & 3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]-11\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right]=\left[\begin{array}{ccc}-\frac{1}{11} & \frac{7}{11} & -\frac{24}{11} \\ \frac{2}{11} & -\frac{3}{11} & \frac{4}{11} \\ \frac{2}{11} & -\frac{3}{11} & \frac{15}{11}\end{array}\right]$
Problem 6. Verify Cayley Hamilton's theorem foe the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$
Solution.
The characteristic equation of A is $|A-\lambda I|=0$
$\therefore\left|\begin{array}{cc}1-\lambda & 2 \\ 4 & 3-\lambda\end{array}\right|=0$
$\therefore(1-\lambda)(3-\lambda)-8=0$
$\therefore \lambda^{2}-4 \lambda-5=0$
By byCayley-Hamilton Theorem A satisfies its characteristic equation
\therefore We have $A^{2}-4 A-5 I=0$
Now, $A^{2}=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)=\left(\begin{array}{cc}9 & 8 \\ 16 & 17\end{array}\right)$
$4 A=\left(\begin{array}{cc}4 & 8 \\ 16 & 12\end{array}\right)$ and $5 I=\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$
$A^{2}-4 A-5 I=\left(\begin{array}{cc}9 & 8 \\ 16 & 17\end{array}\right)-\left(\begin{array}{cc}4 & 8 \\ 16 & 12\end{array}\right)-\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=0$
The Cayley-Hamilton Theorem is verified

Theorem 7.

Using Cayley-Hamilton Theorem for matrix $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]$ find (i) A^{-1} (ii) A^{4}
Solution.
The characteristic equation of A is $|A-\lambda I|=0$
$\therefore\left|\begin{array}{ccc}1-\lambda & 0 & -2 \\ 2 & 2-\lambda & 4 \\ 0 & 0 & 2-\lambda\end{array}\right|=0$
(i.e.) $\lambda^{3}-5 \lambda^{2}+8 \lambda-4=0$

By Cayley-Hamilton Theorem
$A^{3}-5 A^{2}+8 A-4 I_{3}=0$
$4 I_{3}=A^{3}-5 A^{2}+8 A$
(i) To find A^{-1} pre multiplying by A^{-1} we get
$4 A^{-1}=A^{-1} A^{3}-5 A^{-1} A^{2}+8 A^{-1} A$
$4 A^{-1}=A^{2}-5 A+8 I$
$A^{-1}=\frac{1}{4}\left(A^{2}-5 A+8 I\right)$
Now, $A^{2}=\left[\begin{array}{ccc}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & -6 \\ 6 & 4 & 12 \\ 0 & 0 & 4\end{array}\right]$
From (2)
$A^{-1}=\frac{1}{4}\left(\left[\begin{array}{ccc}1 & 0 & -6 \\ 6 & 4 & 12 \\ 0 & 0 & 4\end{array}\right]-\left[\begin{array}{ccc}5 & 0 & -10 \\ 10 & 10 & 20 \\ 0 & 0 & 10\end{array}\right]+\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]\right)$

$$
A^{-1}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & \frac{1}{2} & -2 \\
0 & 0 & -\frac{1}{2}
\end{array}\right]
$$

(ii) \quad To find A^{4}

$$
\begin{aligned}
& \text { From (1) } A^{3}=5 A^{2}-8 A+4 I_{3} \\
& =5\left(5 A^{2}-8 A+4 I\right)-8 A+4 I_{3} \text { (using (1)) } \\
& =17 A^{2}-36 A+20 I \\
& =17\left[\begin{array}{ccc}
1 & 0 & -6 \\
6 & 4 & 12 \\
0 & 0 & 4
\end{array}\right]-36\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 2 & 4 \\
0 & 0 & 2
\end{array}\right]+20\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
17 & 0 & -102 \\
102 & 684 & 204 \\
0 & 0 & 68
\end{array}\right]-\left[\begin{array}{ccc}
36 & 0 & -72 \\
72 & 72 & 144 \\
0 & 0 & 72
\end{array}\right]+\left[\begin{array}{ccc}
20 & 0 & 0 \\
0 & 20 & 0 \\
0 & 0 & 20
\end{array}\right] \\
& \therefore A^{4}=\left[\begin{array}{ccc}
1 & 0 & -30 \\
30 & 16 & 260 \\
0 & 0 & 16
\end{array}\right]
\end{aligned}
$$

UNIT - V

EIGEN VALUES AND EIGEN VECTORS

Definition:

Let A be an $n \times n$ matrix. A number λ is called an eigen value of A if there exists a non-zero vector $X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ . \\ x_{n}\end{array}\right]$ such that $A X=\lambda X$ and X is called an eigen vector correcponding to the eigen value λ

Remark 1. If X is an eigen vector corresponding to the eigen value λ of A , then αX where α is any non-zero number, is also an eigen vector corresponding to λ

Remark 2. Let X be an eigen vector corresponding to the eigen value λ of A . Then $A X=\lambda$ so that $(A-\lambda I) X=0$. Thus X is a non-trivial solution of the system of homogeneous linear equations $(A-\lambda I) X=0$. Hence $|A-\lambda I|=0$ which is the characteristic polynomial of A .
Let $|A-\lambda I|=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}$
The roots of this polynomial give the eigen values of A. Hence eigen values are also called characteristic roots.

Properties of Eigen Values

Property 1. Let X be an eigen vector corresponding to the eigen values λ_{1} and λ_{2}. Then $\lambda_{1}=\lambda_{2}$
Proof. By definition $X \neq 0, A X=\lambda_{1} X$ and $A X=\lambda_{2} X$
$\therefore \lambda_{1} X=\lambda_{2} X$
$\therefore\left(\lambda_{1}-\lambda_{2}\right) X=0$
Since $X \neq 0, \lambda_{1}=\lambda_{2}$
Property 2. Let A be a square matrix.
Then (i) the sum of the eigen values of A is equal to the sum of the diagonal elements (trace) of A
(ii) product of eigen values of A is $|A|$

Proof.
(i) Let $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right]$

The eigen values of A are the roots of the characteristic equation
$|A-\lambda I|=\left|\begin{array}{cccc}a_{11}-\lambda & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22}-\lambda & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}-\lambda\end{array}\right|=0 \ldots(1)$
Let $|A-\lambda I|=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n} \quad \ldots$ (2)
From (1) and (2) weget
$a_{0}=(-1)^{n} ; a_{1}=(-1)^{n-1}\left(a_{11}+a_{22}+\cdots+a_{n n}\right) ; \ldots$ (3)
Also by putting $\lambda=0$ is (2) we get $a_{n}=|A|$
Now let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigen values of A.
$\therefore \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the roots of (2)
$\therefore \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=-\frac{a_{1}}{a_{0}}=a_{11}+a_{22}+\cdots+a_{n n}$ (using (3))
\therefore sum of the eigen values $=$ trace of A .
(ii) Product of the eigen values =product of the roots

$$
\begin{aligned}
& =\lambda_{1} \lambda_{2} \ldots \lambda_{n} \\
& =(-1)^{n} \frac{a_{n}}{a_{0}} \\
& =\frac{(-1)^{n} a_{n}}{(-1)^{n}} \\
& =a_{n} \\
& =|A|
\end{aligned}
$$

Property 3. The eigen values of A and its transpose A^{T} are the same
Proof.
It is enough if we prove that A and A^{T} have the same characteristic polynomial. Since for any square matrix $M,|M|=|M|^{T}$ we have

$$
|A-\lambda I|=\left|(A-\lambda I)^{T}\right|=\left|(A)^{T}-(\lambda I)^{T}\right|=\left|A^{T}-\lambda\right|
$$

Hence the result
Property 4. If λ is an eigen value of a non singular matrix A then $\frac{1}{\lambda}$ is an eigen value of A^{-1}
Proof. Let X be an eigen vector corresponding to λ
Then $A X=\lambda X$. Since A is non singular A^{-1} exists
$\therefore A^{-1}(A X)=A^{-1}(\lambda X)$
$I X=\lambda A^{-1} X$
$\therefore A^{-1} X=\left(\frac{1}{\lambda}\right) X$
$\therefore\left(\frac{1}{\lambda}\right)$ is an eigen value of A^{-1}
Corollary. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigen values of a non singular matrix A then $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots, \frac{1}{\lambda_{n}}$ are the eigen values of A^{-1}

Property 5. If λ is an eigen value of A then $k \lambda$ is an eigen value of $k A$ where k is a scalar.
Proof. Let X be an eigen vector corresponding to λ
Then $A X=\lambda \quad . . .(1)$
Now, $(k A) X=k(A X)$
$=k(\lambda X) \quad(b y(1))$
$=(k \lambda) X$
$\therefore k \lambda$ is an eigen value of $k A$
Property 6. If λ is an eigen value of A then λ^{k} is an eigen value of A^{k} where k is any positive integer

Proof . Let X be an eigen vector corresponding to λ
Then $A X=\lambda X \ldots$...(1)
Now, $A^{2} X=(A A) X=A(A X)$
$=A(\lambda X \quad(b y(1))$
$=\lambda(A X)$
$=\lambda(\lambda X) \quad(b y(1))$
$=\lambda^{2} X$
λ^{2} is an eigen value of A^{2}
Proceeding like this we can prove that λ^{k} is an eigen value of A^{k} where k is any positive integer
Corollary. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigen values of A then $\lambda_{1}{ }^{K}, \lambda_{2}{ }^{K}, \ldots, \lambda_{n}{ }^{k}$ are eigen values of A^{k} for any positive integer k .

