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4.2.1 

UNIT - I VECTOR SPACE 
Definition and Examples 
Definition: A non-empty set V is said to be a vector space over a field Fif 

(i) V is an abelian group under an operation called addition which we denote 
by+. 

(ii) For every α ∈ F and v ∈ V, there is defined an element αv in V subject to the 
following conditions. 

(a) α(u+v)=αu+αv for all u,v∈V and α∈F. 
(b) (α + β)u=α u+ βu for all u ∈ V and α, β ∈F. 
(c) α (β u) = (α β) u for all u ∈ V and α, β ∈ F. 
(d) 1u = u for all u ∈ V. 

Remark 
1. The elements of F are called scalars and the elements of V are called vectors. 
2. The rule which associates with each scalar α∈F and a vector v∈V ,a vector αv is 

called the scalar multiplication. Thus a scalar multiplication gives rise to a function 
from  
F × V → V defined by (α, v) →αv. 
Examples 

1. R × R is a vector space over a field R under the addition and scalar multiplication 
defined by (x1,x2)+(y1,y2)=(x1+y1,x2+y2) and α(x1,x2)=(αx1,αx2). 

 
Proof.  

 Clearly the binary operation + is commutative and associative and (0, 0) is the 
zero element.  
The inverse of (x1,x2) is (−x1,−x2).  
Hence (R×R,+) is an abelian group.  
Now, let u=(x1,x2)   and  v=(y1,y2)andletα,β∈R. 
Thenα(u + v) = α[(x1, x2) + (y1, y2)]  
= α(x1+ y1, x2+ y2)  
= (αx1+ αy1, αx2+ αy2) 

=(αx1,αx2)+(αy1,αy2) 
=α(x1,x2)+α(y1,y2) 
=αu+αv. 

Now, (α+β)=(α+β)(x1,x2) 

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand

Free Hand



STUDY MATERIAL FOR B.SC. MATHEMATICS ABSTRACT ALGEBRA - II SEMESTER – V, ACADEMIC YEAR 2020-21  

 Page 3 of 99 
 

4.2.4. 

4.2.8. 

=((α+β)x1,(α+β)x2) 
=(αx1+βx1,αx2+βx2) 
= (αx1, αx2) + (βx1, βx2)  
= α(x1, x2) + β(x1, x2)  
= αu + βu. 
Also α(βu) = α(β(x1, x2)) = α(βx1, βx2) = (αβx1, αβx2) = (αβ)(x1, x2) = (αβ)u  

Obviously  1u = u  
∴  R × R is a vector space over R.  

2. Rn= {(x1, x2, . . . ,xn) : xi∈ R, 1 ≤ i ≤ n}. Then Rnis a vector space over R  under 
addition and scalar multiplication defined by (x1,x2,...,xn)+(y1,y2,...,yn)= 
(x1+y1,x2+y2,...,xn+yn) and α(x1,x2,...,xn)= (αx1,αx2,...,αxn). 

 
Proof: 

 Clearly the binary operation + is commutative and associative. (0, 0, . . . , 0) is the 
zero element. 
Theinverseof(x1,x2,...,xn)I s(−x1,−x2,...,−xn). 
Hence(Rn,+) is an abelian group.  
Now,  let u = (x1, x2, . . . , xn) and v = (y1, y2, . . . , yn) and let  α, β ∈ R. 
Thenα(u + v) = α[(x1, x2, · · · , xn) + (y1, y2, · · · , yn)]  
= α(x1+ y1, x2+ y2, . . . ,xn+ yn) 
=(αx1+αy1,αx2+αy2,...,αxn+αyn) 
=(αx1,αx2,...,αxn)+(αy1,αy2,...,αyn) 
=α(x1,x2,...,xn)+α(y1,y2,...,yn)=αu+αv. 
Similarly(α+β)u=αu+βuandα(βu) = (αβ)u.  
∴ 1u = u.  
∴Rnis vector spaceoverR.  
 
Note :We denote this vector space over byVn(R). 
Theorem: Let V be a vector space over a field F ,Then 

(i) α0 = 0 for all α ∈ F. 
(ii) 0v = 0 for all v ∈ V. 
(iii) (−α)v= α(−v) = −(αv) for all α ∈ F and v ∈ V. 
(iv) αv= 0 ⇒ α = 0 or v =0. 
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4.3.1. 

4.3.2. 

4.3.3 

Proof: 
(i)  α0 = α(0 + 0) = α0 + α0. Hence α0 = 0. 
(ii)  0v = (0 + 0)v = 0v + 0v. Hence 0v = 0. 
(iii) 0=[α+(−α)]v=αv+(−α)v. 
Hence(−α)v=−(αv). 
Similarlyα(−v)=−(αv).  
Hence (−α)v = α(−v) =−(αv). 
(iv) Let αv = 0. If α = 0, there is nothing to prove.  
∴Let α ƒ= 0. Then α−1∈F . 
Now,v = 1v = (α−1α)v = α−1(αv) = α−10=0. 
  
Subspaces: 
Definition:     Let V be a vector space over a field F.  A non-empty subset W of V is called 
a subspace of V if W itself is a vector space over  F  under the operations   of V. 
Theorem:   Let V be a vector space over a field F.  A non-empty subset W of V is a 
subspace of V if and only if W is closed with respect to vector addition and scalar 
multiplication V. 
Proof. Let W be a subspace of V. Then W itself is a vector space and hence W is 
closed with respect to vector addition and scalar multiplication. 

Conversely, let W be a non-empty subset of V such that u, v ∈ W ⇒u + v ∈ W and u 
∈ W and α ∈ F ⇒αu ∈ W.  

We prove that W is a subspace of V.  
Since W is non-empty, there exists an element u ∈ W.   
∴   0u = 0 ∈ W.  Also v ∈ W ⇒(−1)v=−v ∈ W.  
Thus W contains 0 and the additive inverse of each of its element.   
Hence W is an additive subgroup of V.  
Also u ∈ W and α ∈ F ⇒ αu ∈ W. 
 Since the elements of W are the elements of V the other axioms of a vector space 

are true in W.  Hence   W is a subspace of V.  
 
Theorem:      Let V be a vector space over a field F. A non-empty subset W ofVis a 
subspace of V if and only if u, v ∈ W and α, β ∈ F ⇒αu + βv ∈ W. 
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4.3.4. 

4.3.8. 

4.3.9 

Proof. Let W be a subspace of V. 
Letu,v∈Wandα,β∈F. 
Then αu and βv∈Wand hence αu + βv ∈ W. 
Conversely, let u, v ∈ W and α, β ∈ F ⇒ αu + βv ∈ W.  
Taking α = β = 1, we get u, v ∈ W ⇒ u + v ∈ W. 
Taking β = 0, we get α ∈ F and u ∈ W ⇒ α ∈ F and u∈W⇒αu∈W. 
Hence W is a subspace of V.  
Examples 
1. {0} and V are subspaces of any vector space V.  They are called the trivial subspaces of 
V. 
2. W = {(a, 0, 0):a∈ R} is a subspace of R3, 
For, let u = (a, 0, 0), v = (b, 0, 0) ∈ W andα,β∈R. 
Thenαu+βv=α(a,0,0)+β(b,0,0)= (αa+βb,0,0)∈W.  
Hence W is a subspace of R3. 
 
Solved problems 
Problem:Prove that the intersection of two subspaces of a vector space V is a 
subspace. 
Solution. 
Let A and B be two subspaces of a vector space V overa field F.   
Weclaim that A∩B is a subspace of V.  
Clearly 0∈A∩B and hence A∩B is non-empty.  
Now,let u,v∈A∩B and α,β∈F.Then u,v∈A and u,v∈B.  
∴αu+βv∈A and αu+βv ∈B (since A and B are subspaces)  
∴αu+βv ∈A∩B. 
Hence A∩B is a subspace of V. 
 
Problem. Prove that the union of two subspaces of a vector space need not be a 
subspace. 
Solution. Let A= {(a,0,0):a∈R}, B = {(0,b,0):b∈R}. 
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4.3.10. 

4.3.11 

Clearly A and B are subspaces of R3. 
However A∪B is not a subspace of R3.  
For,(1,0,0)and(0,1,0)∈A∪B.But(1,0,0)+(0,1,0)=(1,1,0)∉A∪B. 
 
Problem:If A and B are subspaces of Vprove that A + B = {v ∈ V:  v =a + b, a ∈ A, b ∈B} 
is a subspace of V. Further show that A + B is the smallest subspace containing A and B. 
(ie.,) If W isany subspace of  V containing A and B then W contains A +B. 
Solution. Let v1, v2∈ A + B and α ∈ F.  
Then v1= a1+ b1, v2= a2+ b2where a1, a2∈A,andb1,b2∈B. 
Now,v1+v2=(a1+b1)+(a2+b2)=(a1+a2)+(b1+b2)∈A+B. 
Also α(a1+b1)=αa1+αb1∈A+B. 
HenceA+Bis a subspace of V. 
Clearly A⊆A+B and B ⊆ A + B.  
Now, let W be any subspace of V containing A andB.   
Weshall prove that A+B⊆W.  
Let v∈A+B.  
Then v=a+b where a∈A and b∈B. Since A⊆W,a∈W.  
Similarly b∈W and a+ b=v∈W. 
Therefore A+B⊆Wsothat A+B is the smallest subspace of Vcontaining A and B. 
 
Problem: Let A and B be subspace of a vector space V. Then A∩B = {0} if and only if 
every vector v∈A+B can be uniquely expressed in the form v=a+bwhere a ∈A and b 
∈B. 
Solution. Let A∩B={0}. Letv∈A+B. 
Let v=a1+b1=a2+b2 where a1,a2∈A and b1,b2∈B. 
Thena1−a2=b2−b1. 
But a1−a2∈A and b2−b1∈B.  
Hence a1−a2,b2−b1∈A∩B. 
SinceA∩B={0}, a1−a2=0 and b2−b1=0 so thata1=a2 and b1= b2. 
Hence the expression of v in the form a + b where a ∈ A and b ∈ B is unique. 
Conversely suppose that anyelement in A + B can be uniquely expressed in the forma+  b 
where a∈A and b∈B. 
We claim that A∩ B= {0}. 
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4.3.12. 

4.3.13. 

4.3.15. 

If A∩B ={0},let v ∈ A∩B and v = 0.  Then 0 = v − v = 0 + 0.  
Thus 0 has been expressed in the form a + b in two different ways which is a 
contradiction. Hence A ∩ B= {0} 
Definition:Let A and B be subspaces of a vector space V. Then V is called the direct 
sum of A and B if 
(i) A + B =V 
(ii) A ∩ B= {0} 
If V is the direct sum of A and B we write V = A⊕  . 
Note: V=A⊕B If and only if everyelement of V can be uniquely expressed in the 
form a+bwhere a∈A and b∈B. 
Examples 
1. In V3(R) let A = {(a, b, 0): a, b ∈ R} and B = {(0, 0, c):  c ∈ R}.  Clearly A and B are 
subspaces of V and A∩B = {0}.   Also let v = (a, b, c) ∈ V3(R).   Then   v= (a,b,0)+(0,0,c) 
sothatA+B= V3(R).HenceV3(R)= A⊕B. 
Theorem: Let Vbe a vector space overF and W a subspace of V.   
 Let    V /W = {W + v: v ∈ V}. 
 Then V /W is a vector space over F under the following operations. 
(i) (W + v1) + (W + v2) = W + v1+ v2 
(ii) α(W + v1) = W + αv1. 
Proof.  Since W is a subspace of V it is a subgroup of (V, +).  
Since (V, +) is abelian, W is normal subgroup of (V, +)  
so that (i) is a well-defined operation.  
Now we shallprove that (ii) is a well-defined operation. 
W + v1= W + v2⇒ v1− v2∈ W⇒α(v1− v2) ∈ W  
Since W is a subspace ⇒ αv1− αv2∈ W⇒ αv1∈ W + αv2⇒ W + αv1= W + αv2. 
Hence (ii) is a well-definedoperation. 
Now, let W + v1, W + v2, W + v3∈ V/W. 
Then(W+v1)+[(W+v2)+(W+v3)]=(W+v1)+(W+v2+v3)=W+v1+v2+v3= 
(W+v1+v2)+(W+v3)=[(W+v1)+(W+v2)]+(W+v3) 
Hence + is associative.  
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4.4.1. 

W + 0 = W∈ V /W is the additive identity element.   
For (W + v1) + (W + 0)= W+v1=(W+0)+(W+v1)forallv1∈V. 
AlsoW−v1istheadditiveinverseof W + v1. 
Hence V /W is a group under+. 
Further,(W+v1)+(W+v2)=W+v1+v2 
=W+v2+v1=(W+v2)+(W+v1) 
Hence V /W is an abelian group. 
Now,letα,β∈F. 
α[(W+v1)+(W+v2)]=α(W+v1+v2) 

=W+α(v1+v2) 
= W+αv1+αv2 

= (W+αv1)+(W+αv2) 
=α(W+v1)+α(W+v2) 

(α+β)(W+v1)=W+(α+β)v1 

=W +αv1+βv1 

=(W+αv1)+(W +βv1) 
=α(W+v1)+β(W+v1) 

α[β(W+v1)]=α(W+βv1) 
=W+αβv1 

1(W+v1)=W+1v1 

=W+v1 
Hence V /W is a vector space.  
The vector space V /W is called the quotient space of V by W.  
Linear transformation 
Definition Let V and W be a vector space over a field F. A mapping T: V→Wis called a 
homomorphism if 
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4.4.3. 

4.4.5. 

(a) T(u+v)=T(u)+T(v)and 
(b) T(αu)= αT(u)whereα∈Fandu,v∈V. 

A homomorphism T of vector space is also called a linear transformation. 
(i) If T is 1-1 then T is called monomorphism. 
(ii) If T is onto then T is called an epimorphism. 
(iii) If T is 1-1 and onto then T is called an isomorphism. 
(iv) TwovectorspacesVandWare said to be isomorphic if there exists an isomorphism 

Tfrom V toW and we write V≅ . 
(v) A linear transformation T: V → F is called a linear func onal. 

Examples 
1. T: V → W defined by T (v) = 0 for all v ∈ V is a trivial linear transformation. 
2. T:V→VdefinedbyT(v)=v for all v∈V is aidentity linear transformation. 

Theorem: Let T:V→W   bea linear transformation. Then T(V)={T(v):v∈V} is a 
subspace of  W  
Proof.   Let w1and w2∈ T (V) and α ∈ F.   
Then there exist v1, v2∈ V such that T(v1)=w1andT(v2)=w2. 
Hencew1+w2=T(v1)+T(v2)=T(v1+v2)∈T(V). 
Similarly, αw1=αT(v1)=T(αv1)∈T(V).  
Hence T(V) is a  subspace of W. 
Definition:  Let V and W be vector spaces over a field F and T: V → W be a linear 
transformation. Then the kernel of T is defined to be {v: v ∈ V and T (v) = 0} and is 
denoted by kerT. Thus kerT = {v: v ∈ V and T (v) =0}. 
For example, in example 1, ker T = V. In example 2, ker T = {0}. 
 
