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Unit – I   

Random Variables and Expectations 

1.1 Introduction 

1.2 Random Variables 

1.3 Two dimensional Random Variables 

1.4 Applications of Jacobian 

1.5 Mathematical Expectations 

 

1.1 Introduction 

 In many experiments, we are interested not in knowing which of the outcomes has 

occurred, but in the numbers associated with them. For example, when n coins are tossed, one 

may be interested in knowing the number of heads obtained. When a pair of dice is tossed, one 

may seek information about the sum of points. Thus, we associate a real number with each 

outcome of an experiment. In other words, we are considering a function whose domain is the set 

of possible outcomes and whose range is a subset of the set of real numbers. Such a function is 

called a random variable (r.v). 

 Intuitively by a r.v, we mean a real number X connected with the outcome of a random 

experiment E. For example, if E consists of two tosses of a coin, we may consider the r.v which 

is the number of heads (0, 1 or 2). 

 Outcome : HH HT TH TT 

 Value of X  :   2   1   1    0 

 Thus to each outcome , there corresponds a real number )(X  . Since the points of the 

sample space S correspond to outcomes, this means that a real number, which we denote by

)(X  , is defined for each S . 

1.2 One dimensional Random Variable 

Definition 

 A one dimensional r.v is a function that assigns a real number to each and every 

outcomes of a sample space.  
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There are two types of r.vs, 

(i) Discrete random variable   

(ii) Continuous random variable 

(i) Discrete random variable 

 If X is the r.v which can take a finite number or countably infinite number of values, X is 

called a discrete r.v. 

For example, 

1) The mark obtained by a student in an examination, the possible values are 0, 50, 85, 90. 

2) Number of students absented in a particular period. 

3) Number of success in n trials. 

4) Number of accident in a day in a particular place. 

5) Number of telephone calls per unit time. 

Probability function or probability mass function 

 If X is a discrete r.v, which can take the values x1, x2, …xn such that P(X=xi)=pithen pi is 

called the probability function or probability mass function (pmf), provided the following 

conditions are satisfied: 

i) 0pi  for all i. 

ii) 



n

1i
i 1p . 

Probability distribution 

 The collection of pairs {xi, pi} is called probability distribution of random variableX, 

which is displayed as follows: 

xi pi 

x1 

x2 

x3 

. 

. 

. 

p1 

p2 

p3 

. 

. 

. 
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(ii) Continuous random variable 

 If X can take all the values (that is infinite number of values) in an interval, then X is 

called a continuous r.v. 

For example, 

1. Age, height, weight etc.,  

2. The density of milk taken for testing at a farm. 

3. The operation time between two failures of a computers. 

 

Probability density function 

 If X is a continuous r.v such that  bxaPr  (or) dx)x(fdx
2

1
xXdx

2

1
xP 









 , 

then f(x) is called probability density function of x provided f(x) satisfying the following 

conditions:  

(i) Rx0)x(f  . 

(ii) 




1dx)x(f . 

Cumulative distribution function 

 If X is a r.v which is either discrete or continuous, then P(Xx) is cumulative distribution 

function (cdf) or distribution function (df) of X and it is denoted by F(x). 

]xX[P)x(F  . 

If X is discrete, then   



xX

)x(pxXP  

If X is continuous, then   




 dx)x(fxXP . 

Note that, 




 0dx)x(f)(F  (there is no chance for single value in a continuity interval) 

Similarly, 




 1dx)x(f)(F . (By the total probability) 
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Note: 

 If X is discrete r.v, then expectation of a r.v X is defined as E(x) = ∑x P(x). If X is a 

continuous r.v., then  




 dxxxf)x(E . 

Problem 1: 

 If the r.v X takes values 1, 2, 3 and 4 such that 2P(x=1)=3P(x=2)=P(x=3)=5P(x=4). Find 

the probability distribution and cdf of x. 

Solution: 

 Given X is a discrete r.v( i.e., the values are X= x = 1, 2, 3, 4). 

Let 2P(x=1)=3P(x=2)=P(x=3)=5P(x=4) = k 

2

k
)1x(Pk)1x(P2   

3

k
)2x(Pk)2x(P3   

5

k
)4x(Pk)3x(P  . 

Since, the total probability is 1, 

1
5

k
k

3

k

2

k
  

Simplifies the above equation we get,
61

30
k   

61

15

261

30

2

k
)1x(P 


  

61

10

361

30

3

k
)2x(P 


  

61

30
k)3x(P   

61

6

561

30

5

k
)4x(P 


  

So the probability distribution is 
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X = x p(x) 

1 

2 

3 

4 

15/61 

10/61 

30/61 

6/61 

 

which is the required probability distribution. 

To find cdf:- 

when x<1, F(x) =0 

when x1, F(x)=15/61 

when x2, F(x)=10/61+15/61=25/61 

when x3, F(x)=30/61+10/61+15/61=55/61 

when x4, F(x)=61/61+61/61=1. 

 

Problem 2: 

 A r.v X has the following probability distribution: 

X=x -2 -1 0 1 2 3 

p(x) 0.1 k 0.2 2k 0.3 3k 

 

(a) Find k  (b) Evaluate P(X<2) and P(-2<x<2) (c) Find the cdf of X and  

(d) Find the mean of X. 

Solution: 

(a) Since ∑ P(x) = 1 

0.6 + 6k = 1 

15

1
k   

The probability distribution is  

X=x -2 -1 0 1 2 3 

p(x) 1/10 1/15 2/10 2/15 3/10 3/15 

 

P(x<2)  = P[x =1, x = 0, x = -1, x = -2] 
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= P(x=1) + P(x=0) + P(X=-1) + P(x=-2) 

2

1

10

1

15

1

10

2

15

2
  

P[-2<X<2]=P[X=1, X=0, X=-1] 

   =P[X=-1].P[X=0].P[X=1] 

   =1/152/102/15 

=2/15. 

Find the cdf of x:- 

when x < -2 , f(x) = 0 

x   p(x)  F(x)=P[X≤x] 

-2   1/10  1/10 

-1   1/15  1/6 

0   2/10  11/30 

1   2/15  1/2  

2   3/10  4/5 

3   3/15  1 

When x ≥3, F(x) = 1. 

(b) To find the mean  of x:- 

      E(X)  = ∑x P(x) 

  
15

3
3

10

3
2

15

2
10

15

1
1

10

1
2   

 E(x) = 
15

16
. 

Problem 3: 

A r.vX has the following probability distribution: 

x 0 1 2 3 4 5 6 7 

p(x) 0 k 2k 2k 3k K
2 

2 K
2
 7 K

2
+k 

Find (i) value of k (ii) Pr{1.5 < x < 4.5 | x > 2} (iii) The smallest value of  for which  

Pr{ x} >
2

1
. 
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Solution: 

(i) To find k: 

0 + k + 2k + 2k  + 3k + k
2
 + 2k

2
 + 7k

2
 + k = 1 

10k
2
 + 9k -1 = 0 

10

1
k  or k = -1 

10

1
k   (since 0 P(x)  1) 

The probability distribution is 

x 0 1 2 3 4 5 6 7 

p(x) 0 
10

1
 

10

2
 

10

2
 

10

3
 

100

1  

100

2
 

100

17
 

ii) Pr{1.5 < x < 4.5 | x > 2} 

We know that, 0)(,
)(

)(
)|( 


 BP

BP

BAP
BAP  

   
)2x(P

2x)5.4x5.1(P




  

   

100

17

100

2

100

1

10

3

10

2
10

3

10

2





  

   
7

5
 . 

Pr{1.5 < x , 4.5 / x > 2} 
7

5
 . 

(iii) Pr{ x} >
2

1
 

by trail, 

put = 0, 1, 2, . . .  

0)0x(P   

1.0
10

1
)1x(P   
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3.0
10

3
)2x(P   

2

1

10

5
)3x(P   

8.0
10

8
)4x(P   

The smallest value of λ is 4. 

 

Problem 4: 

 If 















0x;0

0x;e.x)x(f 2

2x

 

(a) Show that f(x) is a pdf of a continuous r.v (b) Find its distribution function of f(x). 

Solution: 

(a) If f(x) is a pdf. Then 

(i) xallforxf 0)(   

(ii)  




1dxxf  

Obviously 0,.)(

2

2  xexxf

x

 is a positive 

x0)x(P   

ii)  

  


 





0

0

)()()( dxxfdxxfdxxf  

  
 


0

2

2x

dxe.x  

Put 2

1

2
2

22
2

1
,2

2
txdxxdttx

x
t   

when x=0, t=0, x=∞, t=∞. There is no changes in the limits. 
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dt

t2

1
et2dx)x(f

0
2

1

t2

1

 





  






1dx)x(f  

f(x) is pdf. 

b) To find df, 

Given  













0;0

0;. 2

2

x

xexxf

x

 

 




x

dxxfxXPxF )()()(  

  




x

0

2

2x

dxex  

Put 
2

x
t

2

 dt = x dx 

When x = 0, t = 0; x=x, 
2

2x
t  . 

 


2

2x

0

tdte)x(F  

2

x
e1)x(F

2
  

The distribution function is 















0x;0

0x;e1)x(F 2

2x

. 

Problem 5: 

 If the density function of a continuous r.v X is given by 





















otherwise0

3x2;axa3

2x1;a

1x0;ax

)x(F  
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(i) Find the value of ‘a’ 

(ii) Find the cdf of x 

(iii) If x1, x2 and x3 are three independent observations of x, what is the 

probability that exactly one of these three observations is greater than 1.5? 

Solution: 

i) To find a, 

Since 




1dx)x(f ,   

   

1

0

2

1

3

2

13 dxaxadxadxax  

  1
2

x
x3axa

2

x
a

3

2

2
2

1

1

0

2




























  

After simplification we get,
2

1
a  . 

ii) To find the cdf of x 

F(x) = P(Xx) 

 



x

dx)x(f)x(F  

When x <0 , F(x) = 0 

When 0  x  1, 
x

0

dx)x(f)x(F  

   
x

0

dx
2

x
 

   

x

0

2

2

x

2

1













  

  
4

x
)x(F

2

  

When 1  x  2, 
x

0

dx)x(f)x(F  
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x

1

1

0

dxadx
2

x
 

   







 

x

1

1

0

dx
2

a
dxx

2

1
 

    

  
4

1

2

x
)x(F   

When 2  x  3, 



x

dx)x(f)x(F  

   
x

0

dx)x(f  

   dx
2

x

2

3
dx

2

1
dx

2

x1

0

2

1

x

2

   







  

   

x

2

22

1

1

0

2

4

x
x

2

3

2

x

4

x




































  

4

5

4

x
x

2

3
)x(F

2

     

When x ≥ 3 , F(x) = 1 



























otherwise;1

3x2when;
4

5

4

x
x

2

3

2x1when;
4

1

2

x

1x0when;
4

x

0xwhen;0

)x(F

2

4

 

iii) The pmf of binomial distribution 

xnx
x qPnC)xX(P   

Here n= 3 

Probability of success,
2

1
p  
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Probability of failure,
2

1
q  

Pr(exactly greater than 1.5) = P(x>1.5) 

131

1
2

1

2

1
C3)5.1X(P



















  

8

3
)5.1X(P  . 