Property 7. Eigen vectors corresponding to distinct eigen values of a matrix are linearly independent

Proof. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct eigen values of a matrix and let X_{i} be the eigen vector corresponding to λ_{i}
Hence $A X_{i}=\lambda_{i} X_{i}(i=1,2,3, \ldots k) \ldots$ (1)
Now, suppose $X_{1}, X_{2}, \ldots, X_{k}$ are linearly dependent. Then there exist real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$
not all zero, such that $\alpha_{1} X_{1}+\alpha_{2} X_{2}+\cdots+\alpha_{k} X_{k}=0$. Among all such relations, we choose one of shortest length say i.

By rearranging the vectors $X_{1}, X_{2}, \ldots, X_{k}$ we may assume that
$\alpha_{1} X_{1}+\alpha_{2} X_{2}+\cdots+\alpha_{j} X_{j}=0$
$\therefore A\left(\alpha_{1} X_{1}\right)+A\left(\alpha_{2} X_{2}\right)+\cdots+A\left(\alpha_{j} X_{j}\right)=0$
$\therefore \alpha_{1}\left(A X_{1}\right)+\alpha_{2}\left(A X_{2}\right)+\cdots+\alpha_{j}\left(A X_{j}\right)=0$
$\therefore \alpha_{1}\left(\lambda_{1} X_{1}\right)+\alpha_{2}\left(\lambda_{2} X_{2}\right)+\cdots+\alpha_{j}\left(\lambda_{j} X_{j}\right)=0 \ldots$ (3)
Multiplying (2) by λ_{1} and subtracting from (3), we get
$\therefore \alpha_{2}\left(\lambda_{1}-\lambda_{2}\right) X_{2}+\alpha_{3}\left(\lambda_{1}-\lambda_{3}\right) X_{3}+\cdots+\alpha_{j}\left(\lambda_{1}-\lambda_{j}\right) X_{j}=0$.
And since $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct and $\alpha_{2} \ldots . \alpha_{j}$ are non-zero we have

$$
\alpha_{i}\left(\lambda_{1}-\lambda_{i}\right) \neq 0 i=2,3, \ldots j
$$

Thus (4) gives a relation whose length is $j-1$, giving a contradiction Hence $X_{1}, X_{2}, \ldots, X_{k}$ are linearly dependent.

Property 8. The characteristic roots of a Hermitian matrix are all real

Proof.

Let A be a Hermitian matrix
Hence $A=A^{-1} \ldots$ (1)
Let λ be a characteristic root of A and let S be a characteristic vector corresponding to λ
$\therefore A X=\lambda X$....(2)
Now

$$
\begin{aligned}
& A X=\lambda \Rightarrow \bar{X}^{T} A X=\lambda \bar{X}^{T} X \\
& \Rightarrow\left(\bar{X}^{T} A X\right)^{T}=\lambda \bar{X}^{T} X \text { (since } X^{T} A X \text { is a } 1 \times 1 \text { matrix) } \\
& \Rightarrow X^{T} A^{T}\left(\bar{X}^{T}\right)^{T}=\lambda \bar{X}^{T} X \\
& \Rightarrow X^{T} A^{T} \bar{X}=\lambda \bar{X}^{T} X \\
& \Rightarrow \overline{X^{T} A^{T}} \bar{X}=\overline{\lambda X^{T} X} \\
& \Rightarrow \bar{X}^{T} \bar{A}^{T} X=\bar{\lambda} X^{T} \bar{X} \\
& \Rightarrow \bar{X}^{T} A X=\bar{\lambda} X^{T} \bar{X} \quad \text { (using 1) } \\
& \Rightarrow \bar{X}^{T} \lambda X=\bar{\lambda} X^{T} \bar{X} \quad \text { (using 2) } \\
& \Rightarrow \lambda\left(\bar{X}^{T} X\right)=\bar{\lambda}\left(X^{T} \bar{X}\right) \ldots(3)
\end{aligned}
$$

Now,
$\bar{X}^{T} X=X^{T} \bar{X}=\overline{x_{1}} x_{1}+\overline{x_{2}} x_{2}+\cdots+\overline{x_{n}} x_{n}$
$=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2}$
$\neq 0$
\therefore From (3) we get $\lambda=\bar{\lambda}$
Hence λ is real
Corollary. The characteristic roots of a real symmetric matrix are real.
Proof.
We know that any real symmetric matrix is Hermitian. Hence the result follows from the above property.

Property 9.

The characteristic roots of a skew Hermitian matrix are either purely imaginary or zero

Proof.

Let A be a skew Hermitian matrix and λ be a characteristic root of A
$|A-\lambda I|=0$
$|i A-i \lambda I|=0$
$i \lambda$ is a characteristic root of $i A$
Since A is skew Hermitiani A is Hermitian
$i \lambda$ is real. Hence λ is purely imaginary or zero
Corollary. The characteristic roots of a real skew symmetric matrix are either purely imaginary or zero

Proof. We know that any real skew symmetric matrix is skew Hermitian
Hence the result follows from the above property

Property 10.

Let λ be characteristic root of an unitary matrix A. Then $|\lambda|=1$. (i.e.) the characteristic roots of a unitary matrix are all the unit modulus

Proof

Let λ be a characteristic root of an unitary matrix A and X be a characteristic vector corresponding to λ
$\therefore A X=\lambda X \ldots$...(1)
Taking conjugate and transpose in (1) we get
$(\overline{A X})^{T}=(\overline{\lambda X})^{T}$
$\therefore \bar{X}^{T} \bar{A}^{T}=\bar{\lambda} \bar{X}^{T}$
Multiplying (1) and (2) we get
$\overline{X^{T} A^{T}}(A X-)=\left(\bar{\lambda} \bar{X}^{T}\right)(\lambda X)$
$\therefore \bar{X}^{T}\left(\bar{A}^{T} A\right) X=(\bar{\lambda} \lambda)\left(\bar{X}^{T} X\right)$
Now, since A is an unitary matrix $\bar{A}^{T} A=1$
Hence $\left(\bar{X}^{T} X\right)=(\bar{\lambda} \lambda)\left(\bar{X}^{T} X\right)$

Since X is non-zero vector \bar{X}^{T} is also non-zero vector and
$\left(\bar{X}^{T} X\right)=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2} \neq 0$ we get $(\bar{\lambda} \lambda)=1$
Hence $|\lambda|^{2}=1$. Hence $|\lambda|=1$

Corollary. Let λ be a characteristic root of an orthogonal matrix A. Then $|\lambda|=1$

Since any orthogonal matrix is unitary the result follows from property 10.

Property 11. Zero is an eigen value of A if and only if A is a singular matrix.

Proof.

The eigen values of A are the roots of the characteristic equation $|A-\lambda I|=0$. Now, 0 is an eigen value of $A \Leftrightarrow|A-0 I|=0$
$\Leftrightarrow|A|=0$
$\Leftrightarrow A$ is a singular matrix

Property 12. If A and B are two square matrices of the same order then $A B$ and $B A$ have the same eigen values.