Note: Let T: V → W be a linear transformation. Then T is a monomorphism if and 
only if kerT ={0}. 
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4.4.6. Theorem[Fundamental theorem of homomorphism] Let V and W be vector spaces over a 
field F andT: V → W be an epimorphism.Then 
(i) kerT = V1is a subspace of Vand    
(ii) ≅  
Proof. 
(i) Given V1= kerT  = {v :  v ∈ V  and T (v) = 0}  
 Clearly T (0) = 0.   
Hence 0 ∈kerT=V1 
∴V1isnon-emptysubsetofV. 
Letu,v∈kerTandα,β∈F. 
∴T(u)=0 and T (v) = 0.  
Now T (αu + βv) = T (αu) + T (βv)  
= αT (u) + βT (v)  
= α0 + β0 = 0 and so αu + βv ∈kerT.  
Hence kerT is a subspace of V. 
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 Let V1+v=V1+w.  
∴v∈V1+w.  
∴v=v1+w where v1∈V.   
∴T(v)=T(v1+w)   
=T (v1) + T (w) = 0 + T (w)   
=T (w)  
∴ϕ(V1+ v) =  ϕ(V1+ w)  
∴ϕis1-1. 
ϕ(V1+ v) = ϕ(V1+ w)  
⇒T (v) = T (w)  
⇒T(v) −T(w) = 0  
⇒T(v) + T(−w) = 0 
⇒T(v−w)=0 
⇒v−w∈kerT=V1 

⇒v∈V1+w 
⇒V1+v=V1+w. 
Φisonto. 
Let w∈W. 
Since Tisonto,there exists v∈V such that T(v)=w and so ϕ(V1+v)=w . 
ϕ is a homomorphism.  
ϕ[(V1+v)+(V1+w)]=ϕ[(V1+(v+w)]=T(v+w)=T(v)+T(w) 
                                 =ϕ(V1+v)+ϕ(V1+w) 
Alsoϕ[α(V1+v)]=ϕ[(V1+αv)]=T(αv)=αT(v)=αT(V1+v). 
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4.4.7. 

Hence ϕis an isomorphism. 
 
Theorem: Let V be a vector space over a field F. Let A and B be subspaces of V. Then 

≅ ∩ . 
Proof. We know that A + B is a subspace of V containing A.  
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Hence is also vector space over F.  
An element of A+B is of the form (a+b) where a∈Aand b∈B. But A + a = A.  
Hence an element of is of the form A + b. 
 Now, consider f: B →  
Defined is of the form A + b.  
Now, consider f: B → by f(b) = A+b.  
Clearly f is onto.  
Also f(b1+b2)=A+(b1+b2) 
= (A+b1)+(A+b2) 
=f(b1)+f(b2) and 
f(αb1)= A+αb1 =α(A+b1) = αf(b1). 
Hence f is a linear transformation. 
Let K be the kernel off . 
Then K= {b:b∈B,A+b=A}.
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4.4.8. 
Now,A+b=Aifandonlyifb∈A.HenceK=A∩Band so ≅ ∩   
Theorem:LetVandW bevectorspacesoverafieldF.LetL(V,W)represent 
thesetofalllineartransformationsfromVtoW.ThenL(V,W)itselfisavectorspace over F 
under addition and scalar multiplication defined by (f + g)(v) = f(v) + g(v) and (αf)(v) 
=αf(v). 
Proof. Let f, g ∈L(V, W ) and v1, v2∈ V .  
Then(f + g)(v1+ v2) = f(v1+ v2) + g(v1+ v2) 
= f(v1) + f(v2) + g(v1) + g(v2) 
= f(v1) + g(v1) + f(v2) + g(v2) 
= (f + g)(v1) + (f + g)(v2) 
Also (f + g)(αv) = f(αv) + g(αv) = αf(v) + αg(v) = α[f(v) + g(v)] = α(f + g)(v). 
Hence (f + g) ∈L(V, W ). 
Now,(αf)(v1+ v2) = (αf)(v1) + (αf)(v2) = αf(v1) + αf(v2) 

= α[f(v1) + f(v2)] = αf(v1+ v2). 
Also(αf)(βv)=α[f(βv)]=α[βf(v)]=β[αf(v)]=β[(αf)(v)]. 
Henceαf∈L(V,W). Addition defined on L(V, W ) is obviously commutative 
andassociative. 
The function f: V → W defined by f(v) = 0 for all v ∈ V is clearly a linear 
transformation and is the additive identity of L(V, W ).  
Further (−f): V → Wdefined by (−f)(v) = −f(v) is the additive inverse of f. 
Thus L(V, W ) is an abelian group under addition. 
The remaining axioms for a vector space can be easily verified. 
Hence L(V,W)isavectorspaceoverF.  
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4.5.2. 

4.5.3. 
4.5.4. 

UNIT - II SPAN OF A SET 
Definition: 
 Let V be a vector space over a field F.Let v1, v2,…………,vn∈ V . Then an element of the form α1v1+α2v2+···+αnvnwhere αI ∈F is called a linear combination of the vectors v1, v2, . . . ,vn. 
Definition: Let S be a non-empty subset of a vector space V. Then the set of all linear combinations of finite sets of elements of S is called the linear span of S and is denoted byL(S). 
Note: Any element of L(S) is of the form α1v1+ α2v2+ · · · + αnvnwhereα1, α2,………., αn∈ F. 

Theorem: Let V be a vector space over a field F and S be a non-empty subset of V .Then 
(i) L(S) is a subspace of V. 
 (ii)S ⊆ L(S). 
(iii) If W is any subspace of V such that S ⊆ W , then L(S) ⊆ W (ie.,) S is the smallest subspace of 
V containing S. 
 Proof. 
(i) Letv,w∈L(S)andα,β∈F. 
Thenv=α1v1+α2v2+···+αnvnwherevi∈Sandαi∈ F .  
Also, w = β1w1+ β2w2+ · · · + βmwmwherewj∈ S βj∈ F . 
Now, αv + βw = α(α1v1+ α2v2+ · · · + αnvn) + β(β1w1+ β2w2+ · · · + βmwm). 
=(αα1)v1+···+(ααn)vn+(ββ1)w1+···+(ββm)wm. 
∴αv+βw is also a linear combination of a finite number of elements of S. 
Hence αv + βw ∈L(S) and so L(S) is asubspace of S. 
(ii) Let u ∈S. Then u = 1u ∈L(S).  
Hence S ⊆L(S). 
(iii) Let W be any subspace of V such that S ⊆ W. 
 Let u ∈L(S).   
Then u = α1u1+ α2u2+···+αnunwhereui∈Sandαi∈F. 
SinceS⊆W,wehaveu1,u2,...,un∈W and so u ∈ W .  
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4.5.5 

4.5.7 

Hence L(S) ⊆W. 
Note:L(S) is called the subspace spanned(generated) by the setS. 
Examples 
1.In V3(R) let e1= (1, 0, 0); e2= (0, 1, 0) and e3= (0, 0, 1) 
(a) Let S = {e1,e2}  Then L(S)={αe1+βe2:α,β∈R}={(α,β,0):α,β∈R} 
(b)LetS={e1,e2,e3}.ThenL(S)={αe1+βe2+γe3:α,β,γ∈R}={(α,β,γ):α,β,γ∈R} = V3(R) Thus V3(R) is 
spanned by {e1, e2,e3}. 
2.In Vn(R) let e1= (1, 0, · · ·, 0); e2= (0, 1, 0, . . . , 0), . . . , en= (0, 0, . . . , 1). 
LetS={e1,e2,...,en}.ThenL(S)  =  {α1e1+ α2e2+ αnen:αi∈ R}={(α1,α2,...,αn):αi∈R}=Vn(R) 
ThusVn(R)isspannedby{e1,e2,...,en}. 

Theorem: Let V be a vector space over a field F. Let S, T ⊆ V. Then 
(a) S ⊆ T ⇒L(S) ⊆L(T). 
(b) L(S ∪ T) = L(S) + L(T). 
(c) L(S) = S if and only if S is a subspace of V. 
Proof. 
(a) Let S ⊆ T. Let s ∈L(S). 
Then s = α1s1+ α2s2+ · · · + αnsnwhere si∈ S andαi∈ F .  
Now, since S ⊆ T, si∈ T. 
Hence α1s1+ α2s2+ · · · + αnsn∈L(T ). 
Thus L(S) ⊆L(T). 
(b) Lets∈L(S∪T). 
Thens=α1s1+α2s2+···+αnsnwheresi∈S∪Tandαi∈F.  
Withoutlossofgeneralitywecanassumethats1,s2,...,sm∈Sandsm+1,...,sn∈T.  
Henceα1s1+α2s2+···+αmsm∈L(S)andαm+1sm+1+···+αnsn∈L(T). 
Therefore S= (α1s1+ α2s2+ · · · + αmsm) + (αm+1sm+1+ · · · + αnsn) ∈L(S) + L(T ). 
Also by (a) L(S) ⊆ L(S ∪T ) and L(T ) ⊆ L(S ∪ T ). 
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4.5.8. 

4.6.1. 

4.6.2. 

4.6.4. 

4.6.5. 

4.6.6 

Hence L(S) + L(T ) ⊆ L(S ∪ T ).  
Hence L(S)+L(T)= L(S∪T). 
(c) Let L(S) = S. Then L(S) = S is a subspace of V.  
Conversely, let Sbe asubspace of V.  
 Then the smallest  subspace containing S is  S itself.  
 HenceL(S)=S.  
Corollary:L[L(S)] =S. 
Linear Independence 
In V3(R), let S = {e1, e2, e3}. We have seen that L(S) = V3(R). Thus S is a subset ofV3(R) which 
spans the whole space V3(R). 
Definition:Let V be a vector space over a field F. V is said to be finite dimensional if there 
exists a finite subset S of V such that L(S) = V. 
Examples 
1. V3(R) is a finite dimensional vector space. 
2. Vn(R) is a finite dimensional vector space, since S={e1,e2,...,en} is a finite sub- set of 
Vn(R) such that L(S) = Vn(R). In general if F is any field Vn(F ) is a finite dimensional vector 
space over F. 
Definition:Let V be a vector space over a field F. A finite set of vectors 
v1,v2,...,vninVissaidtobelinearlyindependentifα1v1+α2v2+···+αnvn= 
0⇒α1=α2=···=αn=0.Ifv1,v2,...,vnare not linearly independent ,then they are said to be 
linearly dependent. 
 
Note:If v1,v2,...,vnare called  linearly dependent then there exists scalarsα1,α2,...,αnnot all 
zero such that α1v1+α2v2+···+αnvn= 0.  
Examples: 

1. InVn(F),{e1,e2,...,en} is a linearly independent set of  vectors, for α1e1+α2e2+···+αnen=0. 
⇒α1(1,0,...,0)+α2(01,...,0)+···+αn(0,0,...,1)=(0,0,...,0) 
⇒(α1, α2, . . . , αn) = (0, 0, . . . , 0) ⇒ α1= α2= · · · = αn= 0. 
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4.6.7. 

4.6.8. 

2.InV3(R)thevectors(1,2,1),(2,1,0)and(1,−1,2)arelinearlyindependent. 
For,let α1(1,2,1)+α2(2,1,0)+α3(1,−1,2)=(0,0,0) 
∴(α1+2α2+α3,2α1+α2−α3,α1+2α3)= (0,0,0) 
∴ α1+2α2+α3=0 ···(1) 
2α1+α2−α3=0 ···(2) 
α1+2α3=0 ···(3) 
Solving equations (1),(2) and (3) we  get α1= α2= α3=0.  
∴The given vectors are linearlyindependent. 
3.InV3(R)thevectors(1,4,−2),(−2,1,3)and(−4,11,5)arelinearlydependent.For, 
letα1(1,4,−2)+α2(−2,1,3)+α3(−4,11,5)=(0,0,0) 
∴ α1−2α2−4α3=0 ···(1) 
4α1+α2+11α3=0···(2) 
−2α1+3α2+5α3=0··(3) 
From (1) and (2), 
α1=−18k,α2=−27k,α3=9k.These values of α1, α2and α3, for any k satisfy (3) also.  
Taking k = 1 we getα1=−18, α2= −27, α3= 9 as a non-trivial solution. Hence the three vectors 
are linearly dependent. 
Theorem:Anysubsetofalinearlyindependentsetislinearlyindependent. 
Proof: LetVbeavectorspaceoverafieldF. 
LetS={v1,v2,...,vn}bealinearly independent set.  
Let S′be a subset of S.  Without loss of generality we take S′={v1, v2, . . . , vk} where k ≤n. 
Suppose S′is a linearly dependent set. 
Then there existα1,α2,...,αkinFnotallzero,suchthatα1v1+α2v2+···+αkvk=0. 
Hence α1v1+α2v2+···+αkvk+0vk+1+···+0vn=0isanon-triviallinearcombination giving the zero 
vector. Here S is a linearly dependent set which is a contradiction. 
 Hence S′islinearlyindependent.  
 
Theorem: Anysetcontainingalinearlydependentsetisalsolinearlydependent. 
Proof.  Let V be a vector space.  Let Sbe a linearly dependent set.  Let S′⊃S.  
If S′is linearly independent S is also linearly independent (by theorem) which is a 
contradiction.  Hence S′islinearlydependent.  
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4.6.9. 

4.6.10. 

4.6.11. 

4.6.12. 

Theorem: LetS={v1,v2,...,vn}bealinearlyindependentsetofvectorsina 
vectorspaceVoverafieldF. TheneveryelementofL(S)canbeuniquelywrittenin 
theformα1v1+α2v2+···+αnvn,whereαi∈F. 
Proof.BydefinitioneveryelementsofL(S)isoftheformα1v1+α2v2+···+αnvn. 
Now,α1v1+α2v2+···+αnvn=β1v1+β2v2+···+βnvn. 
Hence(α1−β1)v1+(α2− β2)v2+···+(αn−βn)vn=0. 
SinceSisalinearlyindependentset,αi−βi= 0foralli. 
∴αi= βifor all i. Hencethetheorem. 
Theorem:S={v1,v2,...,vn}bealinearlyindependentsetofvectorsina vector space V if and only if 
there exists a vector vk∈S such that vkis a linear 
combinationoftheprecedingvectorsv1,v2,...,vk−1. 
Proof:Supposev1,v2,...,vnarelinearlydependent. 
Thenthereexistα1,α2,...,αn∈ F , not all zero, such that α1v1+ α2v2+ · · · + αnvn= 0. 
 Let k be the largest integer for which αkƒ= 0.  
Then α1v1+α2v2+· · ·+αkvk= 0. ∴αkvk= −α1v1−α2v2−· ··−αk−1vk−1. 
∴vk= (−α−1α1)v1+ · · · + (−α−1αk−1)vk−1.  
∴vkis a linear combination of thepreceding vectors.  
Conversely,  
suppose there exists a vector vksuch thatv + k = α1v1+ α2v2+···+αk−1vk−1. 
Hence−α1v1−α2v2−···−αk−1vk−1+vk+0vk+1+···+0vn=0.  
Sincethecoefficientofvk=1, wehaveS={v1,v2,...,vn}islinearlydependent.  
Example: InV3(R),letS=[(1,0,0),(0,1,0),(0,0,1),(1,1,1)].Here(1,1,1)=(1, 0, 0) + (0, 1, 0) + (0, 0, 
1). Thus (1, 1, 1) is a linear combination of the preceding vectors. Hence S is a linearly 
dependentset. 
Theorem:LetVbeavectorspaceoverF.LetS={v1,v2,...,vn}and L(S)=W.Thenthereexists 
alinearlyindependent   subsetsS′of SsuchthatL(S′)= W. 
Proof: Let S = {v1, v2, . . . ,vn}. 
 If S is linearly independent there is nothing to prove. 
If not, let vkbe the first vector in S which is a linear combination of the 
precedingvectors.LetS1={v1,v2,...,vk−1,vk+1,...,vn}.(ie.,)S1isobtainedby deleting the vector vkfrom S.  
Weclaim that L(S1) = L(S) = W.  
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4.7.1. 