 

1.3 Two Dimensional random variables 

Definition 

 Let S be a sample space which is associated with the random experiment E. Let x = x(s), 

y = y(s) be the two functions each assigns a real number to each outcomes s  S. Then the pair 

(x,y) is called two dimensional r.vs. 

 There are two types of two dimensional r.vs. 

  1) Discrete two dimensional r.v 

  2) Continuous two dimensional r.v. 

 

 

 

1) Discrete two dimensional r.v 

 If the possible values of (x,y) is called two dimensional discrete r.v. When (x,y) is the 

two dimensional discrete r.v, the possible values of (x,y) may be represented as (xi, yj), i = 1, 2, 

3, …, m … and j = 1, 2, 3, …, n … 

 

2) Continuous two dimensional rv 

 If (x, y) can assume all the values in a specified interval or range R with the XY plane, (x, 

y) is called the two dimensional continuous r.v. 

Joint probability mass function of (x, y) 

 If (x,y) is a two dimensional discrete r.v such that P(X = xi, Y = yi) = Pij then Pij is called 

pmf or probability function of (x, y), provided the following conditions are satisfied 

   (i) j,i0Pij   
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   (ii)  
j i

ij 1P . 

Definition of Joint probability distribution 

 The collection of triples {xi, yj, Pij}, i = 1, 2 ,. . . , m, . . . j = 1, 2, . . . , n, . . . are called the 

joint probability distribution of (x, y). 

 

Definition of Joint probability density function 

 If (x, y) is the two dimensional continuous r.v such that

.),(
2

1

2

1

2

1

2

1
Pr dydxyxfdyyYdyyanddxxXdxx 









  Then f(x, y) is said to 

be joint pdfof (x,y) provided the following conditions are satisfied: 

 (i) Ryxyxf  ),(0),(  

 (ii)  








1dxdy)y,x(f . 

Definition of Joint cumulative distribution function 

If (x, y) is the two dimensional r.v(discrete or continuous), then 

)(),( yYandxXPyxF  is called cdf of (x,y).  

If (x, y) is two dimensional discrete r.v then 


 



yY

y

xX

x
ijPyYandxXPyxF )(),(  

If (x, y) is a two dimensional continuous r.v then 

  








 dydx)y,x(f)yYandxX(P)y,x(F  

Note: 

(i)     0,,  yFxF  

(ii)   1, F . 

 

Marginal probability distribution for the discrete case 

Definition 

  ...xX)(or)y = Y and x= (X (or)(Pr),( 3i2i1 oryyandyYandxXyYxXP iii 
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      = Pi1 + Pi2 + . . . + 

      
j

ijP  


j

ij*i PP is called the marginal probability function of x. 

i.e.,  
j

iiji PPxXP *)(  

 The collection of pairs   ,...,...,2,1*, miPx ii   is called marginal probability distribution 

of x. Similarly the marginal probability distribution of y is defined by, 

  
j

j*iji pP)yY(P  

The collection of {yj , P*j} j = 1, 2, …, n, … is called the marginal probability distribution of y. 

For the continuous case 

 The marginal density function of X is 




 dy)y,x(f)x(fx . 

The marginal density function of Y is 




 dx)y,x(f)y(fy . 

Definition of conditional probability and conditional probability distribution 

For discrete case: 

If 
)(

)(
)|(

j

ii

ii
yYP

yYandxXP
yYxXP




  

  
j*

ij

P

P
 , then 

j*

ij

P

P
  is called conditional probability of X given Y. 

Then collection of pairs 












j*

ij

i
P

P
,x  is called conditional probability distribution of X given Y. 

Similarly the conditional probability function of Y given X is defined as 

)(

)(
)|(

i

ii

ij
xXP

yYandxXP
xXyYP




  

   
*i

ij

P

P
 . 
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The collection of pairs 








*i

ij

j
P

P
,y is called conditional probability distribution of Y given X.  

For continuous case: 

 Conditional density function of X given Y is 
)(

),(
)|(

yf

yxf
yxF

y

  

Similarly 
)(

),(
)|(

xf

yxf
xyF

X

 which is called conditional density function of Y given X. 

where f(x, y) is the joint density function 

)x(fX  - marginal density function of X 

)y(fY  - marginal density function Y 

 

Definition of Independent r.v or stochastic r.v 

 If (X, Y) is a two dimensional discrete r.v such that P(X= xi| Y=yj)=P(X=xi) 

i.e., P(X= xi and Y=yj) = P(X = xi) . P(Y=yj) 

Pij = Pi* . P*j 

i.e., Pij = Pi* . P*j  i and j. 

 Then X and Y are called independent random variable. 

Similarly, If X and Y are two dimensional continuous r.v such that  

f(x, y) = fX(x) . fY(y) 

Then X and Y are called independent r.v. 

 

Problem 1: 

 For the bi-variate probability distribution of (X, Y) given below find P( X  1), P( Y  3),  

P(X  1 , Y 3), P( X  1 | Y  3) , P( Y  3|   1 ) and P ( X + Y  4 ). 

Solution: 

 

 

 

 

 



18 
 

x        y  1 2 3 4 5 6 

0 0 0 
32

1
 

32

2
 

32

2
 

32

3
 

1 

16

1
 

16

1
 

8

1
 

8

1
 

8

1
 

8

1
 

2 

32

1
 

32

1
 

64

1
 

64

1
 0 

64

2
 

 




















32

3

32

2

32

2

32

1
00

8

1

8

1

8

1

16

1

16

1
)0X,1X(P)1X(P  

8

7
)1X(P  . 

)1Y,2Y,3Y(P)3Y(P   





























32

1

16

1
0

32

1

16

1
0

64

1

8

1

32

1
 

64

23
)3Y(P  . 

)1Y,2Y,3Y,0X,1X(P)3Y,1X(P   

  


















8

1

16

1

16

1

32

1
00  

  









8

1

16

1

16

1

32

1
00  

32

9
)3Y,1X(P  . 

)3Y(P

)3Yand1X(P
)3Y|1X(P




   = 

64
23

32
9

 

23

18
)3Y|1X(P  . 

)1(

)13(
)1|3(






XP

XandYP
XYP = 

8
7
32

9
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28

9
)1X|3Y(P  . 





























32

1

8

1

32

2

32

1

16

1

32

1

16

1
00)4,3,2,1YX(P)4YX(P  

  
32

13
)4YX(P  . 

Problem 2: 

 The joint pmf of (X, Y) is given by P(x,y)=k(2x+3y), x = 0, 1, 2; y= 1, 2, 3. Find all the 

marginal and conditional probability distributions. Also find the probability distribution of         

X + Y. 

Solution: 

 P(x,y)=k(2x+3y), x = 0, 1, 2; y= 1, 2, 3 

The probability distribution of given function is 

x        y 1 2 3 

0 3k 6k 9k 

1 5k 8k 11k 

2 7k 10k 13k 

Since 1),(  yxP . 

 3k + 6k + 9k + 5k + 8k + 11k + 7k + 10k + 13k = 1 


72

1
k  . 

Therefore, the probability distribution is 

 

x        y 1 2 3 Pi* 

0 
72

3
 

72

6
 

72

9
 

72

18
 

1 
72

5
 

72

8
 

72

11
 

72

24
 

2 
72

7
 

72

10
 

72

13
 

72

30
 

P*j 
72

15
 

72

24
 

72

33
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The marginal probability distribution of X is 

 

X Pi* 

0 
72

18
 

1 
72

24
 

2 
72

30
 

 

The marginal probability distribution of  Y is  

 

Y P*j 

1 
72

15
 

2 
72

24
 

3 
72

33
 

 

The conditional distribution of X given Y = 1 is 
1*

1

* P

P

P

P
i

j

ij
  

5

1

15

72

72

3

72/15

72/3

1*

01 
P

P
 

3

1

15

72

72

5

72/15

72/5

1*

11 
P

P
 

15

7

15

72

72

7

72/15

72/7

1*

21 
P

P
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X  0 1 2 

1.

1i

j*

ij

P

P

P

P
  

5

1
 

3

1
 

15

7
   

Similarly we can find the conditional distribution of X given Y = 2 

X    
j*

ij

P

P
 

  0    
4

1
 

  1    
3

1
 

  2    
12

5
 

 

The conditional distribution of X given Y = 2 

X    
j*

ij

P

P
 

  0    
33

9
 

  1    
33

11
 

  2    
33

13
 

 

The conditional distribution of Y given X = 0 

Y    
*i

ij

P

P
 

  1    
6

1
 

  2    
3

1
 

  3    
2

1
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The conditional distribution of Y given X = 1 

Y    
*i

ij

P

P
 

  1    
24

5
 

  2    
3

1
 

  3    
24

11
 

The conditional distribution of Y given X = 2 

Y    
*i

ij

P

P
 

  1    
30

7
 

  2    
30

10
 

  3    
30

13
 

)5,4,3,2,1YX(P)YX(P   
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Problem 3: 

 The joint pdf of a two dimensional r.v (X, Y) is given by 
8

x
xy)Y,X(f

2
2   , 0  x  2, 

0  y  1. Compute (i) P(X > 1) (ii) 
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P(X < Y)   (vi) P( X + Y  1). Also (a) Are X and Y independent? (b) Findthe conditional pdf of 

X given Y.(c) Find the condition pdf of Y given X. 
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Solution: 
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(iii) 
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Also, 

(a) In order to prove X  and Y are independent, we prove 

f(x,y) = fx(x) . fy(y) 

8

x
xy)Y,X(f

2
2   ; x= 0 to 2; y= 0 to 1 
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 X and Y are not independent random variables. 

(b) Conditional pdf of X given Y is given by 

)y(f

)y,x(f
)y|x(f

y
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 . 