Solution

Let λ be an eigen value of $A B$ and X be an eigen vector corresponding to λ.
$\therefore(A B) X=\lambda X$
$\therefore B(A B) X=B(\lambda X)=\lambda(B X$
$\therefore(B A)(B X)=\lambda(B X$
$\therefore(B A) Y=\lambda Y$ where $Y=(B X)$

Hence λ is an eigen value of BA

Also $B X$ is the corresponding eigen vector.

Property 13. If P and A are $n \times n$ matrices and P is a non-singular matrix then A and $P^{-1} A P$ have the same eigen values

Proof.

Let $B=P^{-1} A P$

To prove A and B have same eigen values, it is enough to prove that the characteristic polynomials of A and B are the same.

Now $|B-\lambda I|=\left|P^{-1} A P-\lambda I\right|$
$=\left|P^{-1} A P-P^{-1}(\lambda I) P\right|$
$=\left|P^{-1}(A-\lambda I) P\right|$
$=\left|P^{-1}\right||A-\lambda I||P|$
$=\left|P^{-1}\right||P||A-\lambda I|$
$=\left|P^{-1} P\right||A-\lambda I|$
$=|I||A-\lambda I|$
$=|A-\lambda I|$
\therefore The characteristic equation of A and and $P^{-1} A P$ have the same eigen values

Property 14.
If λ is a characteristic root of A then $f(\lambda)$ is a characteristic root of the matrix $f(A)$ where $f(x)$ is any polynomial.

Proof

Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ where $a_{0} \neq 0$ and $a_{0}, a_{1}, \ldots a_{n}$ are all real numbers
$\therefore f(A)=a_{0} A^{n}+a_{1} A^{n-1}+\cdots+a_{n-1} A+a_{n} I$

Since λ is a characteristic root of A, λ^{n} is a characteristic root of A^{n} for any positive integer n (refer property 6)
$\therefore A^{n} X=\lambda^{n} X$
$A^{n-1} X=\lambda^{n-1} X$
\qquad
\qquad
$A X=\lambda X$
$a_{0} A^{n} X=a_{0} \lambda^{n} X$
$a_{1} A^{n-1} X=a_{1} \lambda^{n-1} X$
\qquad
\qquad
$a_{n-1} A X=a_{n-1} \lambda X$

Adding the above equations we have
$a_{0} A^{n} X+a_{1} A^{n-1} X+\cdots+a_{n-1} A X=a_{0} \lambda^{n} X+a_{1} \lambda^{n-1} X+\cdots+a_{n-1} \lambda X$
$\therefore\left(a_{0} A^{n}+a_{1} A^{n-1}+\cdots+a_{n-1} A\right) X=\left(a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda\right) X$
$\therefore\left(a_{0} A^{n}+a_{1} A^{n-1}+\cdots+a_{n-1} A+a_{n} I\right) X=\left(a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda+a_{n}\right) X$
$\therefore f(A) X=f(\lambda) X$

Hence $f(\lambda)$ is a characteristic root of $f(A)$

Solved Problems

Problem 1.

If X_{1}, X_{2} are eigen vectors corresponding to an eigen value λ then $a X_{1}+b X_{2}$ (a, b non-zero scalar) is also an eigen vector corresponding to λ

Solution.

Since X_{1}, X_{2} are eigen vectors corresponding to an eigen value λ, we have
$A X_{1}=\lambda X_{1}$ and $A X_{2}=\lambda X_{2}$

And hence $A\left(a X_{1}\right)=\lambda\left(a X_{1}\right)$ and $A\left(b X_{2}\right)=\lambda\left(b X_{2}\right)$
$\therefore A\left(a X_{1}+b X_{2}\right)=\lambda\left(a_{1}+b X_{2}\right)$
$\therefore\left(a X_{1}+b X_{2}\right.$ is an eigen vector corresponding to λ

Problem 2.

If the eigen values of $A=\left[\begin{array}{ccc}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$ are $2,2,3$ find the eigen values of A^{-1} and A^{2}

Solution

Since 0 is not an eigen value of A, A is a non singular matrix and hence A^{-1} exists

Eigen values of A^{-1} are $\frac{1}{2}, \frac{1}{2}, \frac{1}{3}$ and eigen values of A^{2} are $2^{2}, 2^{2}, 3^{2}$

Problem 3.

Find the eigen values of A^{5} when $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1\end{array}\right]$

Solution. The characteristic equation of A is obviously $(3-\lambda)(4-\lambda)(1-\lambda)=0$

Hence the eigen values of A are 3,4,1
\therefore the eigen values of A^{5} are $3^{5}, 4^{5}, 1^{5}$

Problem 4. Find the sum and product of the eigen values of the matrix $\left[\begin{array}{lll}3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3\end{array}\right]$ without actually finding the eigen values.

Solution.

Let $A=\left[\begin{array}{lll}3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3\end{array}\right]$
Sum of the eigen values $=$ trace of $A=3+(-2)+3=4$

Product of the eigen values $=|A|$
Now, $|A|=\left|\begin{array}{lll}3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3\end{array}\right|$
$=3(-6+4)+4(3-4)-4(-1+2)$
$=-6-4-4=-14$
\therefore The product of the eigen values $=-14$

Problem 5. Find the characteristic roots of the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$

Solution.

Let $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
The characteristic equation of A is given by $|A-\lambda I|=0$
$\left|\begin{array}{cc}\cos \theta-\lambda & -\sin \theta \\ -\sin \theta & \cos \theta-\lambda\end{array}\right|=0$
$(\cos \theta-\lambda)^{2}-\sin ^{2} \theta=0$
$(\cos \theta-\lambda-\sin \theta)(\cos \theta-\lambda+\sin \theta)=0$
$[\lambda-(\cos \theta-\sin \theta)][\lambda-(\cos \theta+\sin \theta)]=0$

The two characteristic roots (the two eigen values of the matrix are $(\cos \theta-\sin \theta)$ and $(\cos \theta+\sin)$

Problem 6.

Find the characteristic roots of the matrix $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right)$

Solution.

Let $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$

The characteristic equation of A is given by $|A-\lambda I|=0$
$\left|\begin{array}{cc}\cos \theta-\lambda & -\sin \theta \\ -\sin \theta & -\cos \theta-\lambda\end{array}\right|=0$
$-\left(\cos ^{2} \theta-\lambda^{2}\right)-\sin ^{2} \theta=0$
$\lambda^{2}-\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=0$
$\lambda^{2}-1=0$

The characteristic roots 1 and -1

Problem 7.

Find the sum and product of the eigen values of the matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ without finding the roots of the characteristic equation.

Solution.

Sum of the eigen values of $\mathrm{A}=$ trace of $A=a_{11}+a_{22}$

Product of the eigen values of $A=|A|=a_{11} a_{22}-a_{12} a_{21}$

Problem 8.

Verify the statement that the sum of the elements in the diagonal of a matrix is the sum of the eigen values of the matrix

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

Solution

The characteristic equation of A is $|A-\lambda I|=0$
(i.e) $\left|\begin{array}{ccc}-2-\lambda & 2 & -3 \\ 2 & 1-\lambda & -6 \\ -1 & -2 & 0-\lambda\end{array}\right|=0$
$($ i.e $)(-2-\lambda)[(1-\lambda)(-\lambda)-12]-2[-2 \lambda-6]-3[-4+(1-\lambda)]=0$
$($ i.e $)(-2-\lambda)\left[\lambda^{2}-\lambda-12\right]+4(\lambda+3)+3(\lambda+3)=0$
(i.e.) $-2 \lambda^{2}+2 \lambda+24-\lambda^{3}+\lambda^{2}+12 \lambda+4 \lambda+12+3 \lambda+9=0$
(i.e.) $-\lambda^{3}-\lambda^{2}+21 \lambda+45=0$
(i.e.) $\lambda^{3}+\lambda^{2}-21 \lambda-45=0$

This is a cubic equation in λ and hence it has 3 roots and the three roots are the three eigen values of the matrix

The sum of the eigen valued $=-\left(\frac{\text { coefficiient of } \lambda^{2}}{\text { coefficiient of } \lambda^{3}}\right)=-1$

The sum of the elements on the diagonal of the matrix $A=-2+1+0=-1$

Hence the result

Problem 9.

The product of two eigen values of the matrix $A=\left(\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right)$ is 16 . Find the third eigen value. What is the sum of the eigen values of A ?

Solution.

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigen values of A.