4.7.3. 

 Since S1⊆S,L(S1) ⊆L(S). 
Now, let v ∈L(S). 
Then v = α1v1+ · · · +αkvk+ · · · + αnvn. 
Now,vkis a linear combination of the preceding vectors. 
 Let vk= β1v1+ · · · + βk−1vk−1.  Hencev=α1v1+···+αk−1vk−1+αk(β1v1+···+βk−1vk−1)+αk+1vk+1+···+αnvn. 
∴v can be expressed as a linear combination of the vectors of S1so that v ∈ L(S1).  
Hence L(S) ⊆L(S1). 
 Thus L(S) = L(S1) = W . 
 Now, if S1is linearly independent, the proof is complete. 
 If not, we continue the above process of removing a vector from S1, which is a linear 
combination of the preceeding vectors until we arrive at a linearly independent subset S′of 
S such that L(S′) = W.  
 
Basis and dimension: 
Definition:A linearly independent subset S of a vector space V which spans   
thewholespaceViscalledabasis ofthevectorspace. 
Theorem: 
Any finite dimensional vector space V contains a finite number of 
linearlyindependentvectorswhichspanV.(ie.,)Afinitedimensionalvectorspacehas 
abasisconsistingofafinitenumberofvectors. 
Proof:  Since V is finite dimensional  there  exists  a  finite  subset  S  of  V  such  that 
L(S)=V.ClearlythissetScontainsalinearlyindependentsubsetS′={v1,v2,...,vn} 
suchthatL(S′)=L(S)=VHenceS′isabasisforV.  
Theorem:LetVbeavectorspaceoverafieldF.ThenS={v1,v2,...,vn}is 
abasisforVifandonlyifeveryelementofVcanbeuniquelyexpressedasalinear combination of 
element ofS. 
Proof: Let S be a basis for V.  
Then by definition S is linearly independent and L(S)=V. 
HencebytheoremeveryelementofV canbeuniquelyexpressedasa linear combination of 
elements ofS. 
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4.7.5. 

Conversely, suppose every element of V can be uniquely expressed as a 
linearcombinationofelementsofS. 
ClearlyL(S)=V. 
Now,letα1v1+α2v2+···+αnvn=0.  
Also,0v1+0v2+···+0vn=0. 
Thuswehaveexpressed 0asalinearcombinationof vectors of S in two ways.  
By hypothesis α1= α2= · · · = αn= 0. 
 Hence S is linearly independent.  Hence S isabasis. 
Examples 
1.S={(1,0,0),(0,1,0),(0,0,1)}isabasisforV3(R)for,(a,b,c)=a(1,0,0)+b(0,1,0)+c(0, 0, 1). 
Any vector (a, b, c) of V3(R) has been expressed uniquely as a linear combination of the elements of S and hence S is a basis for V3(R). 
2.S = {e1, e2, . . . ,en} is a basis for Vn(F ). This is known as the standard basis forVn(F ). 
3. S = {(1, 0, 0), (0, 1, 0), (1, 1, 1)} is a basis for V3(R). 
4. {1, i} a basis for the vector space C overR. 

Theorem: Let V be a vector space over a field F. LetS={v1,v2,...,vn} spanV.LetS = {w1,w2,...,wn}bealinearlyindependentsetofvectorsin V.Then m ≤n. 
Proof.Since L(S) = V, every vector in V and in particular w1, is a linear combination ofv1,v2,...,vn. 
HenceS1={w1,v1,v2,...,vn}is a linear independent set of vectors. Hence there exists a vector vkƒ= w1in S1which is a linear combination of the preceding vectors. 
LetS2={w1,v1,...,vk−1,vk+1,...,vn}. 
Clearly,L(S2)=V. 
Hencew2is a linearcombinationofthevectorsinS2. 
HenceS3={w2,w1,v1,...,vk−1,vk+1,...,vn} is linearly dependent.  Hence there exists a vector in S3which is a linear combination of  the  preceding  vectors.   Since  the  wi’s  are  linearly  independent,  this  vectorcannotbe w2or w1and hence must be some vjwherejk(say,  with j >k).   
DeletionofvjfromthesetS3givesthesetS4={w2,w1,v1,...,vk−1,vk+1,...,vj−1,vj+1,...,vn}of n vectors  spanningV. 
Inthisprocess,ateachstepweinsertonevectorfrom{w1, w2, . . . ,wm} and delete one vector from {v1, v2, . . . , vn}. 
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4.7.6. An 

4.7.7. 

4.7.8 

4.7.9. 

 If m > n after repeating this process n times, we arrive at the set {wn, wn−1, . . . ,w1} which spans V. 
Hencewn+1isalinearcombinationofw1,w2,...,wn.  
Hence{w1,w2,...,wn,wn+1,. . . , wn} is linearly dependent which is a contradiction.   
Hence m≤n.  
Theorem:Any two bases of a finite dimensional vector space V have the same number 
ofelements. 
Proof.  Since V is finite dimensional, it has a basis say S =  {v1, v2, . . . , vn}. 
  Let   S′= {w1, w2, . . . ,wm} be any other basis for V . 
 Now, L(S) = V and S′is a set of m linearly independent vectors. Hence m ≤ n. 
 Also, since L(S′) = V and S is a set of n linearly independent vectors, n ≤ m.  Hence m =n.  
Definition:Let V be a finite dimensional vector space over a field F. The number of elements 
in any basis of V is called the dimension of V and is denoted by dim V. 
Theorem:  Let V be a vector space of dimension n.Then 

(i) anysetofmvectorswherem>n is linearlydependent. 
(ii) anyset of m vectors where m < n cannot span V. 

Proof. 
(i) Let S = {v1, v2, · · · ,vn} be a basis for V . Hence L(S) = V.  

Let S′be any set consisting of m vectors where m > n. Suppose S′is linearly independent.  Since S 
spansV,m≤nwhichisacontradiction. 
HenceS′islinearlydependent. 

(ii) Let S′be a set consisting of m vectors where m < n. Suppose L(S′) = V. 
Now,S = {v1, v2, · · · ,vn} is a basis for V and hence linearly independent. 
 Hence by theoremn ≤ m which is a  contradiction.  HenceS′cannot span V.  
Theorem: LetVbeafinitedimensionalvectorspaceoverafieldaF.Any linearindependentsetofvectorsinVispartofabasis. Proof. Let S = {v1, v2, . . . ,vr} be a linearly independent set of vectors.  
If L(S) = V then S itself is a basis.  
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4.7.10. 

4.7.11. 

If L(S) = V , choose an element vr+1∈ V − L(S).  
Now,  consider S1= {v1,2, . . . , vr, vr+1}.  
We shall prove that S1is linearly independent by 
showingthatnovectorinS1isalinearcombinationoftheprecedingvectors.  
Since {v1, v2, . . . ,vr} is linearly independent viwhere 1 ≤ i ≤ r is not a linear combination of the 
preceding vectors.   
Also vr+1∈L(S) and hence vr+1is not a linear combination   of v1, v2, . . . ,vr.  
Hence S1is linearly independent.  
If L(S1) = V , then S1is a basis for V . If not we take an element vr+2∈ V − L(S1) and proceed as 
before. Since the dimension of V  is finite, this process must stop at a certain stage giving the 
required   basiscontainingS.  
 
Theorem: Let V be a finite dimensional vector space over a field F . Let Abe a subspace of V . 
Then there exists a subspace B of V such that V = A ⊕B. 
Proof.  Let S =  {v1, v2, . . . , vr} be a basis of A.   
 By theorem ,  we  can find   w1,w2,...,ws∈VsuchthatS′={v1,v2,···,vr,w1,w2,...,ws}isabasisofV.Now, 
let B = L({w1, w2, . . . , ws}).  
We claim that A ∩ B = {0} and V = A + B.  
Now, let v∈A∩B.Thenv∈Aandv∈B. 
Hence  v=α1v1+···+αrvr=β1w1+···+βsws 
∴α1v1+···+αrvr−β1w1−···−βsws=0. 
Now,sinceS′islinearlyindependent,αi= 0 = βjfor all i and j. 
Hence v = 0. Thus A ∩ B = {0}. 
Now, let v ∈V . 
Then v = (α1v1+ · · · + αrvr) + (β1w1+ · · · + βsws) ∈ A + B.  
Hence A + B = V so that V = A⊕B. 
Definition:Let V be a vector space and S = {v1, v2, . . . ,vn} be a set of independent vectors 
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4.7.12 

4.7.13. 

in V .  Then S is called a maximal linear independent set 
ifforeveryv∈V−S,theset{v,v1,v2,...,vn} islinearlydependent. 
Definition.LetS={v1,v2,...,vn}beasetofvectorsinVandletL(S)=V. ThenSiscalledaminimal 
generatingsetIf foranyvi∈S,L(S−{vi})=V. 
 
Theorem: LetV beavectorspaceoverafieldF.LetS={v1,v2,...,vn}⊆V. Then the following 
areequivalent. 

(i) S is a basis for V. 
(ii) S is a maximal linearly independentset. 
(iii) S is a minimal generatingset. 

Proof.(i)⇒(ii)LetS={v1,v2,...,vn}beabasisforV.Thenbytheoremany 
n+1vectorsinVarelinearlydependentandhenceSisamaximallinearlyindependent set. 
(ii)⇒(iii)LetS={v1,v2,...,vn}beamaximallinearlyindependentset.thatS is a basis for V  we shall 
prove that L(S) = V .  
 Obviously L(S) ⊆V . 
Now,letv∈V. 
Ifv∈S,thenv∈L(S).(sinceS⊆L(S)) 
Ifv∈/S,S′={v1,v2,...,vn,v}is a linearly dependent set (since S is a maximal  independent  set)   
∴There  exists  a vectorinS′whichisalinearcombinationofthepreceedingvectors.Sincev1,v2,...,vnare 
linearly independent, this  vector  must  be  v.  Thus  v  is  a  linear  combination  of v1, v2, . . . ,vn. 
Therefore v ∈L(S).  
Hence V ⊆L(S). Thus V = L(S). 
(i)⇒(iii) Let S = {v1, v2, . . . , vn} be a basis. Then L(S) = V . 
If S is not minimal, there exists vi∈ S such that L(S − {vi}) = V . 
Since S is a linearly independent,      S − {vi} is also linearly independent. Thus S − {vi} is a basis 
consisting of n − 1 elementswhichisacontradiction. 
HenceSisaminimalgeneratingset. 
(iii)⇒((i) 
LetS = {v1, v2, . . . , vn} be a minimal generating set. To prove that S is a basis, we  haveto show 
that S is linearly independent.  
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4.7.14. 

4.7.15. 

4.7.16 

 If S is linearly dependent, there exists a vector     vkwhich is a linear combination of the 
preceeding vectors.  
Clearly L(S − {vk}) = V contradicting the minimality of S.   
Thus S is linearly independent and since L(S) = V ,   S is a basis for V.  
Theorem:Anyvectorspaceof dimensionnoverafieldFisisomorphictoVn(F). 
Proof.LetVbeavectorspaceofdimensionn.Let{v1,v2,...,vn}beabasisforV. 
Thenweknowthatifv∈V,vcanbewrittenuniquelyasv=α1v1+α2v2+···+αnvn, whereαi∈F. 
Now,considerthemapf:V→Vn(F)givenbyf(α1v1+···+αnvn)= (α1,α2,...,αn). 
Clearlyfis1-1andonto. 
Letv,w∈V. 
Thenv=α1v1+···+αnvnandw=β1v1+···+βnvn. 
f(v + w) = f[(α1+ β1)v1+ (α2+ β2)v2+ · · · + (αn+ βn)vn] 

=((α1+β1),(α2+β2),···,(αn+βn)) 
=(α1,α2,···,αn)+(β1,β2,···,βn) 
          = f(v)+f(w) 
Alsof(αv)=f(αα1v1+···+ααnvn) 
=(αα1,αα2,···,ααn) 

= α(α1, α2, . . . , αn)  
= αf(v).  
Hence f is an isomorphism of V to Vn(F).  
 
Corollary :Any two vector spaces of the same dimension over a field F are isomorphic,  
For, if the vector spaces are of dimension n, each is isomorphic to Vn(F ) and hence they 
areisomorphic. 
Theorem:. Let V and W be vector spaces over a field F . Let T : V → W be an isomorphism. 
Then T maps a basis of V onto a basis of W. 
Proof. Let{v1,v2,...,vn}beabasisforV. 
WeshallprovethatT(v1),T(v2),...,T(vn) are linearly independent and that they span W. 
Now,α1T(v1)+α2T(v2)+···+ αnT(vn) =0 
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4.7.17. 

4.7.18. 

⇒T (α1v1) + T (α2v2) + · · · + T (αnvn) = 0  
⇒T (α1v1+ α2v2+ · · · + αnvn) = 0  
⇒α1v1+ α2v2+ · · · + αnvn= 0 (since T is 1-1)  
⇒α1=  α2=  · · · =  αn=  0  (since  v1,v2,...,vnarelinearlyindependent). 
∴T(v1),T(v2),...,T(vn)arelinearlyindependent.  
Now, let w ∈W . Then since T is onto, there exists a vector v ∈V. 
suchthat  T (v)  =  w. 
Let  v  =  α1v1+ α2v2+ · · · + αnvn. 
Thenw=  T(v)  = T(α1v1+α2v2+···+αnvn) 
=α1T(v1)+α2T(v2)+···+αnT(vn). 
Thuswisa linear combinationofthevectorsT(v1),T(v2)...,T(vn). 
∴T(v1),T(v2)...,T(vn)spanW and hence is a basis forW.  
 
Corollary: Two finite dimensional vector space V and W over a field F are 
isomorphicifandonlyiftheyhavethesamedimension. 
Theorem:Let V and W be finite dimensional vector spaces over a field F. 
Let{v1,v2,···,vn}beabasisforVandletw1,w2,...,wnbeanynvectorsinW(not 
necessarilydistinct)ThenthereexistsauniquelineartransformationT:V→Wsuch 
thatT(vi)=wi,i=1,2,...,n. 
Proof. Letv=α1v1+α2v2+···+αnvn∈V. 
WedefineT(v)=α1w1+α2w2+···+αnwn. 
Now,letx,y∈V. 
Letx=α1v1+α2v2+···+αnvnandy=β1v1+β2v2+···+βnvn 
∴(x+y)=(α1+β1)v1+(α2+β2)v2+···+(αn+βn)vn 

∴T(x+y)=(α1+β1)w1+(α2+β2)w2+···+(αn+βn)wn. 
=(α1w1+α2w2+···+αnwn)+(β1w1+β2w2+···+βnwn) 
= T (x) + T (y)  
Similarly T (αx) = αT (x).   
Hence T is a linear transformation.   