(c) Conditional pdf of Y given X is given by 
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1.4 Applications of Jacobian 

 

Let us consider the two-dimensional continuous r.vs  X and Y having joint pdf )y,x(f .  

Consider two functions X and Y as U=g(X,Y) and V=h(X,Y) where both the functions are 

continuous and are differentiable.  Then the Jacobian of the transformation is  

                            

v

y

v

x

u

y

u

x

)v,u(

)y,x(
J





















  . 

The transformation of U and V is done in such a way that X=g
-1

(U, V) and Y= h
-1

(U, V) 

exist.  In such a case J may be positive or may be negative.  Then   

k(u,v)=f(x,y) |J|,  

     where f(x, y) is expressed in terms of u and v. 

Example 1: 

 Two-dimensional continuous r.vs X and Y have the joint pdf  

   




 




.otherwise,0

0y,0x;xye4
)y,x(f

)2y2x(

  Find the pdf of  22 YXU  . 

Solution: 

 Let 22 yxu   and v=x. v ≥ 0, u ≥ 0. Also u ≥ 0 and 0  v  u. 

The Jacobian of the transformation is  
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y

v

y

u

x
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)y,x(

)v,u(

J

1





















  

Thus the joint pdf of U and V is 

  Jxye4J)y,x(f)v,u(g )2y2x(   

   )2y2x(22 eyxx4   

   










otherwise,0

uv0,0u;uve4
2ue

 

Hence the density function of 22 YXU   is 

      
u

0

v

0

2u32u 0u,eu2vdvue4dv)v,u(g)u(h . 

   




 




otherwise,0

0u,eu2
)u(h

2u3

 

      

Example 2:  

 Let x1 and x2 be two observations of a random sample of size 2 from a population having 

density function 

    


 




.otherwise,0

0x,e
)x(f

x

 

Find the pdf of U = X1 + X2 and 
21

1

xx

x
V


 . 

Solution: 

 Let u = x1 + x2 and 
21

1

xx

x
V


 . Since x > 0, u > 0 and 0 < v < 1.  

Here x1 = uv, x2=u(1-v). 

The Jacobian of the transformation is 
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   .ueJ)x,x(f)v,u(g u
21

  

Now, 

      
1

0

u
1

0

u 0u,uedvuedv)v,u(g)u(g  

    and   


 
0

u .1v0,1duue)v(h     

 

1.5 Mathematical Expectation 

Definition 

 The mathematical expression for computing the expected value of a r.v X with the pmf / 

pdf is called the mathematical expectation, which is given below: 

         )()( xPxXE  for X is discrete r.v. 

        




 dxxfxXE )()(  for X is continuous r.v. 

Properties of Mathematical Expectation 

Additive Property 

Statement 

 If X and Y are two r.vs, then E(X+Y)=E(X)+E(Y), provided all the expectation exists. 
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Proof 

 Let X and Y be the two continuous r.vs with joint probability function  yxf yx ,,
and 

marginal probability function )()( yfandxf YX
respectively.  

By the definition of mathematical expectation, 

                   )1(dx)x(fx)X(E 




  

                               )2(dy)y(fy)Y(E 




  

     Therefore,   








 dxdy)y,x(f)yx()YX(E Y,X    

    
















 dxdy)y,x(fydydx)y,x(fx Y,XY,X  

   

































 dydx)y,x(fydxdy)y,x(fx Y,XY,X  

  








 dy)y(fydx)x(fx YX  

            )Y(E)X(E)YX(E   

Generalization of Additive Property 

 The mathematical expectation of the sum of n r.vs is equal to the sum of their 

expectation, provided all the expectation exists. 

(i.e.)        nn XEXEXEXXXE  ...... 2121  

                                                 












n
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n
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i XEXE
11
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Multiplicative Property 

Statement 

 If X and Y are independent r.vs,  then E(XY)=E(X) E(Y). 

Proof 

By the definition of mathematical expectation,                     

                 




 dxxfxXE  

  




 dyyfy)Y(E  

             Therefore  








 dxdy)y,x(fxy)XY(E Y,X  

                








 dxdy)y(f)x(fxy YX (Since X and Y are independent r.vs ) 

               



















 









dy)y(fydx)x(fx YX  

              )Y(E)X(E)XY(E   

Generalization of Multiplicative Property 

 The mathematical expectation of the product of n r.vs is equal to the product of their 

expectation provided all the expectation exists. 

(i.e.)        nn XEXEXEXXXE ...... 2121   
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n
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11
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Note: 1 

 If X is the r.v and a and b are the constants then     bXaEbaXE  . 

Proof :  

             By definition of mathematical expectation, 

                         




 dx)x(fxXE  

                       dx)x(fbaxbaXE 




  

  








 dx)x(fbdx)x(fxa  

 )1(b)X(Ea   

           b)X(aEbaXE   

Note: 2 

Expectation of Linear Combination of r.vs. 

 Let nXXX ,...,, 21  be a n r.v and naaa ,...,, 21 are any n constants then 















 n

1i

ii

n

1i

ii )X(EaXaE . 

Proof 

                                         nn2211

n

1i
ii xa...xaxaExaE 










 

     nn2211 XEa...XEaXEa   

 



n
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ii XEa  

 



33 
 

Problem 1: 

Find the Expected value of a Binomial variate. 

Solution: 

 Given X is a Binomial variate, then its pmf given by 

                            n,...2,1,0x,qPnC)x(P xnx
x    





n

0x

)x(Px)x(E  

)n,...2,1,0x(xqpnCx
n

0x

xnx
x  



   







n

1x

xn1x
1x qpC1nnp  

1n)pq(np   

= np 

             E(x) = np. Which is the expected value of Binomial Distribution. 

Problem 2: 

 Check whether a continuous r.v with pdf 


 x;
x1

1
.

1
)x(f

2
 is having Expected 

value of x or not. 

Solution: 

dx)x(fx)x(E 




  

dx
x1

1
.

1
.x

2
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dx
x1

x1
2



 
  

dx
x1

x2

0
2




     ( f(x) is an even function of x) 

  










 0
2

0
2

)x1log(
1

dx
x1

x21
 

Since this integral does not converge to a finite,  

Therefore E(x) does not exist. 

Problem 3: 

 Let X be a r.v with the following probability distribution 

x -3 6 9 

p(x) 1/6 1/2 1/3 

Find E(x), E(x
2
) and using the laws of Expectation, evaluate E[2x+1]

2
. 

Solution: 

 



n

0x

)x(Px)x(E  
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1
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2

1
6
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1
3   

  
2

11
)x(E   





n

0x

22 )x(Px)x(E  
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1
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2

1
36

6

1
9   
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   x41x4E1x2E 22
  

  = 4E(x
2
)+1+4E(x) 

  209
2

11
41

2

93
4   

  2091x2E
2
  

Problem 4: 

 a) Find the expectation of the number on a die when thrown 

b) Two unbiased dice are thrown. Find the expected values of the sum of numbers of 

points on them? 

Solution: 

a) Let X be the r.v respectively the number on a die when thrown. 

 x = {1, 2, 3, 4, 5, 6} 

 X can take any one of the values 1, 2, 3, 4, 5, 6 each with equal probability 
6

1
. 

Hence, E(x) = 
2

7
6

6

1
5

6

1
4

6

1
3

6

1
2

6

1
1

6

1
  

It means the average toss of a long period one will get 
2

7
. 

b) The probability function of X for the sum of numbers obtained on two dice is 

Values 2 3 4 5 6 7 8 9 10 11 12 

Probability 

36

1
 

36

2
 

36

3
 

36

4
 

36

5
 

36

6
 

36

5
 

36
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36

3
 

36

2
 

36

1
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5

36

3
4

36

2
3

36

1
2 

]12223036404230201262[
36

1
  

252
36

1
  

=7 

     E(x)=7 

Problem 5: 

 In four tosses of a coin, let x be the number of heads. Tabulate the 16 possible outcomes 

with the corresponding values of X. By simple counting, derive the distribution of X and hence 

calculate the expected value of X 

Solution: 

The sample space for tossing of a coin four times is 

S = {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTTH, THTH, HTHT, THHT, 

TTHH, HTTT, THTT, TTTH, TTHT, TTTT} 

 

Outcomes 

H
H

H
H

 

H
H

H
T

 

H
H

T
H

 

H
T

H
H

 

T
H

H
H

 

H
H

T
T

 

H
T

T
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T
H

T
H

 

H
T

H
T

 

T
H

H
T

 

T
T

H
H

 

H
T

T
T

 

T
H

T
T

 

T
H

T
T

 

T
T

T
H

 

T
T

H
T

 

T
T

T
T

 
No. of Heads 4 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 0 

 

16

1
)0x(p  , 

4

1

16

4
)1x(p  ,

8

3

16

6
)2x(p  , 

4

1

16

4
)3x(p 

16

1
)4x(p   

 The Probability distribution of X is given by 

x 0 1 2 3 4 

p(x) 

16

1
 

4

1
 

8

1
 

4

1
 

16

1
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n

0x

)x(Px)x(E  

 
16

1
4

4

1
3

8

3
2

4

1
1

16

1
0   

 
4

1

4

3

4

3

4

1
  

E(x) = 2. 

Exercise: 

1. Define random variable with examples. 

2. Define distribution function and state its properties. 

3. A discrete r.v X has the following probability distribution: 

X 0 1 2 3 4 5 6 7 8 

P(x) a 3a 5a 7a 9a 11a 13a 15a 17a 

i) Find a ii) Find P(x<3)  iii) Find the variance and mean of x  

iv) Find df of x.  

4. A continuous r.v X that can assume any value between x = 2 and x = 5 has the density 

function given by f(x) = k (1 + x).  Find P(x<4). 

5. A continuous r.vhas a pdf 0x;ekx)x(f x2  
.Find k, mean and variance. 

6. The df of r.v X is given by .0x,e)x1(1)X(F x  
 Find density function, mean and 

variance of x.  

7. Find cdf for













0;0

0;
)(

2/2

x

xex
xf

x

. 