Given, product of 2 eigen values (say) λ_{1}, λ_{2} is 16
$\therefore \lambda_{1}, \lambda_{2}=16$

We know that the product of the eigen values of $|A|$
(i.e.) $\lambda_{1} \lambda_{2} \lambda_{3}=\left|\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right|$
(i.e.) $16 \lambda_{3}=6(9-1)+2(-6+2)+2(2-6)$
$=48-8-8$
$=32$
$\therefore \lambda_{3}=2$
\therefore The third eigen value is 2

Also we know that the sum of the eigen vales of
$A=$ trace of $A=6+3+3=12$

Problem 10.

The product of the two eigen values of the matrix $A=\left[\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right]$ is -12 . Find the eigen values of A.

Solution.

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigen values of A.

Given, product of 2 eigen values (say) λ_{1}, λ_{2} is -12
$\therefore \lambda_{1}, \lambda_{2}=-12 \ldots(1)$

We know that the product of the eigen values of $|A|$
(i.e.) $\lambda_{1} \lambda_{2} \lambda_{3}=\left|\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right|$
(i.e.) $12 \lambda_{3}=-12$
$\therefore \lambda_{3}=1 \ldots(2)$
\therefore The third eigen value is 1

Also we know that the sum of the eigen vales $=\operatorname{tra}$ of A
$\lambda_{1}+\lambda_{2}+\lambda_{3}=2+1-3=0$
$\lambda_{1}+\lambda_{2}=-1$ (using (2)) ... (3)

Using (3) in (1) we get $\lambda_{1}\left(-1-\lambda_{1}\right)=-12$
$\lambda_{1}{ }^{2}+\lambda_{1}-12=0$
$\left(\lambda_{1}+4\right)\left(\lambda_{1}-3\right)=0$
$\lambda_{1}=3 o r-4$

Putting $\lambda_{1}=3$ in (1) we get $\lambda_{2}=-4$. Or putting $\lambda_{1}=-4$ in (4) we get $\lambda_{2}=3$

Thus the three eigen values are $3,-4,1$

Problem 11.

Find the sum of the squares of the eigen values of $A=\left(\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right)$

Solution.

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigen values of A.
We know that $\lambda_{1}{ }^{2}, \lambda_{2}{ }^{2}, \lambda_{3}{ }^{2}$ are the eigen values of A^{2}
$A^{2}=\left(\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right)\left(\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right)$
$=\left(\begin{array}{lll}9 & 5 & 38 \\ 0 & 4 & 42 \\ 0 & 0 & 25\end{array}\right)$
\therefore Sum of the eigen values of $A^{2}=$ Trace of A^{2}
$=9+4+25$
(i.e.) $\lambda_{1}{ }^{2}, \lambda_{2}{ }^{2}, \lambda_{3}{ }^{2}=38$
\therefore Sum of the squares of the eigen values of $A=38$

Problem 12.

Find the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

Solution.

The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \therefore\left|\begin{array}{ccc}
1-\lambda & 1 & 3 \\
1 & 5-\lambda & 1 \\
3 & 1 & 1-\lambda
\end{array}\right|=0 \\
& \therefore(1-\lambda)[(5-\lambda)(1-\lambda)-1]-[(1-\lambda)-3]+3[1-3(5-\lambda)]=0 \\
& (1-\lambda)\left(\lambda^{2}-6 \lambda+4\right)+(\lambda+2)+3(3 \lambda-14)=0 \\
& \lambda^{2}-6 \lambda+4+6 \lambda^{2}-4 \lambda+\lambda+2+9 \lambda-42=0 \\
& \therefore-\lambda^{3}+7 \lambda^{2}-36=0 . \text { Hence } \lambda^{3}-7 \lambda^{2}+36=0 \\
& \therefore(\lambda+2)\left(\lambda^{2}-9 \lambda+18\right)=0
\end{aligned}
$$

$$
\text { Hence }(\lambda+2)(\lambda-6)(\lambda-3)=0
$$

$\therefore \lambda=-2,3,6$ are the three eigen values

Case (i)

Eigen vector corresponding to $\lambda=-2$

Let $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ be an eigen vector corresponding to $\lambda=-2$

Hence $A X=-2 X$
(i.e.) $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}-2 x_{1} \\ -2 x_{2} \\ -2 x_{3}\end{array}\right]$
$\therefore x_{1}+x_{2}+3 x_{3}=-2 x_{1}$
$x_{1}+5 x_{2}+x_{3}=-2 x_{2}$
$3 x_{1}+x_{2}+x_{3}=-2 x_{3}$
$\therefore 3 x_{1}+x_{2}+3 x_{3}=0$
$x_{1}+7 x_{2}+x_{3}=0$
$3 x_{1}+x_{2}+3 x_{3}=0$

Clearly this system of three equations reduces to two equations only from (1) and (2) we get
$\therefore x_{1}=-2 k ; x_{2}=0 ; \quad x_{3}=2 k$
\therefore It has only one independent solution and can be obtained by giving any value to k say $k=1$
$\therefore(-2,0,2)$ is an eigen vector corresponding to $\lambda=-2$

Case (ii)

Eigen vector corresponding to $\lambda=3$.

Then $A X \quad 3 X$ gives

$$
-2 x_{1}+x_{2}+3 x_{3}=0
$$

$x_{1}+2 x_{2}+x_{3}=0$
$3 x_{1}+x_{2} \pm 2=0$

Taking the first 2 equations we get
$\frac{x_{1}}{-5}=\frac{x_{2}}{5}=\frac{x_{3}}{-5}=k(s a$
$\therefore x_{1}=-k ; x_{2}=k ; x_{3}=-k$

Taking $k=1$ (say) $(-1,1,-1)$ is an eigen vector corresponding to $\lambda=3$

Case (iii)

Eigen vector corresponding to $\lambda=6$

We have $A X \quad 6 X$

Hence $-5 x_{1}+x_{2}+3 x_{3}=0$
$x_{1}-x_{2}+x_{3}=0$
$3 x_{1}+x_{2}-5 x_{3}=0$

Taking the first two equation we get
$\frac{x_{1}}{4}=\frac{x_{2}}{8}=\frac{x_{3}}{4}=k$
$\therefore x_{1}=k ; x_{2}=2 k ; x_{3}=k$. It satisfies the third equation also

Taking $k=1$ (say) $(1,2,1)$ is an eigen vector corresponding to $\lambda=6$

Problem 13.

Find the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

Solution.

The characteristic equation of A is $|A-\lambda I|=0$
$\therefore\left|\begin{array}{ccc}6-\lambda & -2 & 2 \\ -2 & 3-\lambda & -1 \\ 2 & -1 & 3-\lambda\end{array}\right|=0$
$\therefore(6-\lambda)\left[(3-\lambda)^{2}-1\right]+2[(2 \lambda-6)+2]+2[2-6+2 \lambda]=0$
$(6-\lambda)\left(8+\lambda^{2}-6 \lambda\right)+4 \lambda-8+4 \lambda-8=0$
$48+6 \lambda^{2}-36 \lambda-8 \lambda-\lambda^{3}+6 \lambda^{2}+8 \lambda-16=0$
$\therefore-\lambda^{3}+12 \lambda^{2}-36 \lambda+32=0$. Hence $\lambda^{3}-12 \lambda^{2}+36 \lambda-32=0$

Hence $(\lambda-2)(\lambda-2)(\lambda-8)=0$
$\therefore \lambda=-2,2,8$ are the three eigen values

Case (i)

Eigen vector corresponding to $\lambda=2$

Let $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ be an eigen vector corresponding to $\lambda=2$

Hence $A X=2 X$
$\therefore 6 x_{1}-2 x_{2}+2 x_{3}=2 x_{1}$
$-2 x_{1}+3 x_{2}-x_{3}=2 x_{2}$
$2 x_{1}-x_{2}+3 x_{3}=2 x_{3}$
$\therefore 4 x_{1}-2 x_{2}+2 x_{3}=0$
$-2 x_{1}+x_{2}-x_{3}=0$
$2 x_{1}-x_{2}+x_{3}=0$

The above three equations are equivalent to the single equation
$2 x_{1}-x_{2}+x_{3}=0$

The independent eigen vectors can be obtained by giving arbitrary values to any two of the unknowns x_{1}, x_{2}, x_{3}

Giving $x_{1}=1 ; x_{2}=2$ we get $x_{3}=0$

Giving $x_{1}=3 ; x_{2}=4$ we get $x_{3}=-2$

Two independent vectors corresponding to $\lambda=2$ are $(1,2,0)$ and $(3,4,-2)$
Case (ii)

Eigen vector corresponding to $\lambda=8$.
The eigen vector $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is got from $A X \quad 8 X$ gives
$-2 x_{1}-2 x_{2}+2 x_{3}=0 \ldots(1)$
$-2 x_{1}-5 x_{2}-x_{3}=0 \ldots$ (2)
$2 x_{1}-x_{2}-5 x_{3}=0 \ldots(3)$

From (1) and (2) we get
$\frac{x_{1}}{12}=\frac{x_{2}}{-6}=\frac{x_{3}}{5}=k($ say $)$
$\therefore x_{1}=2 k ; x_{2}=-k ; x_{3}=k$

Giveing $k=1$ (say) $(-1,1,-1)$ is an eigen vector corresponding to 8 as $(2,-1,1)$

Problem 14.