Free Hand
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4.7.19. 

4.7.20. 

W

Also v1= 1v1+0v2+···+0vn. 
HenceT(v1)= 1w1+0w2+···+0wn= w1. 
Similarly T(vi)=wiforalli=1,2,...,n. 
Now,toprovetheuniqueness,letT′:V→Wbeany otherlineartransformationsuchthatT′(vi)=wi. 
Letv=α1v1+α2v2+···+αnvn∈V.  
T′(v)= α1T′(v1)+α2T′(v2)+···+αnT′(vn) 
=α1w1+α2w2+···+αnwn 

= T(v).  
Hence T =T′.  
Remark: The above theorem shows that a linear transformation is completely 
determinedbyitsvaluesonthe elements ofabasis. 
Theorem: Let V be a finite dimensional vector space over a field F . LetWbe a subspace of V . 
Then 

(i) dim W ≤ dim V. 
(ii) dim   

Proof. 
(i) LetS={w1,w2,...,wm}beabasisforW.SinceWisasubspaceofV,Sisapart of a basis for V . Hence 

dim W ≤ dim V. 
(ii) LetdimV=nanddimW=m.  

 LetS={w1,w2,...,wm}beabasisforW.Clearly S is a linearly independent set of vectors in V . 
 Hence S is a part of a basis in V .  Let     S={w1,w2,...,wm,v1,v2,···,vr}be 
abasisforV.Thenm+r=n.Now,weclaim S′= {W + v1, W + v2, . . . , W + vr} is a basis for .  
Suppose α1(W + v1) + α2(W + v2) + · · · + αr(W + vr) = W + 0 
⇒ (W + α1v1) + (W + α2v2) + · · · + (W + αrvr) = W 
⇒W +α1v1+α2v2+···+αrvr=W 
⇒α1v1+α2v2+···+αrvr∈W. 

Free Hand
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4.7.21. 

Now,since{w1,w2,···,wm}isabasisforW,α1v1+α2v2+···+αrvr=β1w1+β2w2+···+βmwm.  
Thereforeα1v1+α2v2+···+αrvr−β1w1−β2w2−···−βmwm=0. 
Henceα1=α2=··=αr=β1=β2=···=βm=0andsoS′isalinearlyindependentset. 

Now,letW+v∈ . 
Letv=α1v1+α2v2+···+αrvr+β1w1+β2w2+···+βmwm. Then 
 
W + v = W + (α1v1+ α2v2+ · · · + αrvr+ β1w1+ β2w2+ · · · + βmwm) 
                =W+(α1v1+α2v2+···+αrvr)(sinceβ1w1+β2w2+···+βmwm∈W 
=(W+α1v1)+ (W+α2v2)+···+(W+αrvr) 
=α1(W+v1)+α2(W+v2)+···+αr(W+vr) 
Hence S′spans of  thatS′isabasisfor   and dim =r=n−m=dimV−dimW. 

Theorem:Let V be a finite dimensional vector space over  a field F .  LetA 
and B be subspaces of V . Then dim (A + B) = dim A + dim B − dim (A ∩ B) 
Proof. A and  B are  subspaces  ofV. Hence A ∩ B is subspace of V. 
Let dim(A∩B) = r  
Let S={v1, v2, . . . , vr} be a basis for A ∩ B  
Since A ∩ B is a subspace of A and B, S is a part of a basis for A and B.  
Let {v1, v2, . . . ,vr, u1, u2, · · · , us} be a basis for A andn{v1, v2, . . . , vr, w1, w2, . . . , wt} be a basis 
for B. 

Weshallprovethat{v1,v2,...,vr,u1,u2,...,us,w1,w2,...,wt}beabasisforA+B. 
Letα1v1+α2v2+···+αrvr+β1u1+β2u2+···+βsus+γ1w1+γ2w2,···+γtwt=0. 

Then β1u1+β2u2+···+βsus=−(α1v1+α2v2+···+αrvr)−(γ1w1+γ2w2,···+γtwt)∈B.  
Hence β1u1+ β2u2+ · · · + βsus∈B.  
Also β1u1+ β2u2+ · · · + βsus∈ A.  
Hence β1u1+β2u2+···+βsusssss∈A∩Bandsoβ1u1+β2u2+···+βsus=δ1v1+δ2v2+···+δrvr. 

β1u1+β2u2+···+βsus−δ1v1−δ2v2−···−δrvr=0. 

Free Hand
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4.7.22. 

Thusβ1=β2=···=βs= δ1=δ2=···=δr=0(Since{u1,u2,...,us,v1,v2,...,vr}islinearlyindependent) 
 Similarly we  canprove  γ1=  γ2=  · · · =  γt=  0.   
Thus αi=  βj=  γk=  0 for all  1 ≤ i ≤ r; 1 ≤ j ≤ s; 1 ≤ k ≤ t. Thus S′is a linearly independent set. 
Clearly S′spans A + B and so S′is a basis for A + B. Hence dim (A + B) = r + s + t.  
Also dimA=r+s;dimB=r+tanddim(A∩B)=r.  
HencedimA+dimB−dimA∩B= (r+s)+(r+t)−r=r+s+t=dim(A+B).  
Corollary IfV=A⊕B,dimV=dimA+dimB. 
Proof. V=A⊕B⇒A+B=Vand A∩B={0}. 
 dim(A∩B)=0. 
HencedimV=dimA+dimB. 
  

Free Hand
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UNIT - III RANK AND NULLITY 
Definition: 
Let WVT :  be a linear transformation. Then the dimension of  VT  is called the rank of T. 
The dimension of Tker  is called the nullity of T. 
 
Theorem.  Let WVT :  be a linear transformation. Then nullityTrankTV dim . 
Proof. 
We know that  VTTV ker/  

    

rankTnullityV
rankTnullityTV

VTTV





dim
dim

dimkerdimdim
 

Note. Tker is also called null space of T. 
 
Example. Let V denote the set of all polynomials of nree deg in  xR . Let VVT :  be defined 
by   dx

dffT  . We know that T is a linear transformation. Since fdx
df  0  is constant, Tker  

consists of all constant polynomials. The dimension of this subspace of V is 1. Hence nullity T is 
1. Since 1dim  nV , nrankT   
 
Definition. A linear transformation WVT :  is called non-singular if T is 1-1; otherwise Tis 
called singular. 
 
Matrix of a Linear Transformation. 
Let V and W be finite dimensional vector spaces over a field F. Let mV dim and nW dim . Fix 
an ordered basis  mvvv ,...,, 21  for V and an ordered basis  mwww ,...,, 21  for W.      
Let WVT :  be a linear transformation. We have seen that T is completely specified by the 
elements  mvvvT ,...,, 21 Now, let  

Free Hand
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  nmnmmm

nn

nn

wawawavT

wawawavT
wawawavT






...
...................................................

...
...

2211

22221212

12121111

…(1) 

Hence  mvvvT ,...,, 21  are completely specified by the mn elements ija  of the field F. These ija
can be conveniently arranged in the form of m rows and n columns as follows. 















mnmm

n
n

aaa

aaa
aaa

...
............

...

...

21

22221
11211

 

Such an array of mn elements of F arranged in m rows and n columns is know as nm   matrix 
over the field F and is denoted by ija . Thus to every linear transformation T there is associated 
with it an nm   matrix over F. Conversely and nm   matrix over F defines a linear 
transformation WVT :  given by the formula (1). 
 
Note. The nm   matrix which we have associated with a linear transformation WVT :  
depends on the choice of the basis for V and W 
For example, consider the linear transformation    RVRVT 22:   given by    baabaT  ,, . 
Choose  21 , ee  as a basis both for the domain and the range. 

Then 
   
    22

211

1,0
1,1

eeT
eeeT




 

Hence the matrix representing T is 



10
11  

Now, we choose  21 , ee  as a basis for the domain and     1,1,1,1   as a basis for the range. 
Let   1,11 w and  1,12 w . 

Then 
   
        212

11

2/12/11,0
1,1

wweT
weT




 

Hence the matrix representing T is 



 2/12/1
01  
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Solved Problems 
Problem 1.  
Obtain the matrix representing the linear transformation    RVRVT 33:   given by 
   cbabaacbaT  2,.3,,  w.r.t. the standard basis  321 ,, eee . 

Solution. 
     
     
      33

322

3211

1,0,01,0,0
1,1,00,1,0

232,1,30,0,1

eTeT
eeTeT

eeeTeT





 

Thus the matrix representing T is 












100
110
213

 

Problem 2.  

Find the linear transformation    RVRVT 33:   denoted by the matrix 










 431

110
121

 w.r.t. the 

standard basis  321 ,, eee  
Solution. 
   
   
   4,3,143

1,1,00
1,2,12

3213

3212

3211





eeeeT
eeeeT
eeeeT

 

Now,        1,0,00,1,00,0,1,, cbacba   
  321 cebeae   

   321,, cebeaeTcbaT   
      

     4,3,11,1,01,2,1
121




cba
ecTebTeaT  

   cbacbacacbaT 4,32,,,   
This is the required linear transformation. 
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Definition. Let  ijaA  and  ijbB   be two nm   matrices. We define the sum of these two 
matrices by  ijij baBA   
Note that we have defined addition only for two matrices having the same number of rows and 
the same number of columns. 
 
Definition. Let  ijaA  be an arbitrary matrix over a field F. Let F . We define  ijaA    
 
Theorem.  
The set  FM nm of all nm   matrices over the field F is a vector space of dimension mnover F 
under matrix addition and scalar multiplication defined above. 
Proof  
Let  ijaA  and  ijbB   be two nm   matrices over a field F. The addition of nm   matrices 
is a binary operation which is both commutative and associative. The nm   matrix whose 
entries are 0 is the identity matrix and  ija  is the inverse matrix of  ija . Thus the set of all 

nm   matrices over the field F is an abelian group with respect to addition. The verification of 
the following axioms are straight forward. 

(a)      BABA    
(b)      AAA    
(c)    AA    
(d) AIA  

Hence the set of all nm   over F is a vector space over F. 
 Now, we shall prove that the dimension of this vector space is mn. Let ijE  be the matrix 
with entry 1 in the  thji,  place and 0 in the other places. We have mnmatrices of this form. Also 
any matrix  ijaA  can be written as ijijEaA  . Hence A is a linear combination of the 
matrices ijE  are linearly independent. Hence these mn matrices form a bases for the space of all 

nm   matrices. Therefore the dimension of the vector space is mn. 
 
 

Free Hand
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Theorem  
Let V and W be two finite dimensional vector spaces over a field F. Let mV dim and nW dim . 
Then  WVL ,  is a vector space of dimension mn over F. 
Proof. 
 WVL , is a vector space of dimension mn over F. Now, we shall prove that the vector space 
 WVL ,  is isomorphic to the vector space  FM nm  is of dimension mn, it follows that  WVL ,  

is also of dimension mn 
Fix a basis   mvvv ,...,, 21  for V and an ordered basis  mwww ,...,, 21  for W. 
We know that any linear transformation  

 WVLT , can be represented by an nm   matrix over F.          
Let T be represented by  TM . This function    FMWVLM nm,:  is clearly 1-1 and onto 
Let  WVLTT ,, 21   and    ijaTM 1 and    ijbTM 2  

     
     
     jijij

n

j
i

jij
n

j
iij

jij
n

j
iij

wbavTT

wbvTbTM

wavTaTM

















1
21

1
22

1
11

s 

   ijij baTTM  21  

 
   
   21 TMTM

ba ijij




 

Similarly    11 TMTM    
Hence M is the required isomorphism from  WVL ,  to  FM nm  
 
Definition and examples  
Definition. Let V be a vector space over F. An inner product of V is a function which assigns to 
each ordered pair of vectors u, v in V a scalar in F denoted by vu,  satisfying the following 
conditions. 
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(i) wvwuwvu ,,,   
(ii) vuvu ,,    
(iii) vuvu ,,  , where vu, is the complex conjugate of vu, . 
(iv) 0, vu and 0, uu iff 0u . 
A vector space with an inner product defined on it is called an inner product space. An inner 
product space is called an Euclidean space or unitary space according as F is the field of real 
numbers or complex numbers. 
 
Note 1. If F is the field of real numbers then condition (iii) takes the form uvvu ,,  . Further 
(iii) asserts that uu,  is always real and hence (iv) is meaningful whether F is  the field of real or 
complex numbers 
 
Note 2. vuvu ,,    

For, vuvu ,,    

 
vu
vu

vu

,
,

,









 

Note 3. wvvuwvu ,,,   
For, uwvwvu ,,   

wuvu
uwuv

uwuv

,,
,,

,,





 

 
Note 4. 0,00,  vu  
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 For, 00,000,0,  uuu  
 Similarly 0,0 v . 
 
Examples. 
1. )(RVn  is a real inner product space with inner product defined by 

nnyxyxyxyx  ..., 2211  
 nxxxx ,...,, 21 and 
 nyyyy ,...,, 21  

This is called the standard inner product on )(RVn . 
Proof.  
Let )(,, RVzyx n and R . 
(i)       nnn zyxzyxzyxzyx  ..., 222111  
   

zyzx
zyzyzyzxzxzx nnn

,,
...... 122112211




 

(ii) nnyxyxyxyx   ..., 2211  
 

yx
yxyxyx nn

,
...2211







 

(iii) nnyxyxyxyx  ..., 2211  

xy
xyxyxy nn

,
...2211




 

(iv) 0..., 22
2

2
1  nxxxxx  and 

0, xx iff 0... 22
2

2
1  nxxx  

0, xx iff 0x  
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2.  CVn  is a complex inner product space with inner product defined by 
nn yxyxyxyx  ..., 2211  where  nxxxx ,...,, 21  and  nyyyy ,...,, 21  

Proof.  
Let )(,, CVzyx n  and C  
(i)       nnn zyxzyxzyxzyx  ..., 222111  
   

zyzx
zyzyzyzxzxzx nnn

,,
...... 122112211


  

(ii) nn yxyxyxyx   ..., 2211  
 

yx
yxyxyx nn

,
...2211





  

(iii) nn xyxyxyxy  ..., 2211  

yx
yxyxyx
xyxyxy

nn

nn

,
...
...