8. Define Jacobian of transformation. 

9. Define marginal and conditional distributions.  

10. State and prove additive property of expectation of two random variables. 

11. State and prove multiplicative property of expectation of two random variables. 
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Unit – II 

Discrete Distributions 

 

2.1 Introduction 

2.2 One –point distribution 

2.3 Bernoulli Distribution 

2.4 Binomial Distribution 

2.5 Poisson Distribution 

2.6 Geometric Distribution 

2.7 Negative Binomial Distribution 

2.8 Hyper Geometric Distribution 

2.9 Multinomial Distribution 

2.10 Discrete Uniform Distribution 

2.11 Fitting Binomial and Poisson Distributions 

2.1 Introduction 

 In this Unit, we shall study of the probability distributions that are used most prominently 

in statistical theory and application. We shall also study their parameter that is the quantities that 

are constants for particular distributions but that can take on different values for different 

members of families of distributions of the same kind. We shall introduce number of discrete 

probability distributions that have been successfully applied in a wide variety of decision 

situations. The purpose of this Unit is to show the types of situations in which these distributions 

can be applied. 
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 It may be mentioned that a theoretical probability distribution gives us a law according to 

which different values of the random variable are distributed with specified probabilities 

according to some definite law which can be expressed mathematically. It is possible to 

formulate such laws either on the basis of given conditions (a prior consideration) or on the basic 

of the results (a posterior inference) of an experiment. 

 This unit is devoted to the study of univariate discrete distributions like Bernoulli, 

Binomial, Poisson, Geometric, Negative Binomial, Hyper geometric and Discrete Uniform 

distributions. We have already defined in the previous Unit about distribution function, 

mathematical expectation, moment generating function, characteristic function and moments.  

2.2 One Point Distribution or Degenerate Distribution  

A degenerate distribution or one point distribution is the probability distribution of a r.v 

which only takes a single value.  

Examples include a two-headed coin (biased coin) and rolling a die whose sides all show 

the same number. This distribution satisfies the definition of "random variable" even though it 

does not appear random in the everyday sense of the word; hence it is considered degenerate. 

 The simplest distribution is that of an r.v X degenerate at point k, that is, P{X= k} = 1 

and = 0 elsewhere. If we define 

  









,0xif1

,0xif0
)x(  

the distribution function of the r.v X is )kx(  . Clearly, E(X
n
), n =1,2, …, and Mx(t)=e

tk
.  In 

particular var (X) = 0. This property characterizes a degenerate r.v.  The degenerate r.v plays an 

important role in the study of limit theorems. 

2.3 Bernoulli Distribution 

Definition 

 A random variable X which takes two values 0 and 1 with probabilities q and p 

respectively i.e. P(X=0)=p; P(X=1)=q is called a Bernoulli variate and it is said have a Bernoulli 

distribution. A random variable X is defined to have a Bernoulli distribution if the discrete 

density function (or) pmf of X is given by  
 







 





otherwise

orxforpp
xXP

xx

0

101
1

where 

the parameter p satisfies 0≤p≤1 and q=1-p. 
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          q     p      

           

        0              1  x     

Figure: Bernoulli Density 

Definition of moment generating function (MGF) 

 A moment generating function of r.v X (discrete / continuous) is defined as Mx (t) = E 

(e
tx

).  

For, discrete r.v, Mx (t) = E (e
tx

)= )x(petx  

For, continuous r.v, Mx (t) = E (e
tx

) = 




dx)x(fetx
 

Properties of MGF: 

(i) The coefficient of 
!r

t r

 in Mx (t) is r . 

By the definition of MGF, 

Mx (t) = E(e
tx
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Therefore, the coefficient of Mean
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The coefficient of
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t
=Mean square value. 
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  2122)xvar(   

(ii) r0txr

r

)t(M
dt

d
  

i.e., r
th

 derivative of MGF at t=0 gives r  

 

MGF and hence Mean and Variance 

If X has a Bernoulli distribution, then       qpetMandpqXVpXE t

X  ,  

Proof: 

By the definition of mathematical expectation, 

       xPxXE  

   



1

0

1

x

xxqpx  

   00 pq  

     pXE  . 

   Mean= E(x)=p. 

         22 XEXEXV   

       xPxXE 22
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0
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x

xxqpx  

   p0  

     pXE 2  

         22 XEXEXV   

   2pp   
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    pp  1  

     pqXV  . 

   Variance=pq. 

By the definition of MGF, 

      tx

X eEtM   

     xPetx
 

   



1

0

1

x

xxtx qpe  

     t

X peqtM  . 

Problem 1: 

A random experiment whose outcomes have been classified into two categories called “success” 

and “failure” represented by the letters ‘s’ and ‘f’ respectively is called a Bernoulli trail. If a 

random variable X is defined as 1 if a Bernoulli trail results in success and 0 if the same 

Bernoulli trail results in failure, then X has a Bernoulli distribution with parameter p=Probability 

of success. 

Problem 2: 

For a given arbitrary probability space(Ω,A,P)and for AεA, define the r.v X to be the indicator 

function of A; that is,     AIX  ; then X has a Bernoulli distribution with parameter 

p=P[X=1]=P[A]. 

2.4 Binomial Distribution 

Definition 

 A r.v X which takes two values 0 and 1 with probabilities q and p respectively. i.e., 

P(X=1)p; P(X=0)=q is called a Bernoulli variate  and its said have a Bernoulli distribution. 

 If the experiment is repeated n-times independently with two possible outcome,then they 

are called Bernoulli trials.  

 An experiment consisting of a repeated n number of Bernoulli trails is called Bernoulli 

experiment. 
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Binomial Experiment 

 A binomial distribution can be used under the following condition: 

(i) Any trail with two possible outcomes that is any trail result in a success or failure. 

(ii) The number of trials n is finite and independent,when n is number of trial. 

(iii) a probability of success is the same in each trial. i.e., p is the constant. 

 

Definition 

 A random variable X is said to have a binomial distribution, if its pmf is given by 



 




otherwise,o

n,...2,1,0x,qPnC
)xX(P

xnx
x  where q = 1- p 

It is denoted by B(n, p), where n and p are parameters 

Applications of Binomial Distribution 

1. The quality control measures and sampling process in industries to classify the items 

are defective or non-defective. 

2. Medical applications as a success or failure of a surgery and cure or non cure of a 

patient. 

3. Military application as a hit a target or miss a target 

Derivation of mean and variance of B (n, p): 

 By the definition of mathematical expectation, 









n

x

xnx

x

n
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qpnCxxPxXE
00
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xnx

n
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Var (x) = npq 

 

MGF and hence mean and variance 

By the definition of MGF, 
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 nt
x peq)t(M   

Differentiate with respect to t, we get 

t1nt
x pe.)peq(n)t(M

dt

d   

Put t = 0, 01n
x pe.)pq(n)t(M

dt
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1npMean   
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pe.peq).1n(ee)peq(np)t(M
dt

d    

 p)1n(1np)t(M
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d
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 212)xvar(   
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Var (x) = npq 

Definition of Moments 

 Moments about origin


r is defined as the expectations of the powers of the r.v X. That is

)x(E r
r  . Similarly, the central momentsabout mean is defined as µr = E(x-µ)

r
. 
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Recurrence relation for the central moments of a B(n, p) 

 By the definition of k
th 

order central moment µk is given by 
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Differentiate with respect to p, we get 
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After simplification, we get, 
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Central moments of B(n, p) 

Using the above recurrence relation we may compute the moments of higher order, 

provided the moments of lower order, that is 01 10   and . 
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Put k = 1, 
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        = npq, which is variance of X 
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Put k = 2, 
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 These are the first four binomial central moments. 

The first four raw moments (or) moment about origin of B(n, P) 

By the definition of moments about origin )x(E r
r   



48 
 

 To find the first four raw moments: 

Put r = 1 
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4  . 

Additive property of B(n, p) or Reproductive property 

Statement 

 If X~B(n1, p) and Y~B(n2, p), then X+Y ~B(n1+n2, p) where X and Y are independent. 

 

Proof 

 We know that, the MGF of B(n, p) =(q+pe
t
)
n

. 
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The MGF of X ~B(n1, p) 1
nt )peq(  . 

Also the MGF of Y~B(n2, P) 2nt )peq(  . 

We know that, If X and Y are independent r.vs, then 

MX+Y (t) = Mx (t) . Mx (t) 

  2nt1
nt )peq.()peq(   

  
2n

1
nt )peq(


  

2n
1

nt
Y+X )peq( (t) M


  

Which is the MGF of B(n1+n2, p) 

(X+Y) ~ Binomial distribution 

Note 

 If X1, X2,..., Xk are independent binomial variates with parameters (n1,p), (n2,p),…, (nk,p) 

respectively,then X1+X2+…+Xk is also a binomial variate with parameter (n1+n2+…+nk, p).  

Mode of Binomial distribution 

Definition 

 The value of x at which p(x) obtains maximum is called mode of the distribution. 

 Let X be a binomial r.v. Then P(X=x)=p(x)=nCxp
x
 q

n-x
; x = 0, 1, 2,…n 

Themode of the binomial distribution is defined by m0 and it is given by 

p ( m0-1)  p ( m0) ≥ p ( m0+1) 

Consider, 

p ( m0-1)  p ( m0) 
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m0 p(n+1)   ………..... (1) 

Consider, 

 P(m0) ≥ p ( m0 + 1) 
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m0  ≥ np – q  ……………………….(2)  

from (1) and (2) 

np – q  m0 p (n+1) 

For checking: 

when n = 10, p=1/2 , q = ½ 

4.5  m05.5. 

Characteristic function and Cumulative function or cumulative generating function 

 The characteristic function is defined 
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Cumulative generating function is defined by 

)t(Mlog)t( xx   

Characteristic function of B(n,p) 

 By the definition of characteristic function,  
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2.5 Poisson distribution 

                  - Simen Denis Poisson 

Definition 

 A random variable X is said to follow the Poisson distribution if its probability mass 

function is given by,  
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Here the  is the parameter and > 0 
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Poisson distribution as a limiting case of Binomial distribution: 

 Poisson distribution as a limiting case of Binomial distribution under the following 

condition: 

 i) The number of trial n is infinitely large. i.e., n . 

ii)  The constant probability of success p in each trail is vary small. i.e., 0p   

iii) np =  is finite, where  is a positive real number. 

Proof: 

 In the case of Binomial distribution,the probability of x success is given by, 

xnx
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Taking limit n , we get  



54 
 







,...2,1,0x,
!x

e
)x(p)xX(p

x

 

which is the pmf of Poisson distribution. 

 Poisson distribution is the limiting case of binomial distribution. 

Aliter 

 The MGF of B(n ,p) is  
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Taking limit n  we get  
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which is the MGF of Poisson distribution. 

 Poisson distribution is limiting case of Binomial distribution. 