Find the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
2 & -2 & 2 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right]
$$

Solution.

The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \therefore\left|\begin{array}{ccc}
2-\lambda & -2 & 2 \\
1 & 1-\lambda & 1 \\
1 & 3 & -1-\lambda
\end{array}\right|=0 \\
& \therefore(2-\lambda)[-(1-\lambda)(1+\lambda)-3]+2[-(1+\lambda)-1]+2[3-(1-\lambda)]=0 \\
& (2-\lambda)\left(\lambda^{2}-4\right)-2(2+\lambda)+2(2+\lambda)=0 \\
& -\lambda^{3}+2 \lambda^{2}+4 \lambda-8=0 \\
& \therefore-\lambda^{3}+2 \lambda^{2}+4 \lambda-8=0 . \text { Hence } \lambda^{3}-2 \lambda^{2}-4 \lambda+8=0
\end{aligned}
$$

Hence $(\lambda-2)(\lambda-2)(\lambda+2)=0$
$\therefore \lambda=2,2,-2$ are the three eigen values

Case (i)

Eigen vector corresponding to $\lambda=2$

Let $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ be an eigen vector corresponding to $\lambda=2$

Hence $A X=2 X$
$\left[\begin{array}{ccc}2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}2 x_{1} \\ 2 x_{2} \\ 2 x_{3}\end{array}\right]$

The eigen vector corresponding to $\lambda=2$ is given by the equations
$\therefore 2 x_{1}-2 x_{2}+2 x_{3}=2 x_{1}$
$x_{1}+x_{2}+x_{3}=2 x_{2}$
$x_{1}+3 x_{2}-x_{3}=2 x_{3}$
$\therefore-x_{2}+2 x_{3}=0$...
$x_{1}-x_{2}+x_{3}=0 .$.
$x_{1}+3 x_{2}-3 x_{3}=0 \ldots$ (3)

From (1) and (2) we get
$\frac{x_{1}}{0}=\frac{x_{2}}{1}=\frac{x_{3}}{1}=k($ say $)$
$\therefore x_{1}=0 ; x_{2}=k ; x_{3}=k$

Giveing $k=1$ (say) $(0,1,1)$ is an eigen vector corresponding to $\lambda=2$

Case (ii)

Eigen vector corresponding to $\lambda=-2$.

The eigen vector $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is got from $A X \quad 8 X$ gives

$$
2 x_{1}-2 x_{2}+2 x_{3}=-2 x_{1}
$$

$x_{1}+x_{2}+x_{3}=-2 x_{1}$
$x_{1}+3 x_{2}-x_{3}=-2 x_{1}$
$2 x_{1}-x_{2}+x_{3}=0$
$x_{1}+3 x_{2}+x_{3}=0$
$x_{1}+3 x_{2}+x_{3}=0$

Taking the first two equations we get
$\frac{x_{1}}{-4}=\frac{x_{2}}{-1}=\frac{x_{3}}{7}=k($ say $)$
$\therefore x_{1}=-4 k ; x_{2}=-k ; x_{3}=7 k$

Giveing $k=1$ we get $(-4,-1,7)$ as an eigen vector corresponding to the eigen value $\lambda=-2$.

Bilinear forms

80^{0}

introduction

Ifd a tinte dimensional, inner product apace V
athe fied R of real numbers. The imer product is from $V \times V$ to R satisify
(i) $\left(\omega u_{1}+\beta u_{2}, v\right)=\alpha\left(u_{1}, v\right)+\beta\left(u_{2}, v\right)$
$\left(u, \alpha v_{1}+\beta v_{2}\right)=\alpha\left(u, v_{1}\right)+\beta\left(u_{1}, v_{2}\right)$
In ofther words the imner product is a sealar vald function of the lwo variables u and v and is ilned lunction in each of the two variables. This 10.ms. In this chapter we stady bilinear forms bilinear dinicisional vector spaces.

8.1. Bilinear forms

pefinition. Let V be a vector space over a field F. Ablinear form on V is a function $f ; V, V \rightarrow F$ guch that
(i) $f\left(\alpha u_{1}+\beta u_{2}, v\right)=\alpha f\left(u_{1}, v\right)+\beta f\left(u_{2}, v\right)$
(ii) $f\left(u, \alpha v_{1}+\beta v_{2}\right)=\alpha f\left(u, v_{1}\right)+\beta f\left(u, v_{2}\right)$ where $\alpha, \beta \in F$ and $u_{1}, u_{2}, v_{1}, v_{2} \in V$.

In other words f is linear as a function of any one of the two variables when the other is fixed.

Examples

1. Let V be a vector space over \mathbf{R}. Then an inner product on V is a bilinear form on V.
2. Let V be any vector space over a field F. Then the zero function $\hat{0}: V \times V \rightarrow F$ given by $\hat{O}(u, v)=0$ is a bilinear form.
For,

$$
\begin{aligned}
\hat{0}\left(\alpha u_{1}+\beta u_{2}, v\right) & =0 \\
& =\alpha \mathbf{0}+\beta 0 \\
& =\alpha \hat{0}\left(u_{1}, v\right)+\beta \hat{0}\left(u_{2}, v\right)
\end{aligned}
$$

Similarly

$$
\hat{\mathbf{0}}\left(u, \alpha v_{1}+\beta v_{2}\right)=\alpha \mathbf{0}\left(u, v_{1}\right)+\beta \hat{\mathbf{0}}\left(u, v_{2}\right)
$$

3. Suppose V is a vector space over a field F. Let f_{1} and f_{2} be two linear functionals on V, (ie) f_{1} and f_{2} are linear transformations from V to F. Then $f: V \times V \rightarrow F$ defined by $f(u, v)=f_{1}(u) f_{2}(v)$ is a bilinear form.

$$
\text { For, } \begin{aligned}
& f\left(\alpha u_{1}+\beta u_{2}, v\right) \\
&= f_{1}\left(\alpha u_{1}+\beta u_{2}\right) f_{2}(v) \\
&= {\left[\alpha f_{1}\left(u_{1}\right)+\beta f_{1}\left(u_{2}\right)\right] f_{2}(v) } \\
& \quad \quad \quad \text { since } f_{1} \text { is linear) } \\
&= \alpha f_{1}\left(u_{1}\right) f_{2}(v)+\beta f_{1}\left(u_{2}\right) f_{2}(v) \\
&= \alpha f\left(u_{1}, v\right)+\beta f\left(u_{2}, v\right)
\end{aligned}
$$

Similarly,

$$
f\left(u, \alpha v_{1}+\beta v_{2}\right)=\alpha f\left(u, v_{1}\right)+\beta f\left(u, v_{2}\right)
$$

Exercises

1. Show that the function f defined by
$f(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots \ldots \ldots+x_{n} y_{n}$ where $x=\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots \ldots \ldots, y_{n}\right)$ is a bilinear form on $V_{n}(F)$.
2. Which of the following are bilinear forms on $V_{2}(\mathbf{R})$?
Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$.
(a) $\quad f(x, y)=1$.
(b) $f(x, y)=\left(x_{1}-y_{1}\right)^{2}+x_{2} y_{2}$.
(c) $f(x, y)=\left(x_{1}+y_{1}\right)^{2}-\left(x_{1}-y_{1}\right)^{2}$.
(d) $f(x, y)=x_{1} y_{2}-x_{2} y_{1}$.

Answers. (c) and (d) are bilinear forms.
Notation. Let V be a vector space over a field F. Then the set of all bilinear forms on V is denoted by $L(V, V, F)$.