2211

2211





 

(iv) nn xxxxxxxx  ..., 2211  
0... 22

2
2

1  nxxx and 
0, xx iff 0... 22

2
2
1  nxxx  

0, xx iff 0x  

3. Let V be the set of all continuous real valued functions defined on the closed interval 
 1,0 . V is a real inner product space with inner product defined by    dttgtfgf  1

0
,  

Proof.  
Let Vhgf ,,  and R  

Free Hand
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(i)      dtthtgtfhgf   1

0
,  

       
hghf

dtthtgdtthtf

,,

1

0

1

0



    

(ii)    dttgtfgf  1

0
,   

   
hg

dttgtf

,

1

0







   

(iii)    dttgtfgf  1

0
,  

   
hg

dttftg

,

1

0



   

(iv)    0,
1

0
2   dttfff  and  

0, ff iff 0f  

 
Definition. Let V be an inner product space and  let Vx . The norm or length of x, denoted by 
x , is defined by xxx , . X is called a unit vector if 1x . 

 
Solved Problems 
Problem 1.  
Let V be the vector space of polynomials with inner product given by    dttgtfgf  1

0
, . Let 

  2 ttf and   322  tttg . Find (i) gf ,   (ii) f  

Solution. 
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(i)    dttgtfgf  1

0
,  

  
 





1

0
3

1

0
2

67

322

dttt

dtttt
 

4
37

62
7

4
1

62
7

4
1

0

24








  ttt

 

(ii) fff ,2   
  

 

 









1

0
3

1

0
2

1

0
2

67

2

dttt

dtt

dttf

 

   1

0
3 44 dttt  

3
19

423
1

423
1

0
23








  ttt

 

3
19f  
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Theorem. The norm defined in an inner product space V has the following properties. 
(i) 0x and 0x iff 0x . 
(ii) xx   . 
(iii) yxyx , (Schwartz’s inequality). 
(iv) yxyx   (Triangle inequality). 
Proof. 
(i) 0,  xxx and 0x iff 0x . 
(ii) xxx  ,2   

22

,
,

x

xx
xx










 

 xx    
(iii) The inequality is trivially true when 0x or 0y . Hence let 0x  and 0y  
Consider xx

xyyz 2
, . 

Then zz,0  

Free Hand
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2
2

222
2

2222

22

,,

,,,,,,

,,,,,,,,

,,,

x
yxyxy

x
xyxy

x
yxxy

x
xyxyy

xxxx
xyxyyxx

xyxyx
xyyy

xx
xyyxx

xyy









 

 
222 ,0 yxyx   

yxyx  ,  
(iv) yxyxyx  ,2  

22 ,,

,,,,

yyxyxx

yyxyyxxx




 

 2
22

22

22

2

,2

,Re2

yx

yyx

yyxx

yyxx







 

yxyx   
 
Orthogonality 
Definition. Let V be an inner product space and Vyx ,  let x  is said to be orthogonal to yif 

0, yx  
Note 1. xis orthogonal to 0,  yxy  

Free Hand
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0,
0,




xy
yx

 

y is orthogonal to x 
Thus x and y are orthogonal iff 0, yx  
 
Note 2. xis orthogonal to xy   is orthogonal to y 
 
Note 3. 1x and 2x  are orthogonal to 21 xxy   is orthogonal to y 
 
Note 4. 0 is orthogonal to every vector in V and is the only  vector with this property 
 
Definition. Let V be an inner product space. A set S  of vectors in V is said to be an orthogonal 
set if any two distinct vectors n S are orthogonal 
 
Definition. S is said to be an orthonormal set if S is orthogonal and 1x  for all Sx  
 
Example.  The standard basis  neee ,...,, 21  in nR or nC  is an orthogonal set with respect to the 
standard inner product. 
 
Theorem. Let  nvvvS ,...,, 21  be an orthogonal set of non zero vectors in an inner product 
space V. then S is linearly independent. 
Proof.  
Let 0,...,, 2211 nnvvv   
Then 0,0,,...,, 112211  vvvvv nn  

0,...,, 1122111  vvvvvv nn  
 0, 111  vv  (since S is orthogonal) 
 01    (since 01 v ) 
Similarly 0...32  n  

Free Hand
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Hence S is linearly independent. 
 
Theorem. Let  nvvvS ,...,, 21  be an orthogonal set of non zero vectors in an inner product 
space V. let Vv and nnvvvv  ,...,, 2211 . Then 2

,
k

k
k v

vv  

Proof. knnk vvvvvv ,,...,,, 2211   
knnkkkkk vvvvvvvv ,...,...,, 2211    

 kkk vv ,  (since S is orthogonal) 
2

kk v  
2

,
k

k
k v

vv  
 
Theorem. Every finite dimensional inner product space has an orthonormal basis 
Proof. 
Let V be a finite dimensional inner product space. Let  nvvv ,...,, 21  be a basis for V. From this 
basis we shall construct an orthonormal basis  nwww ,...,, 21  by means of a construction know as 
Gram-Schmidt orthogonalisation process 
 First we take 11 vw   
Let 12

1
12

22
, ww
wvvw   

We claim that 02 w . For, if 02 w  then 2v  is a scalar multiple of 1w  and hence of 1v  which is 
a contradiction since 1v , 2v  are linearly independent 
Also, 112

1
12

212 ,,, www
wvvww   

112
1

12
2 ,, vvv

vvv   11 vw   

Free Hand
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0
,,

,,,

1212

112
1

12
12






vvvv

vvv
vvvv

 

Now, suppose that we have constructed non zero orthogonal vectors  kwww ,...,, 21 . Then put 

k
k

jkk

j
kk ww

wvvw 2
1

1
11

,


   

We claim that 01 kw . For, if 01 kw  then 1kv  is a linear combination of  kwww ,...,, 21  and 
hence is a linear combination of  kvvv ,...,, 21  which is a contradiction since  121 ,...,, kvvv  are 
linearly independent 
Also  

ij
j

jkk

j
kk www

wvwvww ,,,, 2
1

1
1111


   

0
,,

,,,

11

2
1

1










ikik

ii
i

ik
ik

wvwv

www
wvwv

 

Thus, continuing in this way we ultimately obtain a non zero orthogonal set  nwww ,...,, 21  
By theorem this set is linearly independent and hence a basis  
To obtain an orthonormal basis we replace each iw  by 

i
i

w
w  

Solved Problems 
Problem 1.  Apply Gram-Schmidt orthogonalisation process to construct an orthonormal basis 
for )(3 RV with the standard inner product for the basis  321 ,, vvv where )1,0,1(1 v ; )1,3,1(2 v  
and )1,2,3(3 v  
Solution. 
Take )1,0,1(11  vw  

Free Hand
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Then 2101, 222
11

2
1  www  and  

2101, 21 vw  
Put 12

1

12
22

, ww
wvvw   

   
 0,3,0

1,0,11,3,1


  

92
2 w  

Also, 6060, 32 ww  and 4103, 31 vw  
Now, 22

2
23

12
1

13
33

,, ww
wvww

wvvw   

     
     
 1,0,1

0,3,03
21,0,121,2,3

0,3,09
61,0,12

41,2,3






 

22
3  w  

 The orthogonal basis is       1,0,1,0,3,0,1,0,1   
Hence the orthonormal basis is  

  



 


 




2
1,0,2

1,0,1,0,2
1,0,2

1  
 
Problem 2. Let V be the set of all polynominals of degree 2  together with the zero 
polynomial. V is a real inner product space with inner product defined by    dxxgxfgf  1

1
, . 

Starting with the basis  2,,1 xx , obtain an orthonormal basis for V. 
Solution. 
Let xvv  21 ;1  and xv 3  
Let 11 vw   
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Then 21,
1

1
11

2
1   dxwww  
21 w  

22
2

23
12

1
13

33
,, ww
wvww

wvvw   

3
1

2
3

2
1

2

1

1
3

1

1
22






  

x

dxxxdxxx
 

 


  1

1

2
2

33
2

3 45
8

3
1, dxxwww  

Hence the orthogonal basis is 



  3

1,,1 2xx  

The required orthonormal basis is  
 134

10,2
3,2

1 2xx  
 
Orthogonal Complement  
Definition. Let V be an inner product space. Let S be a subset of V. The orthogonal complement 
of S denoted by S , is the set of all vectors in V which are orthogonal to every vector of S 
(i.e)  SuallforuxandVxxS  0,/  
 
Examples 
1.  0V  and   V0  since 0 is the only vector which is orthogonal to every vector  
2. Let     RVRxxS 3/0.0.   with standard inner product. Then   RzyzyS  ,/,,0  
(i.e) The orthogonal complement of the x-axis is the yz plane  
 
Theorem  
If S is any subset of V then S  is a subspace of V. 
Proof. 
Clearly  S0  and hence S  

Free Hand
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Now, let Syx,  and F ,  
Then 0,,  uyux  for all Su  

0,,,  uyuxuyx  for all Su  
 Syx   Hence S  is a subspace of V. 

 
Theorem  
Let V be a finite dimensional inner product space. Let W be a subspace of S. Then V is the direct 
sum of W and W  (i.e)  WWV  
Proof. 
(i)  0 WW  and  
(ii) VWW    
(i) Let  WWv . Then Wv and Wv  
Now, vWv    is orthogonal to every vector in W. 
In particular, v is orthogonal to itself. 

0,  vv and hence 0v  
Hence  0 WW  
(ii) Let  rvvv ,...,, 21  be an orthonormal bases for W. Let Vv  
Consider rr vvvvvvvvvvv ,...,, 22110   

iiiii vvvvvvvv ,,,,0   (since 0, ji vv  if ji   

ii vvvv ,,   (since 1, ji vv ) 
0  

 
0v is orthogonal to each of  rvvv ,...,, 21  and hence is orthogonal to every vector in W. Hence 

Wv0  and    WWvvvvvvvvvvv rr 02211 ,...,,  WWV  
Hence the theorem. 

Free Hand
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Corollary.  WWV dimdimdim  
Proof.     WWWWV dimdimdimdim  
 
Theorem. Let V be a finite dimensional inner product space. Let W be a subspace of V. Then 
  WW   
Proof.  
Let Ww . Then for any Wu , 0, uw  
Hence  Ww . Thus   WW …(1) 
Now by theorem  WWV  
Also    WWV  
Hence   WW dimdim ...(2) 
From (1) and (2) we get   WW   
 
Solved problems  
Problem 1. 
Let V be an inner product space and let 1S and 2S be subsets of V. Then   1221 SSSS  
Solution. Let  2Su  
Then 0, vu for all 2Su  
But 21 SS  . Hence 0, vu for all 1Su   
Hence  1Su . Thus   12 SS  
 
Problem 2. 
Let 1W  and 2W  be subspaces of a finite dimensional inner product space. Then  
(i)     2121 WWWW  
(ii)     2121 WWWW  
Solution. 
(i) We know that 211 WWW   

Free Hand
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     121 WWW  (by the problem 1). 
Similarly,     221 WWW  
Hence     2121 WWWW …(1) 
Now, Let  21 WWw  
Then  1Ww  and  2Ww  
 0, uw for all 1Wu  and 2W  
Now, let 21 WWv   
Then 21 vvv   where 11 Wv   and 22 Wv   
 21,, vvwuw   

21 ,, vwvw   
             =0 + 0 (since 11 Wv  and 22 Wv  )             = 0 
Hence   21 WWw  

   2121 WWWW ….(2) 
From (10 and (2) we get  
    2121 WWWW  
(ii) Proof is similar to that of (i) 
  

Free Hand

Free Hand
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UNIT - IV THEORY OF MATRICES 
Introduction  
In this chapter we shall develop the general theory of matrices. Throughout this chapter we deal 
with matrices whose entries are from the field F of real or complex numbers. 
 
Algebra of Matrices  
We have already seen that an  matrix A is an arrat of  numbers   where               1

, 1  arranged in m rows and n columns as follows 
……… … … ……

 

We shall denote this matrix by the symbol ( ). If m=n, A is called a square matrix of order n 
 
Definition. Two matrices A=( ) and B=( ) are said to be equal if A and B have the same 
number of rows and columns and the corresponding entries in the two matrices are same. 
Additional of matrices. We have already defined the addition of two  matrix A=   and 
B=( ) by A+B=( ) 
We note that we can add two matrices iff they have the same number of rows and columns. 
Example. If A= 1 23 49 5

 and B= 0 42 11 0
 then A+B= 1 65 58 5

 
Remark. The set of all  matrices is an abelian group under matrix addition. The  
matrix with each entry 0 is the zero matrix and is denoted by 0 and the additive inverse of 
matrix A=  is  and is denoted by –  
If A= is any matrix and  is any number (real or complex) we have defined the matrix  by 

 
The set of all  matrices over the field R under matrix addition and scalar multiplication 
defined above is a vector space. This result is true if R is replaced by C or by any field F 
We now proceed to define multiplication of matrices. We have already defined the 
multiplication of 2 2 matrices, which we generalise in the following definition  
Definition. Let A=  be an  matrix and B=( ) be an  matrix. We define the product 
AB as the  matrix  where the  entry  is given by  

Free Hand

Free Hand
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⋯  
Note 1.  The product AB of two matrices is defined only when the number of columns of A is 
equal to the number of rows of B. 
Note 2.  The entry  of the product AB is found by multiplying  row of A and the  column 
of B. To multiply a row and a column, we multiply the corresponding entries and add. 
Solved Problems 
Problem 1.  Show that the matrix 2 3 13 1 35 2 4

  satisfies the equation                         
( )( 2 ) 0 

Solution  
 2 3 13 1 35 2 4

1 0 00 1 00 0 1
 

 1 3 13 0 35 2 5
 

2 4 3 13 3 35 2 2
 

Now  
( )( 2 ) 2 3 13 1 35 2 4

1 3 13 0 35 2 5
4 3 13 3 35 2 2

 
   

12 4 129 3 921 7 21
4 3 13 3 35 2 2

0 0 00 0 00 0 0
0 

( )( 2 ) 0 
Problem 2.  
Prove that λ 10 λ λ nλ0 λ  
Solution. We prove this result by induction of n. when 1 result is obviously true. Let us 
assume that the result is true for  
∴ λ 10 λ λ kλ0 λ  
∴ λ 10 λ λ 10 λ λ kλ0 λ

λ 10 λ  

Free Hand
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λ λ kλ
0 λ  

λ (k 1)λ
0 λ  

∴The result is true for 1 
Hence the result is true for all positive integers n. 
 
Definition. Let A=  be an  matrix. Then the  matrix B=( ) where            
is called the transpose of the matrix A and it is denoted by . Thus  is obtained from the 
matrix A by interchanging its rows and columns and the ( ) entry of ( ) entry of A. 

For example, if 120
213

301
415

 then 
1 2 02 1 33 0 14 1 5

 clearly if A is an  matrix. Then the 

 matrix 
 
Theorem. Let A and B be two  matrices. Then  

(i) ( )  
(ii) ( )  

Proof. 
(i) The ( ) entry of ( )  

=( ) entry of  
( )entry of  

∴ ( )  
(ii) The ( ) entry of ( )  

=( ) entry of  
=( ) entry of ( ) entry of B 
=( ) entry of ( ) entry of  
=( ) entry of  
∴( )  
 

Theorem. 