Mean and variance of Poisson distribution 

        Mean, E(x) = 


0x
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MGF and hence mean and variance of Poisson distribution 

 By the definition of MGF, 

]e[E)t(M tx
x   

   



n

0x

tx )x(pe  






 


0x

x
tx

!x

e
e  






 


0x

xt

!x

)e(
e  

 1 
teet eee 

 

)1te(
x e)t(M   

To find mean and variance 

 By the property of MGF, 
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  Var (x) 
2

122 




 



  

   = 
2
 + - 

2
 

  Var (x) =  

 Mean = Variance = . 

Recurrence formula for the central moments of the Poisson distribution: 

 For Poisson distribution with parameter; the recurrence formula is, 
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Proof 

 By definition of r
th 

order central moment is given by 
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The central moments µ1, µ2, µ3 and µ4: 

 The recurrence formula for central moments of Poisson distribution is, 

1r
r

1r r
d

d
 




   ……………(*) 

Also, we know that, µ0 = 1 

           µ1 = 0. 

In order to get µ2, put r=1 in (*), 
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In order to get µ3,Put r = 2 in (*), 
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In order to get µ4,Put r = 3 in (*), 
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   µ1 = 0, 2 , 3 , 
2

4 3 are the first four central moments. 

The first four moments about origin: 

 By the definition of r
th

 order raw moments, 
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Additive property: 

 The sum of independent Poisson variates is also a Poisson variate. 

 i.e., X1, X2, …. Xn are n independent Poisson variates with parameter 1, 2, ….n. Then 

X1 + X2+ ….+ Xn is also a Poisson variate with parameter 1 + 2 +…. + n. 

Proof: 

 We know that the MGF of Poisson distribution is, 

)1te(
x e)t(M   

Also we know that,   

)t(M)...t(M).t(M)t(M
nx2x1xnx...2x1x   

)1()1()1(
.....21 


t

n
tt eee

eee


 

)1)(...(

...
21

21
)(






t
n

n

e

XXX etM
 which is the MGF of X1 + X2+ ….+ Xn with parameter 

1 + 2 +…. + n. 
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 X1 + X2+ ….+ Xn is also Poisson variate. 

Examples of a Poisson distribution (Real life Problems) 

1. Number of printing mistakes at each page of a book. 

2. The number of road accident reported in a city per day 

3. The number of death in a district due to rare disease. 

4. The number of defective articles in a pocket of 200 

5. The number of cars passing through a time interval t. 

Theorem 1 

 If X and Y are two independent Poisson variates with parameters 1, 2,then the 

conditional distribution of  YXX   is Binomial. 

Proof 

 Given X and Y are independent Poisson variates with parameter 1 and 2 respectively. 
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 X and Y are independent. 
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 Which is the pmf of binomial distribution. 

 If X and Y are two independent Poisson variate, then the condition probability of YXX   is 

Binomial. 

Theorem 2 

 If X is a Poisson variate with parameter  and conditional distribution of xy | follows 

binomial with parameters n and p, then the distribution of Y follows the Poisson distribution with 

parameter p. 

Proof 

 Given X is a Poisson variate with parameter . 
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For a Binomial distribution nxqpnCxpxXP xnx
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Then we prove that,Y~Poisson (p) 
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which is the pmf of Poisson distribution with parameter is p. 

If X~Poisson () and ),(~ pnBXY , then Y ~ Poisson(p). 

Theorem 3 

 If X and Y are two independent Poisson variates then X-Y is not a Poisson variate. 

Proof 

 Given,  

  )1te(1
x e)t(M
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)t(M).t(M)t(M )y(xyx    

 )t(M).t(M yx   

)1te(2)1te(1 e.e


 which is not in the form of )1te(e  . 

 So difference X-Y is not a Poisson variate. 

2.6 Geometric Distribution (x-1 failures preceding the first success) 

Definition 

 A random variable X is said to follow a Geometric distribution if it assumes the non-

negative value and its pmf is given by, 
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Here p is the parameter, q=1-p, 0≤p≤1 

(or) 
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x failures preceding the first success. 

Note 

1. pqxXP x 1)(  denotes the probability that there are x-1 failure preceding the first 

success. 

2. We know that, the total probability is one. 

That is, pq)xX(P 1x  

pq)xX(P
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The total probability is 1. 

3. Prove that for a Geometric distribution, the variance is always greater than mean. 

Solution 

For Geometric Distribution,Mean = 
p

1
. 

Variance = 
2p

q
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q 1
 

Variance(X) = mean
p

q
  

Variance(X) > Mean. 

Mean and Variance: 

By the definition of Expectation,  
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MGF and hence Mean and Variance: 

By definition of mgf,   
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Memory less Property of Geometric Distribution 

Statement 

 If X has a geometric distribution then for any two positive numbers m and n, 

)()|( nXPmXnmXP  . We need m+n trials for getting first success, given than m 

consecutive failures is equal to the unconditional probability of at least n trials to get their 

success. Here m failure is not in memory. 

Proof 
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The pmf of geometric distribution is, 
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2.7 Negative Binomial Distribution 

Let X denote the number of failure preceding the r
th

 success, then P(X=x) denotes the 

probability that there are x failure preceding the r
th

 success in x+r trial. Clearly the last trial is 

success with a probability P.  

In the preceding (x+r-1) we must have a x failures and r-1 success, in any order, whose 

probability function is given by, 
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Hence the probability of x failures and r
th

 success is given by, 

xr

C qPrxxXP
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Definition  

 A random variable X is said have a negative binomial distribution if its probability mass 

function is given by, 

,...2,1,0;1)(
1




xqPrxxXP xr

Cr
 

Here p and r are parameters.  

(or) ,...2,1,0;)()(  xqPrxXP xr

Cx
 

Note 

 Geometric distribution is a special case of negative binomial distribution when r=1. 

MGF and hence Mean and Variance 

By definition of mgf, 
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To find Mean and Variance 

We know that 
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Additive Property of Negative Binomial Distribution 

Statement 

 Let 
21 XandX be the two independent negative binomial variates with same parameter p 

and different numbers of successes
21 randr then the sum 

21 XX  is also a negative binomial 

variate with parameters p and
21 rr  . 

Proof 

We know that 

The mgf of Negative Binomial Distribution is, 

   
rtr

X )qe1(P)t(M   
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which is the mgf of Negative Binomial Distribution. 
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2.8 Hypergeometric Distribution 

 If X represents the number of defectives found, when n items are drawn without 

replacement from a lot of items containing k defectives and (N-k) non-defectives, clearly 

                        ),min(,,2,1,0;
)(

)(
)(

knr
NC

CkNkC
rXP

n

rnr






 

Note:  

 If n > k, then the maximum value of X is k;If n < k, then the maximum value of X is n, 

That is, the maximum value of X is min(n, k), that is, r can take the values 0, 1, 2, …, min(n, k) 

Definition: 

If X is a discrete r.v that can assume, non-negative values 0, 1, 2,…, such that its 

probability mass function is given by 

),min(,,2,1,0;
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)(
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Then X is said to follow a hypergeometric distribution with the parameters N, k and n. 

Note: 

1. In the probability mass function of X, r can be assumed to take the values 0, 1, 2, …, n, which 

is true when  n < k. But when n > k, r can take the values 0, 1, ,2, … , k. In other 

words,P(X=r)=0, when r = k +1, k+2,…n. This values (namely zero) of the probability is 

provided by the probability mass function formula itself, since kCr = 0, for r =k+1, 

k+2,…,n.Thus in the values of P(X=r) min(n, k) can be replaced by n. 

2. Hypergeometric distribution is a legitimate probability distribution, since 
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Mean and Variance of Hypergeometric Distribution 
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Note: 

 If we denote the proportion of defective items in the lot as p, i.e., 
N

k
p  and q = 1 – p, 

then E(X) = np and Var(x) = npq 
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Binomial Distribution as Limiting form of Hypergeometric Distribution  

 Hypergeometric distribution tends to binomial distribution as N  and p
N

k
  

Proof: 

If X follows a hypergeometric distribution with parameters N, k and n, then 
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  (by dividing each factor in the numerator and denominator ny N) 



76 
 

Putting p
N

k
  and proceeding to the limit as N , we get  

  rnr

r ppnCrXp
p

N

k
N





)1(.}{

lim

 

    nrqpnC rnr

r ,...,2,1,0;    

Thus the limit of a hypergeometric distribution is a binomial distribution. 

Note: 

 We know that the binomial distribution holds good when we draw samples with 

replacement (since the probability of getting a defective item has to remain constant), while the 

hypergeometric distribution olds good when we draw samples without replacement. If the lot 

zize N is very large, there is not much difference in the proportions of defective items in the lot 

whether the item drawn is replaced or not. The previous result is simply a mathematical 

statement of this fact. 

2.9 Multinomial Distribution 

Definition 

 Multinomial distribution is the generalization of binomial distribution. Consider k events 

E1, E2,…, Ek. The event E1 occurs X1 times, E2 occurs X2 times and so on, with the corresponding 

probability p1, p2, …pk respectively. 

 Let us assume that the probability of getting i
th

 event in xi times is ix
ip , i = 1, 2, 3, …,k. 

Then the joint probability function of k events is given by, 

kx
k

2x
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1x
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k21

k21 p...p.p.
!x!....x!x
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This distribution is called multinomial distribution,where (p1+p2+ …+pk) = 1, n = x1+x2+ 

…+ xk. 

For example, if a fair die is tossed twelve times, the probability of getting 1, 2, 3, 4, 5 and 

6 points exactly twice each is given by 
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        = 0.00344 

MGF of Multinomial Distribution 

 To derive MGF, first let us consider a trail which has two outcomes A1, A2. 

 Assume the outcome A1 occurs x1 times and A2 occurs x2 times then the probability of 

getting A1, x1 times and A2, x2 times is given by the function, 
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2
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1
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21 pp
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)x,x(p   where p1 + p2 = 1 and n = x1 + x2 
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Which is the MGF of p(x1, x2). By simply extending this result the mgf for multinomial 

distribution can be written as, 
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From this MGF, we can find mean and variance as follows: 

 nt

k

tt

x
kepepeptM  ....)( 21

21  



78 
 

  it
i

1n
kt

k
2t

2
1t

1x

i

epep....epepn)t(M
dt

d



 

  i
1n

k210itx

i

pp....ppn)t(M
dt

d



  

  = npi 

  1  

Mean  =npi 

  ki t

k

ttt

iX

i

epepepenptM
dt

d
 ....)( 21

21  

   iki t

i

nt

k

ttt

ix

i

epepepepnenptM
dt

d


2

212

2

....1)( 21
 

  it
1n

kt
k

2t
2

1t
1 eep....epep 


 

   1n
k21i

2n
k21i0itx2

i

2

)p....pp(pp....pp).1n(np)t(M
dt

d 


  

 1p)1n(np ii   

i
2

i npp)1n(n   

i
2

i2 npp)1n(n   

 212)xvar(   

  2ii
2

i npnpp)1n(n   



79 
 

  iii np1p)1n(np   

 )P1(np ii   

 iiqnp  

iiqnp)x(V  . 