Theorem 8.1. Let V be a vector space over a field F. Then $L(V, V, F)$ is a vector space over F under addition and scalar multiplication defined by

$$
\begin{aligned}
(f+g)(u, v) & =f(u, v)+g(u, v) \quad \text { and } \\
(\alpha f)(u, v) & =\alpha f(u, v)
\end{aligned}
$$

Proof. Let $f, g \in L(V, V, F)$ and $\alpha_{1} \in F$.
We claim that $f+g$ and $\alpha_{1} f \in L(V, V, F)$.

$$
\begin{aligned}
(f & +g)\left(\alpha u_{1}+\beta u_{2}, v\right) \\
& =f\left(\alpha u_{1}+\beta u_{2}, v\right)+g\left(\alpha u_{1}+\beta u_{2}, v\right) \\
& =\alpha f\left(u_{1}, v\right)+\beta f\left(u_{2}, v\right)+\alpha g\left(u_{1}, v\right)+\beta g\left(u_{2}, v\right) \\
& =\alpha\left[f\left(u_{1}, v\right)+g\left(u_{1}, v\right)\right]+\beta\left[f\left(u_{2}, v\right)+g\left(u_{2}, v\right)\right] \\
& =\alpha\left[(f+g)\left(u_{1}, v\right)\right]+\beta\left[(f+g)\left(u_{2}, v\right)\right] .
\end{aligned}
$$

Similarly we can prove that

$$
\begin{aligned}
(f+g)\left(u, \alpha v_{1}+\beta v_{2}\right)=\alpha[(f & \left.+g)\left(u, v_{1}\right)\right] \\
& +\beta\left[(f+g)\left(u, v_{2}\right)\right]
\end{aligned}
$$

Herice $(f+g) \in L(V, V, F)$.

$$
\text { Also } \quad \begin{aligned}
\left(\alpha_{1} f\right. & f\left(\alpha u_{1}+\beta u_{2}, v\right) \\
& =\alpha_{1} f\left(\alpha u_{1}+\beta u_{2}, v\right) \\
& =\alpha_{1}\left[\alpha f\left(u_{1}, v\right)+\beta f\left(u_{2}, v\right)\right] \\
& =\alpha_{1} \alpha f\left(u_{1}, v\right)+\alpha_{1} \beta f\left(u_{2}, v\right) \\
& =\alpha\left[\left(\alpha_{1} f\right)\left(u_{1}, v\right)\right]+\beta\left[\left(\alpha_{1} f\right)\left(u_{2}, v\right)\right]
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\left(\alpha_{1} f\right)\left(u, \alpha \nu_{1}+\beta \nu_{2}\right)=\alpha\left[\left(\alpha_{1} f\right.\right. & \left.f\left(u, v_{1}\right)\right] \\
& +\beta\left[\left(\alpha_{1} f\right)\left(u, \nu_{2}\right)\right]
\end{aligned}
$$

$\therefore \quad \alpha_{1} f \in L(V, \dot{V}, F)$.
The remaining axioms of a vector space can be easily verified.

Matrix of a bilinear form. Let f be a bilinear form on V. Fix a basis $\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ for V.

Let $u=\alpha_{1} v_{1}+\ldots \ldots+\alpha_{n} v_{n}$ and $\nu==\beta_{1} \nu_{1}+\ldots \ldots+\beta_{n} \nu_{n}$.

$$
\begin{aligned}
& \text { Then } f(u, v) \\
& \qquad \begin{aligned}
= & f\left(\alpha_{1} v_{1}+\ldots \ldots+\alpha_{n} v_{n}, \beta_{1} v_{1}+\ldots \ldots\right. \\
& \left.\quad+\beta_{n} v_{n}\right)
\end{aligned} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \beta_{j} f\left(v_{i}, v_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \alpha_{i} \beta_{j} \text { where } f\left(v_{i}, v_{j}\right)=a_{i j} \\
& = \\
& \left(\alpha_{1}, \ldots \ldots, \alpha_{n}\right)\left(\begin{array}{c}
a_{11} \ldots a_{1 n} \\
\ldots \ldots \ldots . \\
a_{n 1} \ldots a_{n n}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\ldots \\
\beta_{n}
\end{array}\right)
\end{aligned}
$$

1) $\therefore \quad f(u, v)=X A Y^{T}$ where

$$
X=\left(\alpha_{1}, \ldots, \alpha_{n}\right), A=\left(a_{i j}\right) \text { and } Y=\left(\beta_{1}, \ldots, \beta_{n}\right)
$$

The $n \times n$ matrix A is called the matrix of the bilinear form with respect to the chosen basis.

Conversely, given any $n \times n$ matrix $A=\left(a_{i j}\right)$ the $f: V \times V \rightarrow \dot{F}$ defined by $f(u, v)=X A Y^{T}$ is a bilinear form on V and $f\left(v_{i}, v_{j}\right)=a_{i j}$. Alsc if g is any other bilinear form on V such that $g\left(v_{i}, v_{j}\right)=a_{i j}$, then $f=g$ (verify).

Solved Problems

Problem 1. Let f be the bilinear form defined on $V_{2}(\mathbf{R})$ by $f(x, y)=x_{1} y_{1}+x_{2} y_{2}$ where $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. Find the matrix of f.
(i) w.r.t. the standard basis $\left\{e_{1}, e_{2}\right\}$.
(ii) w.r.t. the basis $\{(1,1),(1,2)\}$.

Solution.

(i) $f\left(e_{1}, e_{1}\right)=f((1,0),(1,0))$

$$
=1 \times 1+0 \times 0=i
$$

Similarly

$$
\begin{aligned}
& f\left(e_{1}, e_{2}\right)=0 \\
& f\left(e_{2}, e_{1}\right)=0 \\
& f\left(e_{2}, e_{2}\right)=1
\end{aligned}
$$

The matrix of f is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
Let $\nu_{1}=(1,1)$ and $\nu_{2}=(1,2)$.
Then $f\left(v_{1}, v_{1}\right)=1+1=2$

$$
f\left(\nu_{1}, \nu_{2}\right)=1+2=3
$$

$$
f\left(v_{2}, v_{1}\right)=1+2=3
$$

$$
f\left(\nu_{2}, \nu_{2}\right)=1+4=5 .
$$

The matrix of f is $\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)$

Find the matrix of the bilinear form $f(x, y)=x_{1} y_{2}-x_{2} y_{1}$ with respect to the standard basis in $V_{2}(\mathbf{R})$.
2. Find the matrix of the bilinear from f defined $x=\left(x_{1}, x_{2}, x_{3}\right)$
(a) standard basis
(b) $\{(1,1,0),(0,1,1),(1,0,1)\}$.
niswers.

1. $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
2. (a)
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2\end{array}\right)$

Theorem 8.2. Let V be a vector space of dimension n wer a field F. Fix a basis $\left\{\nu_{1}, \nu_{2}, \ldots \ldots, v_{n}\right\}$ for V. Then the function $\varphi: L(V, V, F) \rightarrow M_{n}(F)$ which associates with each bilinear form $f \in L(V, V, F)$ the $n \times n$ matrix $\left(a_{i j}\right)$ where $f\left(v_{i}, v_{j}\right)=a_{i j}$ is an somorphism.
Proof. Clearly φ is $1-1$ and onto.
Now, let $f, g \in L(V, V, F)$ and $\alpha \in F$.
Let $\varphi(f)=\left(a_{i j}\right)$ and $\varphi(g)=\left(b_{i j}\right)$.
Then $(f+g)\left(v_{i}, v_{j}\right)=f\left(v_{i}, v_{j}\right)+g\left(v_{i}, v_{j}\right)$
$=a_{i j}+b_{i j}$

$$
\begin{aligned}
\therefore \quad \varphi(f+g) & =\left(a_{i j}+b_{i j}\right)=\left(a_{i j}\right)+\left(b_{i j}\right) \\
& =\varphi(f)+\varphi(g) .
\end{aligned}
$$

Also $\quad(\alpha f)\left(\nu_{i}, v_{j}\right)=\alpha f\left(v_{i}, v_{j}\right)=\alpha a_{i j}$

$$
\therefore \quad \varphi(\alpha f)=\left(\alpha a_{i j}\right)=\alpha\left(a_{i j}\right)=\alpha \varphi(f) .
$$

Thus φ is an isomorphism.
Corollary. $L(V, V, F)$ is a vector space of dimension n^{2}.