Free Hand
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Let A be an  matrix and B be an  matrix. Then ( )  
Proof. 
By hypothesis AB is defined and it is an  matrix. Hence ( ) is a  matrix 
Further  is a  matrix and  is an  matrix 
Hence, the product  is defined and it is a   matrix. 
Now, let A= , B=( ) and ( )  
Then ( , )   entry of  
( )  

( )  
Now the   row of  is the   column of  and it consists of the elements , , …  . Also 
the   column of  is the   row of  and it consists of the elements , , …  

 
( , )  entry of ( )  

Hence ( )  
Definition. Let A=  be a matrix with entries from the field of complex numbers. The 
conjugate of A, denoted by ̅, is defined by ̅ . 

̅ is called the conjugate transpose of the matrix . 
For example if 2 21 3 4 3  then ̅ 2 21 3 4 3  
Theorem. Let A and B matrices with entries from C. Then 

(i) ( ̅) . 
(ii) ̅  
(iii) ̅, where ∈ . 
(iv) ̅ ⇔all entries of A are real  
(v) ̅  
(vi) ( ̅)  

The proof of the above results are immediate consequences of the corresponding properties of 
complex numbers. 

Free Hand
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Types of Matrices  
Definition. An1  matrix is called a row matrix. Thus a row matrix is consists of 1 row and 
columns.  
It is of the form ( , , … ) 
Definition. An 1 matrix is called a column matrix. Thus a column matrix is consists of 1 
column and rows.  

It is of the form ...
 

Definition. Let A=  be a square matrix. Then the elements ( , , … ) are called the 
diagonal elements of A and the diagonal elements constitute what is known as the principal 
diagonal of the matrix A. A square matrix is called a diagonal matrix if all the entries which do 
not belong to the principal are zero. Hence in a diagonal matrix 0 if  
For example 1 0 00 3 00 0 2

 is a diagonal matrix 
Definition. A diagonal matrix in which all the entries of the principal diagonal are equal is called 
a scalar matrix 
For example 4 0 00 4 00 0 4

 is a scalar matrix 
Definition. A square matrix  is called an upper triangular matrix if all the entries above the 
principal diagonal are zero  
Hence 0 whenever  is an upper triangle matrix. 
Definition. A square matrix  is called a lower triangle matrix if all the entries below the 
principal diagonal are zero 
Hence 0 whenever  in an lower triangular matrix 

For example 1 2 30 2 10 0 3
 is an lower triangular matrix 

1 0 0 01 2 0 00 2 3 02 3 2 4
is upper triangular  

Clearly a square matrix is a diagonal matrix iff it is both lower triangular and upper triangular. 
Definition. A square matrix  is said to be symmetric if  for all ,  
Example. 

Free Hand
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, , 
1 2 3 42 0 0 53 0 6 74 5 7 8

 are symmetric matrices. 

Theorem. A square matrix A is symmetric iff  
Proof. Let A be a symmetric matrix 
Then the ( , )   entry of  

( , )  entry of  
( , )  entry of  

Hence  
Conversely let  
Then ( , )   entry of  

( , )  entry of  
( , )  entry of  

Hence A is symmetric 
Theorem.  Let A be any square matrix. Then  is symmetric  
Proof. ( ) ( )  

 
 

Hence  is symmetric 
Theorem. Let A and B be symmetric matrices of order n. Then  
(i)    
(ii)  is symmetric iff  
(iii)  is symmetric 
(iv) If A is symmetric, then  is symmetric where ∈ . 
Proof.  
(i) ( )  

   (since A and B are symmentric) 
∴  is symmetric 
(ii)  is symmetric 

⇔ ( )  
⇔  

Free Hand
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⇔  
(iii) ( ) ( ) ( )  

( ) ( ) ( ) ( )  
 (since A and B are symmetric) 
 

∴  is symmetric 
(iv) ( )  since A is symmetric 
∴ is symmetric 
 
Definition. A square matrix  is said to be skew symmetric if , for all ,  
Note. Let A be a skew symmetric matrix. Then . Hence 2 0 (ie) 0, for all 
. Thus in a skew symmetric matrix all the diagonal entries are zero 
0 0 , 0 2 12 0 31 3 0

 Are examples of skew symmetric matrices 
Theorem. A square matrix A is skew symmetric matrix iff  
Proof is similar to that of by theorem 
Theorem. Let A be any square metrix. Then  is skew symmetric 
Proof.  
( ) ( )  

 
( ) 

Hence  is skew symmetric 
Theorem. Any square matrix A can be expressed uniquely as the sum of a symmetric matrix and 
a skew symmetric matrix. 
Proof. Let A be any square matrix 
Then  is skew symmetric matrix (by Theorem) 
∴ ( )is also a symmetric matrix 
Also ( ) is also a symmetric matrix (by above theorem) 
Now, ( ) ( ) 
∴A is the sum of a symmetric matrix and a skew symmetric matrix 

Free Hand
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Now, to prove the uniqueness, let  where S is a symmetric matrix and R is a skew 
symmetric matrix. We claim that ( ) and ( ) 

… . ( ) 
∴ ( )  

 
 (since S is symmetric and R is skew symmetric) 

∴ … ( ) 
From (i) and (ii) we get ( ) and ( ) 
Theorem. Let A and B be skew symmetric matrices of order n. Then  
(i) A+B is skew s  
(ii) kA is skew symmetric where ∈  
(iii) A2n is a symmetric matrix and  is a skew symmetric matrix where n is any positive 
integer. 
Proof.  
Let ,  be skew symmetric 

(i) ( ) 
 

( ) 
∴     

(ii) Proof is similar to that of (i) 
(iii) Let m be any positive integer 

Then ( ) ( …  )  
  … (  ) 

=( )( ) … ( )(  ) (since  ) 
  ( 1)  

( )     
     

 
is symmetric when m is even and skew symmetric when m is odd 

Free Hand
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Definition. A square matrix  is said to be Hermitian matrix  if  for all , . A is 
said to be a skew Hermitian matrix iff   for all , . 
Note  
1. Any hermitian matrix over R is a symmetric matrix and any skew Hermitian matrix over R 
is a skew symmetric matrix. 
2. Let  be a hermitian matrix. Then  and hence  is real for all . 
3. Let  be a skew hermitian matrix. Then  and hence 0 or purely 
imaginary for all . 
Theorem. Let A be a square matrix  
(i) A is Hermitianiff ̅  
(ii) A is skew Hermitianiff ̅  
Proof. The result is an immediate consequence of the definition  
Theorem. Let A and B be square matrices of the same order. Then  
(i) ,  are Hermitian ⇒  is Hermitian 
(ii) ,  are skew Hermitian ⇒  is skew Hermitian 
(iii)  is Hermitian ⇒  is Hermitian 
(iv)  is skew Hermitian ⇒  is skew Hermitian 
(v)  is Hermitian and  is real ⇒  is Hermitian 
(vi)  is skew Hermitian and  is real ⇒  is skew Hermitian 
(vii) ,  are Hermitian ⇒  is Hermitian 
(viii) ,  are Hermitian ⇒  is Hermitian 
Proof. We shall prove (i), (iii) and (vii) 

(i) ( ) ( ̅ )  
̅  

 (since A and B are Hermitian) 
∴ is Hermitian 

(ii) – ( ) – ( )  
̅  

 (since A is Hermitian) 

Free Hand

Free Hand



STUDY MATERIAL FOR B.SC. MATHEMATICS ABSTRACT ALGEBRA - II SEMESTER – V, ACADEMIC YEAR 2020-21  

 Page 60 of 99 
 

∴ is skew Hermitian 
(vii) ( ) ( )  

( ̅ ̅)  
( ̅ ) ( ̅)  

̅ ̅  
  

 
∴ is Hermitian 
 

Theorem. Let A be any square matrix. Then  
(i) ̅  is Hermitian 
(ii) ̅  is skew Hermitian 

Proof.  
(i) Let ̅  

 ̅  
∴ ̅  

̅  
(ii) Proof is similar to that of (i)  

Theorem. Any square matrix A can be uniquely expressed as the sum of a Hermitian matrix and 
a skew Hermitian matrix. 
Proof. 
The proof is similar to that of the Theorem  
Definition. A real square matrix A is said to be orthogonal if  
 
Example  

cos sinsin cos is an orthogonal matrix (verify). 
Theorem. Let A and B be orthogonal matrices of the same order. Then  

(i)  is orthogonal  
(ii)  is orthogonal  
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Free Hand



STUDY MATERIAL FOR B.SC. MATHEMATICS ABSTRACT ALGEBRA - II SEMESTER – V, ACADEMIC YEAR 2020-21  

 Page 61 of 99 
 

Proof  
(i) ( )   (since A is orthogonal) 

similarly we can prove ( )  
∴ is orthogonal  

(ii) ( )( ) ( )( ) 
( )  

 
 

 
Similarly ( )( )  
Hence  is orthogonal 
Definition.  A square matrix A is said to be an unitary matrix if ̅ ̅  
For example 0 0  is unitary.  
Note. Any matrix over R is an orthogonal matrix 
Theorem. If A and B are unitary matrices of the same order, then AB is also an unitary matrix  
Proof. Similar to the proof of (ii) of the above theorem 
The Inverse of a Matrix. 
A 2 2 matrix  has an inverse iff | | 0 and the inverse of A is given by 
| | . Such matrices are called non-singular. In this section we shall describe the 
method of finding the inverse of any non-singular matrix of order n. 
Determinants. We can associate with any  matrix ( ) over a field  F an element of F 

given by the determinant 
……… … … ……

 

If value can be determined in the usual way and it is denoted by | | 
For example  
(i) If  then | |  

(ii) If 1 1 00 2 11 2 1
 then 1 1 00 2 11 2 1

1 

Free Hand
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Definition. A square matrix A is said to be singular if | | 0 
A is called a non singular matrix if | | 0 
Theorem. The rule of multiplying two matrices is same as the rule for multiplying two 
determinants. 
Hence if A and B are two  matrices. | | | || |. 
Theorem.  The product of any two non-singular matrices is non-singular. 
Proof. Let A and B be two non-singular matrices of the same order. Then | | 0 and | | 0 
∴| | | || | 
Hence AB is non singular matrix. 
Note. Sum of two non-singular matrices need not be non-singular. For, if A is non-singular 
matrix then –  is also a non-singular matrix and ( ) is the zero matrix which is obviously 
a singular matrix 
Definition. Let ( ) be an  metrix. If we delete the row and the column containing the 
element ( ) we obtain a square matrix of order 1 and the determinant of this square 
matrix is called the minor of the element ( ) and is denoted by ( ) 
The minor  multiplied by ( 1)  is called the cofactor of the element  and is denoted by 

 
∴ ( 1)  
Example. Let  
Corresponding to the 9 elements , we get 9 minors of A. For example, the minor of is  

and the minor of  is  
The cofactor of  is ( 1)  
The cofactor of  is ( 1)  
Definition. Let ( ) be a square matrix. Let  denote the co-factor of . The transpose 
of the matrix  is called the adjoint to adjugate  of the matrix A and is denoted be  
Thus the ( , )  entry of  is  
Note. If A is a square matrix of order n then  is also a square matrix of order n. 
Example. Let 1 0 23 1 12 1 3

 

Free Hand
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Then 1 11 3 4 
3 12 3 7 

Similarly other co-factors can be calculated and we get  
 4 2 27 7 75 1 1

 
We notice that  

 1 0 23 1 12 1 3
4 2 27 7 75 1 1

14 0 00 14 00 0 14
( )  (verify) 

Theorem. Let A be any square matrix  of order n. Then ( ) ( ) | |  where  is 
the identity matrix of order n. 
Proof. The ( , )  element of ( )  

 
0  

| |   

∴ ( )
| | 0 … 0
0 | | … 0… … … …0 … | |

| |  

Similarly ( ) | |  
Hence ( ) ( ) | |  
Note. Suppose | | 0. Now, consider the matrix | |    
Then   | |    

1
| | (   ) 
1

| | | |  
 

Similarly . Thus  
Definition. Let A be a square matrix of order n. A is said to be invertible in there exists a square 
matrix B of order n such that  and B  is called the inverse of A and is denoted by 
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Note. The invertible matrices are precisely the units of the ring ( ) 
Theorem. A square matrix A of order n is non singulariff A is invertible 
Proof. Suppose A is invertible. 
Then there exists a matrix B such that  
Hence | | | | 1 
∴| || | 1 
Hence | | 0 so that A is non-singular.  
Conversely, let A be non-singular. Hence | | 0 
 Now, consider the matrix | |    
Then  (refer the above Note) 
∴ A is invertible and A is the inverse of A. 
 
Solved problem 
Problem1. Compute the inverse of the matrix 2 1 115 6 55 2 2

 
Solution. 
| | 2 1 115 6 55 2 2

1 
Since | | 0, A is non-singular 
Hence  exist and is given by  

| |  

Now, we find  where , ( , 1,2,3) are cofactors of  
6 52 2 2; 

15 55 2 5 
15 65 2 0 

1 12 2 0 
2 15 2 1 

2 15 2 1 
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1 16 5 1 
2 115 5 5 

2 115 6 3 

Hence  2 0 15 1 50 1 3
 

 
2 0 15 1 50 1 3

= 2 0 15 1 50 1 3
 

Problem 2.  
if ⁄  find the inverse of the matrix 1 1 111

 
solution.  
We note that 1 
∴| | 0, A is non-singular. Hence exists and is given by  

| |  

Now,   1 11 1
 

∴ ( ) 1 11 1
 

1
3 1 11 1  

Problem 3.  
Show that a square matrix A is orthogonal iff  
Solution. 
Suppose A is orthogonal. Then  
∴ |  | | | 1 
∴ | || | 1 
∴ | || | 1 
∴ | | 0and hence A is non-singular  
∴ exists. 
Now, (  )  
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∴ ( )  
∴  
∴  
Conversely, let  
Then  similarly  
Hence A is orthogonal 
Problem 4. Show that a square matrix A is involutoryiff  
Solution. Suppose A is involutory. Then .  
Hence | | 1 
∴ | | | || | 1 
∴ | | 0and hence A is non-singular  
∴ exists 
Now, ( )  
∴ ( )  
∴  
∴  
Conversely, let  
Then 1 
∴ is involutory. 
Elementary Transformations  
Definition. Let A be an  matrix over a field F. An elementary row-operation on A is of any 
one of the following three types. 

1. The interchange of any two rows  
2. Multiplication of a row by a non-zero element c in F 
3. Addition of any multiple of one row with any other row. 

Similarly we define an elementary column operation on A as any one of the following three 
types. 

1. The interchange of any two columns. 
2. Multiplication of a column by a non-zero element c in F 
3. Addition of any multiple of one column with any other column 
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Example. Let 1 22 13 1
3 12 11 2

 
2 24 16 1

1 25 73 1
is obtained from A by interchanging the first and third rows.  

is obtained from A by multiplying the first Column of A by 2. 
is obtained from A by adding to the second row the multiple by 3 of the first row. 