2.10 Discrete Uniform Distribution 

Definition 

 A r.v X is said to have a discrete uniform distribution over the range [1, n] if its pmf is 

expressed as follows: 

   










otherwise,0

n,...,2,1xfor
n

1

)xX(p , 

here n is known as the parameter of the distribution and lies in the set of all positive integers. The 

above equation is also called a discrete rectangular distribution. 

 Such distribution can be conceived in practical if under the given experimental 

conditions, the different values of the random variable become equally likely. Thus for a die 

experiment and for an experiment with a deck of cards such distribution is appropriate. 

To find Mean 
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To find variance: 
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To find mgf 

 By the definition of mgf, 
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2.11 Fitting a Binomial and Poisson Distributions 

        Fitting a Binomial Distribution 

 When a binomial distribution is to be fitted to observed data, the following procedure is 

adopted: 

1. Determine the values of p and q. If one of these values is known the other can be found 

out by the simple relationship p = (1-q) and q = (1-p). When p and q are equal, the 

distribution is symmetrical for p and q may be interchanged without alternating the value 

of any terms and consequently terms equidistant from the two ends of the series are 

equal. If p and q are unequal, the distribution is skew. If p is less than
2

1
, the distribution 

is positively skewed and when p is more than
2

1
 the distribution is negatively skewed. 

2. Expand the binomial (p+q)n. The power n is equal to one less than the number of terms in 

the expanded binomial. Thus when two coins are tossed (n = 2), there will be three terms 

in the binomial. Similarly, when four coins are tossed (n=4) there will be five terms and 

so on. 

3. Multiply each term of the expanded binomial by N (the total frequency) in order to obtain 

the expected frequency in each category. 

The probability of 0, 1, 2, 3, … success would be obtained by the expansion of (p+q)n. 

Suppose this experiment is repeated for N times, then the frequency of r success is; 

rrn
r

n pqCN)r(PN   

 Putting r = 0, 1, 2, …, n, we can get the expected of theoretical frequencies of the 

binomial distribution as follows: 
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Number of Success (r)  Expected or theoretical frequency 

      (N P(r)) 

 0     N qn 

 1     pqCN 1n
1

n 
 

 2     
22n

2
n pqCN 

 

 .      . 

 .      . 

 .      . 

 r     
rrn

r
n pqCN 

 

 n     N pn 

Example: 

8 coins are tossed at a time, 256 times. Find the expected frequencies of success (getting 

a head) and tabulate the result obtained 

Solution: 

  256N;8n
;2

1
q;

2

1
p    

The probability of success r times in n trials is given by
rrn

r
n pqC 
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Frequencies of 0, 1, 2, 3,…, 8 successes are: 
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Success N P(r) Expected frequency 

0 








 0

8C
256

1
256  

1 

1 








 1

8C
256

1
256  

8 

2 








 2

8C
256

1
256  

28 

3 








 3

8C
256

1
256  

56 

4 








 4

8C
256

1
256  

70 

5 








 5

8C
256

1
256  

56 

6 








 6

8C
256

1
256  

28 

7 








 7

8C
256

1
256  

8 

8 








 8

8C
256

1
256  

1 

 

Fitting a Poisson Distribution 

 

 When we want to fit a Poisson Distribution to a given frequency distribution, first 

we have to find out the arithmetic mean of the given data i.e., mX   when m is known the other 

values can be found out easily.  
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Example 1 

 100 Car Radios are inspected as they come of the production line and number of defects 

per set is recorded below: 

 No. of Defects 0 1 2 3 4  

 No. of sets 79 18 2 1 0 

Fit a Poisson distribution to the above data and calculate the frequency of 0, 1, 2, 3 and 4 defects. 

 779.0e 25.0 
 

Solution 

Fitting Poisson distribution 

No. of Defectives (x) No. of Sets (f) (fx) 

0 79 0 

1 18 18 

2 2 4 

3 1 3 

4 0 0 

 N = 100 ∑fx = 25 

    

 25.0
100

25
X  

779.0e 25   

90.77779.0100eN)0(PN m  
 

48.1925.090.77
1

m
)0(PN)1(PN   

44.2
2

25.0
48.19

2

m
)1(PN)2(PN   

20.0
3

25.0
44.2

3

m
)2(PN)3(PN   

10.0
4

25.0
20.0

4

m
)3(PN)4(PN   

Example 2 

 Fit a Poisson distribution to the following data and calculate the theoretical frequencies: 

x: 0 1 2 3 4 

f: 123 59 14 3 1 
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Solution 

  

x 0 1 2 3 4 

f 123 59 14 3 1 ∑f=200 

fx 0 59 28 9 4 ∑fx = 100 

   

Mean 25.0
200

100
  

NP(0) = Ne
-m

 

         = 200 5.0e  

         = 200 6065=121.3 

Conclusion of expected frequencies: 

  

  x   Frequency N P(X=x) 

  0   NP(0)     =121.3   121 

  1   65.6053.121
1

m
)0(NP   61 

  2   16.15
2

565.60

2

m
)1(NP 


  15 

  3  53.2
3

516.15

3

m
)2(NP 


   3 

  4  29.0
4

553.2

4

m
)3(NP 


    0 

     Total     200 

 

Exercise 

1. Define one-point distribution. 

2. Define Bernoulli distribution and derive its mean and variance. 

3. For a binomial distribution mean is 6 and standard deviation is 2 . Find the first two 

terms of the distribution. 

4. Derive mgf of Binomial distribution and hence find its mean and variance. 

5. Derive mgf of Poisson and hence derive its constants.   

6. State and prove memory less property of geometric distribution. 

7. Define multinomial distribution. 
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8. Derive the moment generating function and hence find its mean and variance of 

geometric distribution. 

9. Define negative binomial distribution and derive its moment generating function and 

constants. 

10. Bring out the relationship between binomial and Poisson distributions. 

11. Define characteristic function.  Also, state its properties. 

12. Define moment generating function.  Also, state and prove its any two properties. 

13. Define discrete uniform distribution and derive its constants. 

 

****** 
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Unit – III 

Continuous Distributions 

 

3.1 Introduction 

3.2 Uniform Distribution 

3.3 Normal Distribution 

3.4 Cauchy Distribution 

3.5 Lognormal Distribution 

3.1 Introduction 

 In this unit, several parametric families of univariate probability density functions are 

presented.  Also, mean, variance, moments, moments generating functions and characteristic 

functions of some continuous distributions are discussed elaborately.   

 

3.2 Uniform Distribution (or Rectangular distribution) 

Definition  

 A random variable X is said to have a continuous rectangular (uniform) distribution 

observes an interval (a, b)  

i.e., )ba(  , if its pdf is given by, 











otherwise

bxaif
abbaxf

,0

,
1

),;(  
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Remarks: 

1. a and b (a<b) are the two parameters of the distribution. The distribution is called 

uniform distribution over an interval (a, b) since it assumes a constant (uniform) value 

for all x in (a, b). 

2. The distribution is also known as rectangular distribution, since the curve y = f(x) 

describes a rectangle over the x-axis and between the ordinates at x = a and x = b. 

3. A uniform or rectangular variate X on the interval (a,b) is written as : X ~ U[a , b] or 

X ~ R[a, b] 

4. The cumulative distribution function F(x) is given by: 




















bx,1

bxa,
ab
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)x(F  

Moments of Uniform Distribution 

 Let  X ~ U[a,b] 
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In particular, 
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              2)ab(
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MGF of Uniform distribution 
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Characteristic function 
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Example 1: 

 If X is uniformly distributed with mean 1 and variance 4/3, fine p(X<0). 

Solution: 

 Let X ~ U[a,b],  

So that bxa,
ab

1
)x(p 


  

Given mean = 1 and variance = 
3

4
. 

Mean 2ab1)ab(
2

1
  and Var(x)

3

4
)ab(

12

1 2   

 
3

482
 ab  

  16
2
 ab  

4 ab  

Solving, we get a = -1 and b = 3; (a<b),   

3x1;
4

1
)x(p   

dx)x(p)0X(P
0

1




  

  
4

1
x

4

1 0

1    

Example 2: 

 If X has a uniform distribution in [0, 1], find the distribution of -2 log X. Identify the 

distribution also. 

Solution: 

 Let Y = - 2 log X. 

Then the distribution function F of Y is given by: 
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3.3 Normal Distribution or Gaussian Distribution 

 A random variable X is said to follow a normal distribution if its pdf is given by, 
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Here, f(x) is a legitimate density function as the total area under the normal curve is unity. 

To prove that total probability is one, 
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We know that dxexn xn 
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f(x) is a legitimate density function. 

Mean and Variance of N(µ,σ
2
) 

 If X ~ N(µ,σ
2
), then E(X) = µ and V(X) = σ

2
. 

Proof 
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Mean = E(X) = µ 

    To find variance, 
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Put t
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2t dt = dy 
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Standard Normal Variate or Standard Norman Distribution 

 If X follows normal distribution N(µ, σ
2
),then 






x
z is a standard normal variate with 

mean zero and variance one and is denoted by N(0,1). 

The pdf of standard normal variate is given by, 
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MGF and Mean and Variance 
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      (the total probability of Standard Normal is one) 
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    The coefficient of 
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The first four Moments about Origin 
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The First Four Central Moments 

We know that, 0,1 10    

By the definition of central moments, 
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The r
th

 Central Moments of Normal Distribution 

 If X is a normal variate then the all odd order central moments does not exists, but all 

even order central moments exists. 

Proof 

 By the definition of r
th

 order central moment 
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Case (i) 

 If r is an odd integer, r = 2n+1. 

From the equation (1), 
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Case (ii) 

 If r is an even integer, r = 2n. 
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After simplification, we get, 
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and so on. 

The Recurrence relations of Central Moments 

We consider the equation (2), 
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Put n = n-1, 2n = 2(n-1) = 2n-2 
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which is the recurrence relation of the even order central moment of normal distribution. 

Additive Property (or) Reproductive Property: 

 If nXXX ...,, 21 are n independent normal variates with mean n ...,, 21 and variance
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1 ...,,, n  respectively,then i
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i xa
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is also a normal variate with mean i

n

i

ia 
1

 and 

variance
2

1

i

n

i

ia 


. 