8.2. Quadratic forms

Definition. A bilinear form f defined on a vector space V is called a symmetric bilinear form if $f(u, v)=f(v, u)$ for all $u, v \in V$.

Examples

(i) Let V be a vector space over \mathbf{R}. Then any inner product defined on V is a symmetric bilinear form.
(ii) The bilinear form $\hat{0}$ defined in example 2 of 8.1 is a symmetric bilinear form.
(iii) Let f be a bilinear form on V. Then the bilinear form f_{1} defined by
$f_{1}(u, v)=f(u, v)+f(v, u)$ is a symmetric bilinear form.
Theorem 8.3. A bilinear form f defined on V is symmetric iff its matrix $\left(a_{i j}\right)$ w.r.t any one basis $\left\{v_{1}, v_{2}, \ldots, \ldots, v_{n}\right\}$ is symmetric.
Proof. Let f be a symmetric bilinear form.

$$
\text { Now, } \begin{aligned}
a_{i j} & =f\left(v_{i}, v_{j}\right) \\
& =f\left(v_{j}, v_{i}\right) \quad(\text { since } f \text { is symmetric) } \\
& =a_{j i}
\end{aligned}
$$

$\therefore \quad\left(a_{i j}\right)$ is a symmetric matrix.
Conversely, let $\left(a_{i j}\right)$ be a symmetric matrix.
Hence $A=A^{T} \quad$ (by theorem 7.5)
Then

$$
\begin{aligned}
f(u, v) & =X A Y^{T} \\
& =\left(X A Y^{T}\right)^{T}\left(\text { since } X A Y^{T} \text { is a } 1 \times 1 \text { matrix }\right)
\end{aligned}
$$

$$
\begin{aligned}
& =Y A^{T} X^{T} \\
& =Y A X^{T} \\
& =f(v, u)
\end{aligned}
$$

. f is a symmettic bilinear form.
Definition. Let ${ }_{j}$ be a symmetric bilinear form defined by V. Then the quadratic form associated with f is the mapping $q: V \rightarrow F$ defined by $q(v)=f(\nu, \nu)$. The matrix of the bilinear form f is called the matrix of the associated quadratic form g.

Examples

1. Consider the bilinear form f defined on $V_{n}(F)$ by $f(u, v)=x_{1} y_{1}+x_{2} y_{2}+\ldots \ldots+x_{n} y_{n} ;$
$u=\left(x_{1}, \ldots \ldots, x_{n}\right), v=\left(y_{1}, \ldots, y_{n}\right)$ Then the quadratic form q associated with f is given by

$$
q(u)=f(u, u)=x_{1}^{2}+\ldots \ldots+x_{n}^{2}
$$

2. Let A be a symmetric matrix of order n associated with the symmetric bilinear form f. Then the corresponding quadratic form is given by

$$
q(X)=X A X^{T}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

For example, consider the symmetric matrix

Ex

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 7 \\
3 & 7 & 6
\end{array}\right)
$$

The quadratic form q determined by A w.r.t. the standard basis for $V_{3}(\mathbf{R})$ is given by

$$
\begin{aligned}
q(v) & =\left(x_{1}, x_{2}, x_{3}\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 7 \\
3 & 7 & 6
\end{array}\right) \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right. \\
& =x_{1}^{2}+4 x_{2}^{2}+6 x_{3}^{2}+4 x_{1} x_{2}+14 x_{2} x_{3}+6 x_{1} x_{3}
\end{aligned}
$$

3. Consider the diagonal matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

$$
\begin{aligned}
q(\nu) & =\left(x_{1}, x_{2}, x_{3}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& =x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}
\end{aligned}
$$

We say that this quadratic form diagonal form.
4. Consider the quadratic form defined on $V_{2(\mathbf{R})}$ by $q\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$. Then the symmetric matrix associated with q can be found as follows.
Let

$$
\begin{aligned}
& 2 x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} \\
& =\left(x_{1}, x_{2}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& \\
& =a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2} . \\
& \therefore \quad a=2 ; b=\frac{1}{2} ; c=1 . \\
& \therefore \quad A=\left(\begin{array}{cc}
2 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right)
\end{aligned}
$$

Exercises

1. Find the quadratic forms associated with the following matrices w.r.t. the standard basis.
(a) $\left(\begin{array}{ccc}2 & -3 & 1 \\ -3 & 2 & 4 \\ 1 & 4 & -5\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & -2 & -4 \\ 3 & -4 & -3\end{array}\right)$
2. Find the matrices for the following quadratic forms.
(a) $x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}$ in $V_{2}(\mathbf{R})$
(b) $2 x_{1}^{2}+x_{2}^{2}+3 x_{1} x_{2}$ in $V_{2}(\mathbf{R})$
(c) $2 x_{1}^{2}+x_{3}^{2}-6 x_{1} x_{2}$ in $V_{3}(\mathbf{K})$

$$
1
$$

(a) $2 x_{1}^{2}+2 x_{2}^{2}-5 x_{3}^{2}-6 x_{1} x_{2}+8 x_{1} x_{1}+2 x_{1} x_{1}$
(b) $x_{1}^{2}-2 x_{2}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}-8 x_{2} x_{2}+6 x_{1} x_{1}$
2. (a) $\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right) \quad$ (b) $\left(\begin{array}{ll}2 & \frac{3}{2} \\ \frac{3}{2} & 1\end{array}\right)$
(c) $\left(\begin{array}{rrr}2 & -3 & 0 \\ -3 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{cccc}0 & 1 / 2 & 0 & 0 \\ 1 / 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad \begin{gathered}\mathrm{Re} \\ \mathrm{di} \\ \mathrm{In}\end{gathered}$
(c) $\left(\begin{array}{cccc}0 & 0 & 1 / 2 & 0 \\ 0 & 0 & 0 & 0 \\ 1 / 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Theorem 8.4. Let f be a symmetric bilinear form if defined on V. Let q be the associated quadratic form.
(i) $f(u, v)=\frac{1}{4}\{q(u+v)-q(u-v)\}$
(ii) $f(u, v)=\frac{1}{4}\{q(u+v)-q(u)-q(\nu)\}$

Proof.

$$
\begin{aligned}
& \left(\text { i) } \frac{1}{4}\{q(u+v)-q(u-v)\}\right. \\
= & \frac{1}{4}\{f(u)=f(u, v) \\
= & \frac{1}{4}\{f(u, u)+f(u, v)+f(v, u)+f(v, v) \\
& -f(u, u)+f(u, v)+f(v, u)-f(v, v)\} \\
= & \frac{1}{4}\{4 f(u, v)\} \\
= & f(u, v) .
\end{aligned}
$$

Proof of (ii) is similar,
Note. the above theorem shows that if f is a symmetlic bilinear form and q the assouated quadratic form, then $f(u, v)$ can be determined from q.

Exercises

1. If q is a quadratic form prove that
$q(u+v+w)-q(u+v)-q(v+w)-q(u+$ $w)+q(u)+q(v)+q(w)=0$.
2. Show that if q_{1} is the quadratic form associated with the bilinear form f_{1} and q_{2} is the quadratic form associated with the bilinear form f_{2} then $q_{1}+q_{2}$ is the quadratic form associated with the bilinear form $f_{1}+f_{2}$.

Reduction of a quadratic form to the diagonal form

In example 3 of the quadratic form in section 8.2 we have seen that a quadratic form associated with a diagonal matrix of order n is of the form

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\ldots \ldots+a_{n} x_{n}^{2}
$$

which is known as the diagonal form: Now, we prove that any quadratic form can be reduced to the diagonal form by means of a non-singular linear transformation. The method of reduction which we describe below is due to Lagrange.

Consider the quadratic form

$$
\begin{aligned}
\varphi= & \varphi\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \\
= & a_{11} x_{1}^{2}+\ldots \ldots+a_{n n} x_{n}^{2}+2 a_{12} x_{1} x_{2} \\
& +\ldots \ldots+2 a_{n(n-1)} x_{n} x_{n-1}
\end{aligned}
$$

Case (i) Suppose at least one of $a_{11}, \ldots, a_{n n}$ is not zero. We assume, without locs of generality, that $a_{11} \neq 0$.