Notation. We shall employ the following notations for elementary transformations.  
(i) Interchange of  and  rows will be denoted by ↔  
(ii) Multiplication of  row by a non-zero element ∈  will be denoted by →  
(iii) Addition of k times the  row to the  row will be denoted by →  

The corresponding column operations will be denoted by writing C in the place of R 
Definition. An  matrix B is said to be row equivalent (column equivalent) to  matrix 
A if B can be obtained from A by a finite succession of elementary row operations (column 
operations). 
A and B are said to be equivalent if B can be obtained from A by a finite succession of 
elementary row or column operations. 
If A and B are equivalent. We write ~  
Exercise. Prove that row equivalence, column equivalence and equivalence are equivalence 
relations in the set of all  matrices. 
Definition. A matrix obtained form the identity matrix by applying a single elementary row or 
column operation is called an elementary matrix  
For example, 1 0 01 0 00 0 1

4 0 00 1 00 0 1
1 0 00 1 00 2 1

 are elementary matrices obtained from the 

identity matrix 1 0 00 1 00 0 1
 by applying the elementary operations ↔  

→ 4 , → 2  respectively 
Exercise. Give examples of elementary matrices of order 4. 
Theorem. Any elementary matrix is non-singular. 
Proof.  
The determinant of the identity matrix of any order is 1. Hence the determinant of an 
elementary matrix obtained by interchanging any two rows is 1. The determinant of an 
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interchanging any two obtained by multiplying any row by 0is . The determinant of an 
elementary matrix obtained by adding a multiple of one row with another row is 1. Hence any 
elementary matrix is non-singular. 
Solved problems. 
Problem 1.  
Reduce the matrix 1 2 11 1 22 4 2

 to the canonical form. 

Solution. 1 2 11 1 22 4 2
 

 
~ 1 2 10 1 30 0 0

→ & →  

~ 1 0 00 1 30 0 0
→ 2 & →  

~ 1 0 00 1 00 0 0
→ 3  

~ 1 0 00 1 00 0 0
→  

 
Problem 2. Find the inverse of the matrix  1 0 23 1 12 1 3

 
Solution.  

1 0 23 1 12 1 3
 1 0 00 1 00 0 1

 

⇒ 1 0 20 1 70 1 7
 1 0 03 1 02 0 1

→ 3 & → 2  
 

⇒ 1 0 20 1 70 0 14
 1 0 03 1 05 1 1

→  
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⇒ 1 0 00 1 00 0 1
 →    ,     → & →  

 

⇒  

2
7

1
7

1
71

2
1
2

1
25

14
1

14
1

14

 

Definition .Let A and B be two square matrices of order n. B is said to be similar to A if there 
exists a  non-singular matrix P such that . 
Rank of a Matrix. 
We now proceed to introduce the concept of the rank of a matrix. 
Definition. Let  be an  matrix. The rows ( , , … ) of A can be 
thought of as elements of . The subspace of  generated by the m rows of A is called the 
row space of A. 
Similarly, the subspace of  generated by the n columns of A is called the Column space of A. 
The dimension of the row space (column space) of A is called the row rank (column rank) of A. 
Definition. The  rank of a matrix A is the common value of its row and column rank 
Solved Problems  
Problem 1. 
Find the rank of the matrix 4 2 1 36 3 4 72 1 0 7

 
Solution. 

4 2 1 36 3 4 72 1 0 7
 

 
~ 1 2 4 34 3 6 70 1 2 7

↔  

~ 1 0 0 04 5 10 50 1 2 7
→ 2 ,    → 4 ,   → 3  
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~ 1 0 0 00 5 10 50 1 2 7
→ 4  

~ 1 0 0 00 5 0 00 1 0 6
→ 2 , →  

~ 1 0 0 00 5 0 00 0 0 6
→ 1

5  

~ 1 0 0 00 5 0 00 0 6 0
↔  

 
~ 1 0 0 00 1 0 00 0 1 0

→ ,   →  
∴ Rank of 3 
Problem 2. Find the rank of the matrix 1 1 1 14 1 0 20 3 4 2

 by examining the determinant 
minors. 
Solution. 
1 1 14 1 00 3 4

0 1 1 11 0 23 4 2
 

1 1 14 1 20 3 2
0 1 1 14 0 20 4 2

 
∴Every 3 3 submatrix of A has determinant zero. 
Also 1 14 1 3 0 
∴ Rank of 2 
 
Characteristic Equation and Caylay Hamilton Theorem 
Definition. An expression of the form ⋯  where , , … ,  are 
square matrices of the same order and 0 is called matrix polynomial of degree n. 
For example, 1 20 3 + 1 12 1 2 03 1  is a matrix polynomial of degree 2 and it is simply 
the matrix 1 2 22 3 3  
Definition. Let A be any square matrix of order n and let  be the identity matrix of order n. Then 
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the matrix polynomial given by  is called the characteristic matrix of A  
The determinant | | which is an ordinary polynomial in x of degree n is called the 
characteristic polynomial of A. 
The equation | | 0 is called the characteristic equation of A. 
Example 1.  
Let 1 23 4 . 
Then the characteristic matrix of A is  given by  

1 23 4 1 00 1 . 
1 23 4 . 

∴  The characteristic polynomial of A is | | 1 23 4  
(1 )(4 ) 6 

5 2 
∴  The characteristic equation of A is | | 0 
∴ 5 2 0is the characteristic equation of A. 
Example 2. Let 1 0 20 1 21 2 0

 
The characteristic matrix of A is  given by 

1 0 20 1 21 2
 

The Characteristic polynomial of A is  
| | 1 0 20 1 21 2

 
(1 ) (1 )( ) 4 2(1 ) 

(1 ) 4(1 ) 2 2  
2 4 4 2 2  
2 5 6 

∴The characteristic equation of A is  
2 5 6 0 
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(i.e) 2 5 6 0 
Theorem (Cayley Hamilton Theorem) 
Any square matrix A satisfies its Characteristic equation. 
(i.e) if ⋯  is the characteristic polynomial of degree n of A 
then ⋯ 0 
Proof  
Let A be a square matrix of order n. 
Let | | 0 1 2 2 ⋯ …..(i) 
Be the characteristic polynomial of A  
Now,  ( ) is a matrix polynomial of degree 1 since each entry of the matrix 

 ( )is a  cofactor of  and hence is a polynomial of degree 1 
∴ Let  ( ) ⋯  ….(2) 
Now, ( )  ( ) | |   (since (  ) (  ) | | ) 
( ⋯ ) using (1) and (2) 
∴ Equating the coefficients of the corresponding powers of x we ger  

 
 
 

…….. 
…….. 

 
 

Pre-multiplying the above equations by , , , … ,  respectively and adding we get 
⋯ 0 

Note. The inverse of a non-singular matrix can be calculated by using the cayley 
Hamilton theorem as follows. 
Let ⋯  be the characteristic polynomials of A  
Then by theorem we have ⋯ 0 ….(3) 
Since | | 0 1 2 2 ⋯  we get | | (by putting 0) 
∴ 0 (since A is a non singular matrix)  
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∴ ⋯  (by (3)) 
∴ ⋯  
Solved problems. 
Problem 1. 
Find the characteristic equation of the matrix 8 6 26 7 42 4 3

 
Solution. 
The characteristic equation of A is given by | | 0 
(i.e.) 8 6 26 7 42 4 3

0 
(8 ) (7 )(3 ) 16 6 6(3 ) 8 2 24 2(7 ) 0 
(i.e.)(8 ) 2 10 5 6(6 10) 2(2 10) 0 
(i.e.) 8 2 80 40 3 10 2 5 (36 60) (4 10) 0 
(i.e.) 18 45 0 which represents the characteristic equation of A. 
Problem 2. Show that the non-singular matrix 1 23 1  satisfies the equation           

2 5 0. Hence evaluate . 
Solution.  
The characteristic polynomial of A is | | 1 23 1 2 5 
∴ By Cayley-Hamilton theorem 2 5 0 
∴ ( 2 ) 
∴ ( 2 ) 

1
5

1 23 1 2 1 00 1  
 

1
5

1 23 1  
Problem 3. 
Show that the matrix 2 3 13 1 35 2 4

 satisfies the equation ( )( 2 ) 0 
Solution.  
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The characteristic polynomial of A is | | 2 3 13 1 35 2 4
 

2  (verify) 
∴Bycaylay-Hamilton theorem 2 0 
(i.e.) 2 0. Hence ( 2 ) 0 
∴ ( 2 )( ) 0 
Problem 4. 
Using Cayley-hamilton theorem find the inverse of the matrix 7 2 26 1 26 2 1

 
Solution. 
Let 7 2 26 1 26 2 1

 

The characteristic polynomial of | | 7 2 26 1 26 2 1
 

(7 ) (1 ) 4 2 6(1 ) 12 2 12 6(1 )  
(7 )( 2 3) 12( 1) 12( 1) 
7 12 21 2 3 12 12 12 12 

5 7 3 
∴byCayley-Hamilton Theorem 

5 7 3 0 
∴ 5 7 3 0 
∴ 3 5 7  
∴ ( 5 7 ) 
Pre (or post) multiplying by  on both sides we get 
∴ ( 5 7 )…(1) 
Now, 7 2 26 1 26 2 1

7 2 26 1 26 2 1
 

= 25 8 824 7 824 8 7
 

∴from (1) 
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1
3

25 8 824 7 824 8 7
35 10 1030 5 1030 10 5

7 7 0 00 7 00 0 7
 

1
3

3 2 26 5 26 2 5
 

 
Problem 5.  
Find the inverse of the matrix 3 3 42 3 40 1 1

 using Caylay-Hamilton theorem. 
Solution.  
The characteristic polynomial of | | 3 3 42 3 40 1 1

 
11 11 

∴byCayley-Hamilton Theorem 
11 11 0 

∴ 11 11 0 
Hence 11 ( 11 ) 

1
11 ( 11 ) 

Pre (post) multiplying by  on both sides we get 
1

11 ( 11 ) 
 

1
11

15 4 280 11 02 2 3
3 3 42 3 40 1 1

11 1 0 00 1 00 0 1

1
11

7
11

24
112

11
3

11
4

112
11

3
11

15
11

 

Problem 6. Verify Cayley Hamilton’s theorem foe the matrix 1 24 3  
Solution. 
The characteristic equation of A is | | 0 
∴ 1 24 3 0 
∴ (1 )(3 ) 8 0 
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∴ 4 5 0 
By byCayley-Hamilton Theorem A satisfies its characteristic equation 
∴We have 4 5 0 
Now, 1 24 3 1 24 3 9 816 17  
4 4 816 12 and5 5 00 5  

4 5 9 816 17 4 816 12 5 00 5 0 00 0 0 
The Cayley-Hamilton Theorem is verified 
Theorem 7. 
Using Cayley-Hamilton Theorem for matrix 1 0 22 2 40 0 2

 find (i)  (ii)  
Solution.  
The characteristic equation of A is | | 0 
∴ 1 0 22 2 40 0 2

0 
(i.e.)  5 8 4 0 
By Cayley-Hamilton Theorem 

5 8 4 0    …. (1) 
4 5 8  

(i) To find  pre multiplying by  we get 
4 5 8  
4 5 8  

( 5 8 )   … (2) 
Now, 1 0 22 2 40 0 2

1 0 22 2 40 0 2
1 0 66 4 120 0 4

 
From (2) 

1
4

1 0 66 4 120 0 4
5 0 1010 10 200 0 10

8 0 00 8 00 0 8
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1 0 1
1 1

2 2
0 0 1

2
 

(ii) To find  
From (1) 5 8 4  

5(5 8 4 ) 8 4  (using (1)) 
17 36 20  
17 1 0 66 4 120 0 4

36 1 0 22 2 40 0 2
20 1 0 00 1 00 0 1

 
17 0 102102 684 2040 0 68

36 0 7272 72 1440 0 72
20 0 00 20 00 0 20

 

∴ 1 0 3030 16 2600 0 16
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UNIT - V EIGEN VALUES AND EIGEN VECTORS  
Definition: 
Let A be an  matrix. A number λ is called an eigen value of A if there exists a non-zero 

vector ...
 such that  and X is called an eigen vector correcponding to the eigen 

value λ 
Remark 1. If X is an eigen vector corresponding to the eigen value  of A, then  where  is 
any non-zero number, is also an eigen vector corresponding to  
Remark 2. Let X be an eigen vector corresponding to the eigen value  of A. Then  so 
that ( ) 0. Thus X is a non-trivial solution of the system of homogeneous linear 
equations ( ) 0. Hence | | 0 which is the characteristic polynomial of A. 
Let | | ⋯  
The roots of this polynomial give the eigen values of A. Hence eigen values are also called 
characteristic roots. 
Properties of Eigen Values  
Property 1. Let X be an eigen vector corresponding to the eigen values and  . Then   
Proof . By definition 0,  and  
∴  
∴( ) 0 
Since 0,  
Property 2. Let A be a square matrix. 
Then (i) the sum of the eigen values of A is equal to the sum of the diagonal elements (trace) of 
A 
(ii) product of eigen values of A is | | 
Proof. 

(i) Let 
……… … … ……

 

The eigen values of A are the roots of the characteristic equation  
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| |
…
…… … … ……

0…(1) 

Let | | ⋯    … (2) 
From (1) and (2) weget 

( 1) ; ( 1) ( ⋯ );…(3) 
Also by putting 0 is (2) we get | | 
Now let , , … ,  be the eigen values of A. 
∴ , , … , are the roots of (2) 
∴ ⋯ ⋯   (using (3)) 
∴sum of the eigen values= trace of A. 