Proof 

 The mgf of normal distribution is, 
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Which is the mgf of normal distribution with mean ii xa and variance
2

iia  . 
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3.4 Cauchy Distribution 

 Let us consider a roulette wheel in which the probability of the pointer stopping at any 

part of the circumference is constant. In other words, the probability that any value of  lies in 

the interval [-π/2, π/2] is constant and consequently  is a rectangular variate in the range [-π/2, 

π/2] with probability differential given by: 

  


 


otherwise

d
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,0

2/2/,)/1(
)(


  

 Let us now transform to variable X by the substitution : x = r tan  dsecrdx 2
. 

Since 2/2/  , the range for X is from  to . Thus the probability differential of X 

becomes: 

 2sec
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1
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dx
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   22 r/x1r
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.
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22 rx

dx
.

r


 ;    x  

 In particular if we take r = 1, we get, 
2x1

1
.

1
)x(f


 ;   x  

 This is the pdf of a standard Cauchy variate and we write )0,1(C~X . 

Definition: 

 A random variable X is said to have a standard Cauchy distribution if its pdf is given by: 

  ,
)x1(

1
)x(f

2x


  x    ………………….(1) 

and X is termed as standard Cauchy variate. 

More generally, Cauchy distribution with parameter  and µ has the pdf., 

   
,

)y(
)y(g

22y



 0;y   ………………….(2) 
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and write X ~ C(, µ). But putting X = (Y - µ)/ in (2), we get (1),hence if Y ~ C(, µ) then X 

= (Y - µ)/ ~ C(1,0). 

Characteristic function of Cauchy distribution 

 If X is a standard Cauchy variate then 
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 To evaluate (3), consider standard Laplace distribution  
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Since )t(1 is absolutely integrable in ),(  , we have by Inversion theorem, 
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On interchanging t and z, we have 
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From (3) and (4) we get, 
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Additive property of Cauchy distribution 

 If X1 and X2 are independent Cauchy variateswith parameters (1, µ1) and (2, µ2) 

respectively, then X1 + X2 is Cauchy variate with parameters ((1+2, µ1+ µ2). 

Proof: 

   )2,1j(,ttiexp)t( jjx   

 )t()t()t(
2x1x2x1x    

      titexp 2121   

and the result follows by uniqueness theorem of characteristic functions. 

Moments of Cauchy distribution 
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 Although the integral dz
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 , is not completely convergent, that is 

dz
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lim


, does not exist, its principal value, viz, ,lim
22
dz

z

z
n

n
n 


 

 exists and is equal to 

zero. Thus, in the general, the mean of Cauchy distribution does not exist. But, if we 

conventionally agree to assume that the mean of Cauchy distribution exists (by taking the 

principal value), then it is located at x = µ. Also, obviously, the probability curve is symmetrical 
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about the point x = µ. Hence for this distribution, the mean, median, mode coincide at the point x 

= µ. 

  ,dy
)y(

)y(
dy)y(f)y()Y(E
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2
22
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which does not exist since the integral is not convergent. Thus, in general, for the 

Cauchy’s distribution the moment µ,  2r   do not exist. 

Remark:  

 The role of Cauchy distribution in statistical theory often lies in providing counter 

examples, e.g., it is often quoted as a distribution for which moments do not exist. It also 

provides an example to show that )t()t()t(
2x1x2x1x    does not imply that X and Y are 

independent. 

 Let X1, X2,…,Xn be a random sample of size n from a standard Cauchy distribution. Let 





n

1i
x .n/XX  Since E(Xi) does not exist. )X(E does not exist and the definition of an unbiased 

estimate does not apply to X , Cauchy distribution also contradicts the weak law of large 

numbers. 

Example 1: 

 Let X have a standard Cauchy distribution. Find a pdf for X
2
 and identify its distribution. 

Solution: 

Let X has a standard Cauchy distribution, its pdf is: 
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 The distribution function F(.) of Y = X
2
 is: 
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 The pdf gx(y) of Y is given by: 
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This is the pdf of Beta distribution of second king with parameter 
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3.5 Log Normal Distribution 

Definition 

 The positive random variable X is said to have log normal distribution if logeX is 

normally distributed. Let Y=logeX is normally distributed. 

 Let X be a positive random variable and let a new random variable Y=logeX. If Y has a 

normal distribution, then X is said to have a log normal distribution. 

For x > 0: 

 The cdf is 

)Pr()( xXxF   

    )logPr(log xX   

    )logPr( xY   

    




x

dyyf

log

)(  



110 
 

    









 




x y

dye

log

2

1
2

2

1 




 

Let 
u

ey log  

du
u

dy
1

  

0,  uy  

xuxy  ,log  









 




x u

du
u

exF
0

log

2

1
1

.
2

1
)(

2






 









 




x u

du
u

e
u

xF
0

log

2

1
1

.
2

1
)(

2






 

For 0)(,0  xfu  




















 


0;0

0;
2

1
)(

2
log

2

1

u

ue
u

xf

u






 

Which is the pdf of log normal distribution. 

Note: 

 If ),(~ 2Nx ,then xey   is called lognormal random variable. Since its logarithm 

Xey x  loglog is a normal random variable. 

Moments and hence mean & Variance 

 By the definition of r
th

 moments about origin, 

)( rr XE  

      ryeE   y= log x 
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yr

] 
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          = MY (r) 
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To find mean and variance: 

Put r = 1 in (1), we get 
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    Var(X) =  12 22   ee . 

Exercise 

1. Define uniform distribution and derive its mean and variance. 

2. Draw the curve for the distribution function of the normal distribution. 

3. Define Normal distribution. Derive its MGF, Mean and Variance.  Also, Derive 

its first four moments about origin. 

4. Define Cauchy distribution. Give its expectation value. 

5. Define lognormal distribution and derive its constants. 

6. Derive mgf of lognormal distribution and hence find its mean and variance.  
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Unit – IV 

Continuous Distributions (Continuation) 

 

4.1 Introduction 

4.2 Exponential Distribution 

4.3 Gamma Distribution 

4.4 Beta Distribution of first and second kinds 

4.1 Introduction 

 In this unit, several parametric families of univariate probability distributions are 

presented.  Also, mean, variance, moments, moments generating functions and characteristic 

functions of some continuous distributions are elaborately explained.   

4.2 Exponential Distribution  

 The exponential distribution has been used as a model for lifetimes of various things. The 

length of the time interval between successive happenings can be shown to have an exponential 

distribution, provided that the number of happening in a fixed time interval has a Poisson 

distribution. 

(i) Exponential is a special case of the Gamma distribution. 

(ii) Also, sum of independently identically distributed exponential random variables is 

gamma distribution. 
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Definition:  

A continuous r.v X is said to follow a exponential distribution with parameter λ>0 if its pdf is 

given by, 

  xwhereexf x 0,)(   

Moments, Mean and Variance 

 By the definition of r
th

 moments about origin, 
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 which is the r
th

 raw moments of Exponential distribution. 

Put r=1;      
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MGF and hence Mean and Variance 

By the definition of mgf, 
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 which is the mgf of exponential distribution. 

To find Mean and Variance: 



115 
 

t
tM X






)(  





t

1

1
 

1
t

1













  

r

r

3

3

2

2 t
...

ttt
1











  

!r

t!r
...

!3

t!3

!2

t!2

!1

t1
1

r

r

3

3

2

2 









  

The Coefficient of Meanis
t




 1

1

!1



 

The Coefficient of 


 22

2 2

!2



is

t
 

Therefore, variance 
2

122 




 




   

222

112


  

2

1
)(

1


 XVandMean  

Memory less Property of Exponential Distribution 

Statement 

 Let X be exponential distributed r.v with parameter λ. Then any two positive integer m 

and n, )()|( nXPmXnmXPr  .  

That is, Let X be the life time of a given component, then the conditional probability that 

the corresponding until last m+n time units given that, it has lasted m time units, is same as 

initial probability of lasted n time units.  
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Another way, we can say that an “old” functioning component has the some life time 

distribution as a “new” functioning components or that the component is not subject to fatigue or 

to wear. 

Proof 
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Given X is an exponentially distributed r.v 
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Median of Exponential Distribution 

 The median is defined as the value of the variable which divides the total area into two 

equal parts. The median is defined is, 
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2log1log  md  

2log md  

2log
1


 md . 

4.3 Gamma Distribution (Two Parameter form or Erlang Distribution) 

Definition 

 A continuous random variable X is said to Erlang distribution or Gamma distribution λ>0 

and k>0 if its pdf is given by, 
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Note: 

Prove that the total probability of Gamma distribution is 1. 

To prove 
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MGF and hence Mean and Variance of Gamma Distribution 

By the definition of mgf, 
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To find Mean and Variance 
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Moments and hence Mean and Variance 

By the definition of r
th

 moments about origin, 
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To find Mean and Variance 

Put r=1 in (1), we get 
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Put r=2 in (1), we get 
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Additive Property (or) Productive Property 

Statement 

 The sum of a finite number of independent Erlang variables is also a Erlong variable, that 

isif nXXX ,...,, 21 are independent Erlang variables with parameters      nkkk ,,...,,,, 21  ,then 

nXXX  ...21  is also an Erlang variable with parameter  nkkk  ..., 21 . 

Proof 

The mgf of Erlang distribution is
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We know that, 
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which is the mgf of Erlang distribution with parameters

 nkkk  ..., 21 . 

The sum of n independent Erlang variables is also an Erlang variable. 

 

Simple Gamma Distribution (or) Simple Erlang Distribution (One Parameter Form) 

 When λ=1 the general Gamma distribution (2 parameters) form is called one parameter 

form or simple Gamma Distribution. 

Definition 

 A continuous random variable X is said to follow simple Gamma distribution with 

parameter k, if its pdf is given by, 
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Note  

When k=1 the general Gamma distribution reduces to exponential distribution 
xexf  )(  with parameter λ. 

MGF and hence Mean and Variance of Simple Gamma Distribution 

By the definition of mgf, 
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To find Mean and Variance 
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Relationship between a Gamma variate and normal variate 

Let X be a normal variate with parameters   and σ
2
. Then the variate Y given by the 

transformation 
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Y becomes a Gamma variate with parameter
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Proof 

 Given X be a normal variate with parameter   and σ
2
. Then its pdf is, 
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Which is the pdf of simple Gamma distribution with parameter
2

1
. 