Then

$$
\begin{aligned}
& \varphi=\left(a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}\right. \\
&\left.+\ldots \ldots+2 a_{1 n} x_{1} x_{n}\right) \\
&+\sum_{i, j=2}^{n} a_{i j} x_{i} x_{j} \\
&= a_{11}\left(x_{1}^{2}+2 \frac{a_{12}}{a_{11}} x_{1} x_{2}+\ldots \ldots+2 \frac{a_{1 n}}{a_{11}} x_{1 x_{n}}\right) \\
&+\varphi_{1}\left(x_{2}, \ldots \ldots, x_{n}\right) \text { (say) }
\end{aligned}
$$

8.6 Modern Algebra
$=a_{11}\left(x_{1}+\frac{a_{12}}{a_{11}} x_{2}+\ldots+\frac{a_{1 n}}{a_{11}} x_{n}\right)^{2}$ $+\varphi_{2}\left(x_{2}, \ldots \ldots . ., x_{n}\right)$ (say)

Now, putting $y_{1}=x_{1}+\frac{a_{12}}{a_{11}} x_{2}+\ldots+\frac{a_{1 n}}{a_{11}} x_{n}$,
$y_{2}=x_{2}, \ldots, y_{n}=x_{n}, \varphi$ reduces to

$$
\varphi=\alpha_{1} y_{1}^{2}+\varphi_{2}\left(y_{2}, \ldots, y_{n}\right)
$$

where $\alpha_{1}=a_{11}$
Case (ii) Suppose $a_{11}=a_{22}=\ldots . .=a_{n n}=0$. We still have $a_{i j} \neq 0$ for some i, j such that $i \neq j$.

Without loss of generally we assume that $a_{12} \neq 0$.
Then the non-singular linear transformation

$$
x_{1}=y_{1}, x_{2}=y_{1}+y_{2}, x_{3}=y_{3}, \ldots \ldots, x_{n}=y_{n}
$$

changes the quadratic form φ to another quadratic form in which the term y_{1}^{2} is present.

Now applying the method of case (i) φ can be reduced to the form (1). Treating φ_{2} in the same way we get

$$
\begin{aligned}
\varphi_{2} & =\alpha_{2} z_{2}^{2}+\varphi_{3}\left(z_{2}, \ldots, z_{n}\right) \text { so that } \\
\varphi & =\alpha_{1} z_{1}^{2}+\alpha_{2} z_{2}^{2}+\varphi_{3}\left(z_{2}, \ldots, z_{n}\right)
\end{aligned}
$$

Continuing this process of reduction we obtain φ in the form $\varphi=\alpha_{1} w_{1}^{2}+\ldots . .+\alpha_{r} w_{r}^{2}$.

Solved problems

Problem 1. Reduce the quadratic form

$$
\begin{aligned}
& \quad x_{1}^{2}+4 x_{1} x_{2}+4 x_{1} x_{3}+4 x_{2}^{2}+16 x_{2} x_{3}+4 x_{3}^{2} \text { to the } \\
& \text { diagonal form. }
\end{aligned}
$$

Solution. Let

$$
\begin{aligned}
\varphi & =x_{1}^{2}+4 x_{1} x_{2}+4 x_{1} x_{3}+4 x_{2}^{2}+16 x_{2} x_{3}+4 x_{3}^{2} \\
& =\left(x_{1}+2 x_{2}+2 x_{3}\right)^{2}+8 x_{2} x_{3}
\end{aligned}
$$

Putting $x_{1}+2 x_{2}+2 x_{3}=y_{1}, x_{2}=y_{2}, x_{3}=y_{2}+y_{3}$
we get

$$
\begin{aligned}
\varphi & =y_{1}^{2}+8 y_{2}^{2}+8 y_{2 y_{3}} \\
& =y_{1}^{2}+8\left(y_{2}+\frac{1}{2} y_{3}\right)^{2}-2 y_{3}^{2}
\end{aligned}
$$

Putting $z_{1}=y_{1}, z_{2}=y_{2}+\frac{1}{2} y_{3}, z_{3}=y_{3} \mathrm{we}_{\mathrm{gq}}$

$$
\begin{aligned}
\varphi & =z_{1}^{2}+8 z_{2}^{2}-2 z_{3}^{2} \text { where } z_{1}=x_{1}+2 x_{2}{ }_{2} z_{3} \\
z_{2} & =\frac{1}{2}\left(x_{2}+x_{3}\right) \\
z_{3} & =x_{3}-x_{2}
\end{aligned}
$$

Problem 2. Reduce the quadratic form $2 x_{1 x_{2}-x_{1 x_{3,}}}$
$x_{1} x_{4}-x_{2} x_{3}+x_{2} x_{4}-2 x_{3} x_{4}$ to the diagonal form Using
Lagrange's method
Let $\varphi=2 x_{1} x_{2}-x_{1} x_{3}+x_{1 x_{4}}-x_{2 x_{3}}$

$$
\begin{aligned}
& \begin{aligned}
& +x_{2 x_{4}-2} x_{3 x_{4}} \\
\text { Putting } x_{1}=y_{1} ; x_{2}=y_{1}+y_{2} ; x_{3} & =y_{3} \text { and }
\end{aligned} \\
& \varphi=2 y_{1}^{2}+2 y_{1} y_{2}-2 y_{1} y_{3}+2 y_{1} y_{4}-y_{2} y_{4} \text {, we get } \\
& =2\left(y_{1}^{2}+y_{1} y_{2}-y_{1} y_{3}+y_{1} y_{4}\right)-y_{2} y_{3} y_{4}-2 y_{3} y_{4} \\
& =2\left(y_{1}+\frac{1}{2} y_{2}-\frac{1}{2} y_{3}+\frac{1}{2} y_{4}\right)^{2}-\frac{1}{2} y_{2} y_{4}-2 y_{3}-\frac{1}{2} y_{3}^{2} \\
& -\frac{1}{2} y_{4}^{2}-y_{3} y_{4}
\end{aligned}
$$

Putting $z_{1}=y_{1}+\frac{1}{2} y_{2}-\frac{1}{2} y_{3}+\frac{1}{2} y_{4} ; z_{2}=y_{2} ;$
$z_{3}=y_{3}$; and $z_{4}=y_{4}$ get $z_{3}=y_{3}$; and $z_{4}=y_{4}$ we get

$$
\begin{aligned}
\varphi & =2 z_{1}^{2}-\frac{1}{2} z_{2}^{2}-\frac{1}{2} z_{3}^{2}-\frac{1}{2} z_{4}^{2}-z_{3} z_{4} \\
& =2 z_{1}^{2}-\frac{1}{2} z_{2}^{2}-\frac{1}{2}\left(z_{3}^{2}+2 z_{3} z_{4}+z_{4}^{2}\right) \\
& =2 z_{1}^{2}-\frac{1}{2} z_{2}^{2}-\frac{1}{2}\left(z_{3}+z_{4}\right)^{2}
\end{aligned}
$$

Putting $w_{1}=z_{1}, w_{2}=z_{2}, w_{3}=z_{3}+z_{4}, w_{4}=w_{4}$.

$$
\text { we get } \varphi=2 w_{1}^{2}-\frac{1}{2} w_{2}^{2}-\frac{1}{2} w_{3}^{2}
$$

where

$$
\begin{aligned}
& w_{1}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{1}{2} x_{4} \\
& w_{2}=-x_{1}+x_{2} ; w_{3}=x_{3}+x_{4} ; w_{4}=x_{4} .
\end{aligned}
$$

Exercises Reduce the following quadratic forms to diagonal form.

1. $x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+8 x_{1} x_{3}$
2. $2 x_{1}^{2}+5 x_{2}^{2}+19 x_{3}^{2}-24 x_{4}^{2}+8 x_{1} x_{2}+12 x_{1} x_{3}$

$$
+8 x_{1} x_{4}+18 x_{2} x_{3}-8 x_{2} x_{4}-16 x_{3} x_{4}
$$

3. $2 x_{1} x_{2}-x_{1} x_{3}+x_{2} x_{3}$
4. $-2 x_{1} x_{2}+2 x_{2} x_{3}-2 x_{3} x_{4}+2 x_{1} x_{4}$
5. $\quad\left(x_{1} x_{2} x_{3}\right)\left(\begin{array}{rrr}1 & 2 & 4 \\ 2 & 6 & -2 \\ 4 & -2 & 18\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
6. $\quad\left(x_{1} x_{2} x_{3}\right)\left(\begin{array}{rrr}0 & 1 & 2 \\ 1 & 1 & -1 \\ 2 & -1 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