(ii) Product of the eigen values =product of the roots  
…  

( 1)  
( 1)

( 1)  
 

| | 
Property 3. The eigen values of  and its transpose  are the same  
Proof. 
It is enough if we prove that  and  have the same characteristic polynomial. Since for any 
square matrix , | | | |  we have  

| | |( ) | |( ) ( ) | | | 
Hence the result 
Property 4. If  is an eigen value of a non singular matrix A then  is an eigen value of  
Proof. Let X be an eigen vector corresponding to  
Then . Since A is non singular  exists  
∴ ( ) ( ) 
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∴ 1  
∴ is an eigen value of  
Corollary. If , , … ,  are the eigen values of a non singular matrix A then , , … ,  are 
the eigen values of  
Property 5. If  is an eigen value of A then  is an eigen value of  where  is a scalar. 
Proof. Let X be an eigen vector corresponding to  
Then …(1) 
Now, ( ) ( ) 

( )   (by (1)) 
( )  

∴  is an eigen value of  
Property 6. If  is an eigen value of A then  is an eigen value of  where  is any positive 
integer 
Proof . Let X be an eigen vector corresponding to  
Then …(1) 
Now, ( ) ( ) 

(    (by(1)) 
( ) 
( )   (by (1)) 

 
is an eigen value of  

Proceeding like this we can prove that  is an eigen value of  where  is any positive integer 
Corollary. If , , … ,  are the eigen values of  then , , … ,  are eigen values of  
for any positive integer k. 
Property 7. Eigen vectors corresponding to distinct eigen values of a matrix are linearly 
independent  
Proof. Let , , … ,  be distinct eigen values of a matrix and let  be the eigen vector 
corresponding to  
Hence ( 1,2,3, … ) … (1) 
Now, suppose , , … ,  are linearly dependent. Then there exist real numbers , , … ,   

Free Hand

Free Hand



STUDY MATERIAL FOR B.SC. MATHEMATICS ABSTRACT ALGEBRA - II SEMESTER – V, ACADEMIC YEAR 2020-21  

 Page 81 of 99 
 

not all zero, such that ⋯ 0. Among  all such relations, we choose one 
of shortest length say i. 
By rearranging the vectors , , … ,  we may assume that  

⋯ 0…(2) 
∴ ( ) ( ) ⋯ 0 
∴ ( ) ( ) ⋯ 0 
∴ ( ) ( ) ⋯ 0…(3) 
Multiplying (2) by  and subtracting from (3), we get  
∴ ( ) ( ) ⋯ 0…(4) 
And since , , … ,  are distinct and … .  are non-zero we have  

( ) 0 2,3, …  
Thus (4) gives a relation whose length is 1, giving a contradiction  
Hence , , … ,  are linearly dependent. 
Property 8. The characteristic roots of a Hermitian matrix are all real 
Proof.  
Let A be a Hermitian matrix  
Hence …(1) 
Let λ be a characteristic root of A and let S be a characteristic vector corresponding to λ  
∴ ….(2) 
Now  

⇒  
⇒ ( )  (since  is a 1 1 matrix) 
⇒ ( )  
⇒  
⇒  
⇒ ̅ ̅  
⇒ ̅    (using 1) 
⇒ ̅    (using 2) 
⇒ ( ) ̅( )…(3) 
Now, 

⋯  
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| | | | ⋯ | |  
0 

∴From (3) we get ̅ 
Hence λ is real  
Corollary. The characteristic roots of a real symmetric matrix are real. 
Proof. 
We know that any real symmetric matrix is Hermitian. Hence the result follows from the above 
property. 
Property 9. 
The characteristic roots of a skew Hermitian matrix are either purely imaginary or zero 
Proof. 
Let A be a skew Hermitian matrix and λ be a characteristic root of A 
| | 0 
| | 0 

is a characteristic root of  
Since A is skew Hermitian  is Hermitian  

is real. Hence  is purely imaginary or zero 
Corollary. The characteristic roots of a real skew symmetric matrix are either purely imaginary 
or zero 
Proof. We know that any real skew symmetric matrix is skew Hermitian 
Hence the result follows from the above property 
Property 10. 
Let  be characteristic root of an unitary matrix A. Then | | 1. (i.e.) the characteristic roots of 
a unitary matrix are all the unit modulus 
Proof  
Let λ be a characteristic root of an unitary matrix A and X be a characteristic vector 
corresponding to λ 
∴ ….(1) 
Taking conjugate and transpose in (1) we get  
( )  
∴ ̅ ̅ …..(2) 
Multiplying (1) and (2) we get  

Free Hand

Free Hand



STUDY MATERIAL FOR B.SC. MATHEMATICS ABSTRACT ALGEBRA - II SEMESTER – V, ACADEMIC YEAR 2020-21  

 Page 83 of 99 
 

( -) ̅ ( ) 
∴ ( ̅ ) ̅ ( ) 
Now, since A is an unitary matrix ̅ 1 
Hence ( ) ̅ ( ) 
Since X is non-zero vector  is also non-zero vector and 
( ) | | | | ⋯ | | 0we get ̅ 1 
Hence | | 1. Hence | | 1 
Corollary. Let λ be a characteristic root of an orthogonal matrix A. Then | | 1 
Since any orthogonal matrix is unitary the result follows from property 10. 
Property 11. Zero is an eigen value of A if and only if A is a singular matrix. 
Proof.  
The eigen values of A are the roots of the characteristic equation | | 0. Now, 0 is an 
eigen value of ⇔ | 0 | 0 
⇔ | | 0 
⇔ is a singular matrix 
Property 12. If A and B are two square matrices of the same order then AB and BA have the 
same eigen values. 
Solution  
Let λ be an eigen value of AB and X be an eigen vector corresponding to λ. 
∴( )  
∴ ( ) ( ) (  
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∴( )( ) (  
∴( ) where ( ) 
Hence λ is an eigen value of BA   
Also BX is the corresponding eigen vector. 
Property 13. If P and A are  matrices and P is a non-singular matrix then A and  have 
the same eigen values 
Proof. 
Let  
To prove A and B have same eigen values, it is enough to prove that the characteristic 
polynomials of A and B are the same. 
Now  | | | | 

| ( ) | 
| ( ) | 
| || || | 
| || || | 
| || | 
| || | 
| | 

∴The characteristic equation of A and and  have the same eigen values 
Property 14. 
If λ is a characteristic root of A then ( ) is a characteristic root of the matrix ( ) where ( ) 
is any polynomial. 

Free Hand

Free Hand



STUDY MATERIAL FOR B.SC. MATHEMATICS ABSTRACT ALGEBRA - II SEMESTER – V, ACADEMIC YEAR 2020-21  

 Page 85 of 99 
 

Proof  
Let ( ) ⋯ where 0 and , , …  are all real 
numbers  
∴ ( ) ⋯  
Since λ is a characteristic root of A,  is a characteristic root of  for any positive integer n 
(refer property 6) 
∴  

 
……….. 
……….. 

 
 

 
………… 
………… 

 
Adding the above equations we have 

⋯ ⋯  
∴( ⋯ ) ( ⋯ )  
∴ ( ⋯ ) ( ⋯ )  
∴  ( ) ( )  
Hence ( ) is a characteristic root of ( ) 
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Solved Problems 
Problem 1. 
If ,  are eigen vectors corresponding to an eigen value λ then  (a,b non-zero 
scalar) is also an eigen vector corresponding to λ 
Solution. 
Since ,  are eigen vectors corresponding to an eigen value λ, we have 

and  
 And hence ( ) ( )  and ( ) ( ) 
∴ ( ) ( ) 
∴(  is an eigen vector corresponding to λ 
Problem 2. 

If the eigen values of 3 10 52 3 43 5 7
 are 2,2,3 find the eigen values of  and  

Solution  
Since 0 is not an eigen value of A, A is a non singular matrix and hence  exists 
Eigen values of  are , ,  and eigen values of  are 2 , 2 , 3  
Problem 3. 

Find the eigen values of  when 3 0 05 4 03 6 1
 

Solution. The characteristic equation of A is obviously (3 )(4 )(1 ) 0 
Hence the eigen values of A are 3,4,1 
∴the eigen values of  are 3 , 4 , 1  
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Problem 4. Find the sum and product of the eigen values of the matrix 3 4 41 2 41 1 3
 without 

actually finding the eigen values. 
Solution. 

Let 3 4 41 2 41 1 3
 

Sum of the eigen values = trace of A = 3 ( 2) 3 4 
Product of the eigen values = | | 

Now, | | 3 4 41 2 41 1 3
 

3( 6 4) 4(3 4) 4( 1 2) 
6 4 4 14 

∴The product of the eigen values 14 

Problem 5. Find the characteristic roots of the matrix cos sinsin cos  

Solution. 

Let cos sinsin cos  

The characteristic equation of A is given by | | 0 
cos sinsin cos 0 

(cos ) 0 
(cos )(cos ) 0 

(cos ) (cos ) 0 
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The two characteristic roots (the two eigen values of the matrix are (cos ) and 
(cos ) 
Problem 6. 

Find the characteristic roots of the matrix cos sinsin cos  

Solution. 

Let cos sinsin cos  

The characteristic equation of A is given by | | 0 
cos sinsin cos 0 

(cos ) 0 
(cos ) 0 
1 0 

The characteristic roots 1 and 1 
Problem 7. 

Find the sum and product of the eigen values of the matrix  without finding the 
roots of the characteristic equation. 
Solution. 
Sum of the eigen values of A = trace of  
Product of the eigen values of | |  
Problem 8. 
Verify the statement that the sum of the elements in the diagonal of a matrix is the sum of the 
eigen values of the matrix 
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2 2 32 1 61 2 0
 

Solution  
The characteristic equation of A is | | 0 

(i.e) 2 2 32 1 61 2 0
0 

(i.e)( 2 ) (1 )( ) 12 2 2 6 3 4 (1 ) 0 
(i.e)( 2 ) 12 4( 3) 3( 3) 0 
(i.e.) 2 2 24 12 4 12 3 9 0 
(i.e.) 21 45 0 
(i.e.) 21 45 0 
This is a cubic equation in λ and hence it has 3 roots and the three roots are the three eigen 
values of the matrix  

The sum of the eigen valued   
  1 

The sum of the elements on the diagonal of the matrix 2 1 0 1 
Hence the result 
Problem 9.  

The product of two eigen values of the matrix 6 2 22 3 12 1 3
 is 16. Find the third eigen 

value. What is the sum of the eigen values of A? 
Solution. 
Let , ,  be the eigen values of A.  
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Given, product of 2 eigen values (say) ,  is 16 
∴ , 16 
We know that the product of the eigen values of | | 

(i.e.) 6 2 22 3 12 1 3
 

(i.e.) 16 6(9 1) 2( 6 2) 2(2 6) 
48 8 8 
32 

∴ 2 
∴The third eigen value is 2 
Also we know that the sum of the eigen vales of  

  6 3 3 12 
Problem 10. 

The product of the two eigen values of the matrix 2 2 72 1 20 1 3
 is -12. Find the eigen values 

of A. 
Solution. 
Let , ,  be the eigen values of A.  
Given, product of 2 eigen values (say) ,  is 12 
∴ , 12…(1) 
We know that the product of the eigen values of | | 
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(i.e.) 2 2 72 1 20 1 3
 

(i.e.) 12 12 
∴ 1…(2) 
∴The third eigen value is 1 
Also we know that the sum of the eigen vales     

2 1 3 0 
1 (using (2)) … (3) 

Using (3) in (1) we get ( 1 ) 12 
+ 12 0 

( 4)( 3) 0 
3or 4 

Putting 3  in (1) we get 4. Or putting 4 in (4) we get 3 
Thus the three eigen values are 3, 4,1 
Problem 11. 

Find the sum of the squares of the eigen values of 3 1 40 2 60 0 5
 

Solution. 
Let , ,  be the eigen values of A.  
We know that , ,  are the eigen values of  

3 1 40 2 60 0 5
3 1 40 2 60 0 5
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9 5 380 4 420 0 25
 

∴Sum of the eigen values of Trace of  
9 4 25 

(i.e.) , , 38 
∴ Sum of the squares of the eigen values of 38 
Problem 12. 
Find the eigen values and eigen vectors of the matrix  

1 1 31 5 13 1 1
 

Solution. 
The characteristic equation of A is | | 0 

∴ 1 1 31 5 13 1 1
0 

∴(1 ) (5 )(1 ) 1 (1 ) 3 3 1 3(5 ) 0 
(1 )( 6 4) ( 2) 3(3 14) 0 

6 4 6 4 2 9 42 0 
∴ 7 36 0. Hence 7 36 0 
∴( 2)( 9 18) 0 
Hence ( 2)( 6)( 3) 0 
∴ 2,3,6 are the three eigen values 
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Case (i) 
Eigen vector corresponding to 2 

Let  be an eigen vector corresponding to 2 

Hence 2  

(i.e.) 1 1 31 5 13 1 1
2
22  

∴ 3 2  
5 2  

3 2  
∴3 3 0 

7 0 
3 3 0 
Clearly this system of three equations reduces to two equations only from (1) and (2) we get  
∴ 2 ;  0;    2  
∴It has only one independent solution and can be obtained by giving any value to k say 1 
∴( 2,0,2) is an eigen vector corresponding to 2 
Case (ii)  
Eigen vector corresponding to 3.  
Then 3  gives 

2 3 0 
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2 0 
3 2 0 
Taking the first 2 equations we get  

5 5 5 (  

∴ ; ;   
Taking 1(say) ( 1,1, 1) is an eigen vector corresponding to 3 
Case (iii) 
Eigen vector corresponding to 6 
We have 6  
Hence 5 3 0 

0 
3 5 0 
Taking the first two equation we get  

4 8 4  

∴ ; 2 ; . It satisfies the third equation also  
Taking 1(say) (1,2,1) is an eigen vector corresponding to 6 
Problem 13. 
Find the eigen values and eigen vectors of the matrix  

6 2 22 3 12 1 3
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Solution. 
The characteristic equation of A is | | 0 

∴ 6 2 22 3 12 1 3
0 

∴(6 ) (3 ) 1 2 (2 6) 2 2 2 6 2 0 
(6 )(8 6 ) 4 8 4 8 0 
48 6 36 8 6 8 16 0 
∴ 12 36 32 0. Hence 12 36 32 0 
Hence ( 2)( 2)( 8) 0 
∴ 2,2,8 are the three eigen values 
Case (i) 
Eigen vector corresponding to 2 

Let  be an eigen vector corresponding to 2 

Hence 2  
∴6 2 2 2  

2 3 2  
2 3 2  
∴4 2 2 0 

2 0 
2 0 
The above three equations are equivalent to the single equation  
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2 0 
The independent eigen vectors can be obtained by giving arbitrary values to any two of the 
unknowns , ,  
Giving 1;  2 we get 0 
Giving 3;  4 we get 2 
Two independent vectors corresponding to 2 are (1,2,0) and (3,4, 2) 
Case (ii)  
Eigen vector corresponding to 8.  

The eigen vector  is got from  8  gives 

2 2 2 0…(1) 
2 5 0….(2) 

2 5 0…(3) 
From (1) and (2) we get  

12 6 5 ( ) 

∴ 2 ; ;   
Giveing 1(say) ( 1,1, 1) is an eigen vector corresponding to 8 as (2, 1,1) 
Problem 14. 
Find the eigen values and eigen vectors of the matrix  

2 2 21 1 11 3 1
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Solution. 
The characteristic equation of A is | | 0 

∴ 2 2 21 1 11 3 1
0 

∴(2 ) (1 )(1 ) 3 2 (1 ) 1 2 3 (1 ) 0 
(2 )( 4) 2(2 ) 2(2 ) 0 

2 4 8 0 
∴ 2 4 8 0.Hence 2 4 8 0 
Hence ( 2)( 2)( 2) 0 
∴ 2,2, 2 are the three eigen values 
Case (i) 
Eigen vector corresponding to 2 

Let  be an eigen vector corresponding to 2 

Hence 2  
2 2 21 1 11 3 1

2
22  

The eigen vector corresponding to 2 is given by the equations 
∴2 2 2 2  

2  
3 2  

∴ 2 0…(1) 
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0…(2) 
3 3 0…(3) 

From (1) and (2) we get  

0 1 1 ( ) 

∴ 0;  ;   
Giveing 1(say) (0,1,1) is an eigen vector corresponding to 2 
Case (ii)  
Eigen vector corresponding to 2.  

The eigen vector  is got from  8  gives 

2 2 2 2  
2  

3 2  
2 0 

3 0 
3 0 

Taking the first two equations we get  

4 1 7 ( ) 

∴ 4 ; ;  7  
Giveing 1we get  ( 4, 1,7) as an eigen vector corresponding to the eigen value 2. 
 

Free Hand

Free Hand



STUDY MATERIAL FOR B.SC. MATHEMATICS ABSTRACT ALGEBRA - II SEMESTER – V, ACADEMIC YEAR 2020-21  

 Page 99 of 99 
 

 
 

Free Hand




