Theorem 1 

 Show that under certain conditions simple Gamma distribution tends to normal 

distribution. In other words, show that the limiting form of Gamma distribution is normal. 

Proof 

 Let X be a Gamma variate with parameter k, then its pdf is, 
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Mean and Variance of the Gamma variate are equal and given by k. 

Mean = V(X) =k. 

Then the standard gamma variate is defined as 
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MGF of z is,  
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Taking logarithms on both sides,  
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Taking limit k on both sides we get, 
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which is the mgf of standard normal variate. Therefore, limiting case of standard Gamma variate 

becomes normal variate. 

4.4 Beta Distribution of first and second kinds 

Beta distribution of first kind 

Definition 

 A continuous r.v X is said to follow a beta variate of first kind if its pdf is given by, 
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This distribution is called beta distribution of first kind with parameters m and n. 

Since the total probability is equal to 1, we have  
1
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Note 

The MGF for the beta distribution does not have a simple form. However the moments 

are readily found by using their definition. 

Moments of Beta distribution of first kind 

By the definition of r
th

 moment about origin is given by, 
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We know that 
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which is the r
th

 moment about origin. 

To find Mean and Variance 

Put r=1 in (1), we get 
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Beta distribution of second kind 

Definition 

 A continuous r.v X is said to be beta variable of second kind if its pdf is given by, 
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This distribution is called beta distribution of second kind with parameter m and n. 

Since the total probability is 1, we have 
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Moments of beta distribution of second kind 

By the definition of r
th

 moment about origin, 
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To find Mean and Variance 

Put r=1 in equation (1) we get, 
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Put r=2 in equation (1) we get, 
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Problem 1: 

Let X and Y be the two independent Gamma variate with parameter m and n respectively. 

Then the variates U=X+Y and 
YX

X
V


 for independent and the variable U is the Gamma variate 

with parameter m+n and V is the  variate of first kind with parameter m and n. 

Solution: 

 Given X and Y be the two independent gamma variates with parameter m and n. Then 

their probability density functions are, 
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Also given X and Y are independent, the joint probability function can be written as, 
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Given 0≤x≤∞, 0≤y≤∞.  

When X=0, UV=0  

u=0 or v=0.  
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When Y=0, u(1-v) =0 

u=0 or v=1 

When x=∞, uv=∞  

u=∞ or v=∞. 

u=0 to ∞ and v=0 to 1. 

The joint density function of U and V is from equation (1) is, 
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U and V are independent. Also U is gamma variate with parameter (m+n) and V is a beta 

distributions of first kind. 

Exercise 

1. Derive the moments of beta distribution of first kind. 

2. Derive the moments of Gamma distribution and hence find its mean and variance. 
 

3. Define exponential distribution and state its constants. 

4. Establish the relationship between a gamma variate and normal variate. 

5. Derive the median of exponential distribution. 

6. Derive the mean and variance of gamma distribution and comment on its additive   

property. 

 

7. Derive the r
th

raw moments of beta distribution of second kind and find  its mean and      

variance. 
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8. Let X and Y be two independent gamma variate with parameter m and n respective. Then 

prove that  the variate U = X+Y, 
Y

X
V  are independent and U is a gamma variate with 

parameter m+n and V is a beta variate of second kind with parameters m and n. 
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Unit – V 

Sampling Distributions 

 

5.1 Introduction 

5.2 Chi-square Distribution 

5.3 Student’s t Distribution 

5.4 F-Distribution 

5.1 Introduction 

The entire large sample theory was based on the application of Normal test.  However, if the 

sample size n is very small, the distribution of the various statistics, e.g., 
n/

X
Z




  or            

Npq/)nPX(Z    etc., are far from normality and as such normal test can not be applied if n 

is small.  In such cases exact sample tests, pioneered by Gosset (1908) who wrote under the pen 

name of Student, and later on developed and extended by R.A.Fisher (1926), are used. The exact 

sample tests can be applied to large samples.  In all the exact sample tests, the basic assumption 

is that the populations from which samples are drawn are normal, that is parent populations are 

normally distributed.   

5.2 Chi-square distribution 

                 The square of a standard normal variance is known as χ
2
 – variate with one degrees of 

freedom. In general, if X1, X2, …, Xn are n independent normal variables with mean µi and 

variables σi
2
, then 
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 variate with 1 degrees of freedom. 

Definition 

 A r.v X is said to have a χ
2
 distribution with n degrees of freedom if its pdf is given by 
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Note: 

 When 
2

n
  and λ=2,the gamma distribution becomes 2 distribution. 

MGF, Mean and Variance 

 By the definition of MGF, 
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Moments, Mean and Variance 

By the definition of r
th

 moment about origin, 

       r
r XE


  

      




 dx)x(fx r  

      dxex
n

x

xn

n

r 2
1

2

20

2
2

1 












   

      dxex
n

x
r

n

n

2
1

2

0 2

2
2

1 




















  

      
r

nn

r
n

n 
































22

2

1

2

2
2

1
 

      



















 r
n

n

r

n

n 2
22

2
2

1
2

2

 

      



















 r
n

n

r

n

n 2
22

2
2

1
2

2

 

      
























2

2
2

n

r
nr

r  

Put r=1, 
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Cummulants of 
2 distribution 

By definition of cummulants 
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Hence k1, k2, k3, k4 are first four central moments. 

 

Limiting form of χ
2
 – distribution  

 Consider a χ
2
 – variate with n – degrees of freedom. It is known that the mean and 

variance of χ
2
 – variate respectively given by E(X

2
) = n and V(X

2
) = 2n 

 Let us define the standard χ
2
 – variate is 
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which is MGF of Standard normal variate. Hence by uniqueness theorem, the 

variable z is a standard normal variate.So the limiting form of χ
2
 distribution is normal 

distribution. 

Applications of χ
2
 distribution 

(i) It is used to test if the hypothetical values of population variance is σ
2
 = σ0

2
. 

(ii) It is used to test the goodness of fit. 

(iii) It is used to test the independence of attributes. 

(iv) It is used to test the homogeneity of independence estimates of the population 

correlation coefficient. 

5.3 Student’s t – distribution 

Definition 

 Let x1, x2, …,xn be a random sample of size n from a normal population with mean µ and 

σ
2
. Then the t-statistic is defined by, 
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Derivation of Student’s t – distribution 

 Consider a normal population with mean µ and variance σ
2
,where σ

2
 is unknown. 
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 Let x1, x2, …,xn be a random sample of size n from this normal population. Then the 

student t statistic is defined by, 
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Also we know that, the sample variance  
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 in (1) is a ratio of two independent χ
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 variates with one and (n-1)degrees of freedom. 

 Also we known that, the ratio of two independent χ
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variates is a β – variate of second 

kind with parameter
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After simplification, we get, 
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Which is the pdf of t-distribution with γ = n-1 degrees of freedom. 

Limiting case of t – distribution  

 The density function of t – distribution with n degrees of freedom is, 
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After simplification and applying limits, we get 
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which is the pdf of standard normal distribution. Therefore limiting form of t-distribution is 

normal. 

Constants of t-distribution 

 Prove that for t – distribution, all odd order moments vanished and even order moments 

exists. That is, 

i) ,..2,1,0012  rforr  

ii) 
))...(4)(2(
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Proof: 

 Since f(t) is symmetrical about the line t=0, all the moments of odd order about origin 

vanish (i.e.) ,..2,1,0012 


 rforr  

 In particular, Mean


01 . Hence the central moments coincide with moments about 

origin. 
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,..2,1,0012   rforr  

The moments of even order are given by, 
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When t=0, y=1; when t=∞, y=0 
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By beta distribution of first kind,    
 

1

0

11 1, dxxxnm
nm  






















2

1
r,r

2

n

2

n
,

2

1

n r

r2
 






































































2

1

2

2

1

2

22

1

22

1
rr

n

rr
n

nn

n r

 




























































2

1

2

2

1

2

22

1

22

1 n

rr
n

n

n

n r

 



149 
 









































22

1

2

1

2

n

rr
n

n r

 












































































r
n

r
nnn

rr

r
n

n r

22
...2

2
1

22

1

2

1

2

1

2

3
...2

2

1
1

2

1

2
 

  

    rnnn

rrn

r

r

r

2...42
2

1

1.3...3212
2

1





  

  
    rnnn

rrn r

r
2...42

1.3...3212
2




  

In particular, put r=1, 
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Put r=2, 
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And so on.  

2
)(0 21




n

n
XVarandMean  . 

Assumptions of t-distribution 

1. The parent population from which the sample is drawn is normal. 

2. The sample observations are independent. (i.e.) the sample is random. 

3. The population standard deviation σ is unknown. 

Applications of t-distribution 

The t-distribution has a wide number of applications in Statistics. 

1. It is used to test if the sample mean  x differs significantly from the hypothetical value µ 

of the population mean. 

2. It is used to test the significance of the difference between two sample means. 

3. It is used to test the significance of an observed sample correlation coefficient and sample 

regression coefficient. 

4. It is used to test the significance of observed partial and multiple correlation coefficients. 

Note: 

 When 1 , Student’s t-distribution reduces to Cauchy distribution. Therefore the pdf of 

Student’s t-distribution is, 
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, where is the pdf of standard Cauchy distribution. 

Hence, when 1 Student’s t-distribution reduced to standard Cauchy distribution. 

5.4 F - Distribution 

Definition 

 If X and Y are two independent 2 variates with 
21 nandn degrees of freedom 

respectively, then F-Statistic is defined by,
2

1

nY

nX
F  . 

 In other words, F-distribution is defined as the ratio of two independent 2 variates 

divided by their respective degrees of freedom and it follows Snedecor’s F-distribution with

 21,nn  degrees of freedom with probability function given by, 
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Derivation of F-distribution: 
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 which is the probability function of F-distribution. 

Constants of F-distribution r
th

 order moments about origin 

 By the definition of r
th

 moments about origin, 
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Put r=1 in equation (1), 
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Put r=2 in equation (1), we get, 
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Exercise 

1. Define central 2 distribution. 

2. Give the applications of student’s t-distribution. 

3. Define F distribution. 

4. Prove that limiting case of t-distribution is a normal distribution. 

5. Define central 2 distribution and derive its moment generating function cumulants 

constants. 

6. Prove that limiting form of 2 distribution is a normal distribution     

7. Derive the probability density function of student’s t-distribution. 

8. Find the constant of t-distribution. 

9. State applications of Chi-square distribution. 

10. Derive the constants of central F distribution. 

11. Derive the probability function of central F distribution. 
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