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Random Variables and Expectations
1.1 Introduction
1.2 Random Variables
1.3 Two dimensional Random Variables
1.4 Applications of Jacobian

1.5 Mathematical Expectations

1.1 Introduction

In many experiments, we are interested not in knowing which of the outcomes has
occurred, but in the numbers associated with them. For example, when n coins are tossed, one
may be interested in knowing the number of heads obtained. When a pair of dice is tossed, one
may seek information about the sum of points. Thus, we associate a real number with each
outcome of an experiment. In other words, we are considering a function whose domain is the set
of possible outcomes and whose range is a subset of the set of real numbers. Such a function is
called a random variable (r.v).

Intuitively by a r.v, we mean a real number X connected with the outcome of a random
experiment E. For example, if E consists of two tosses of a coin, we may consider the r.v which
is the number of heads (0, 1 or 2).

Outcome : HH HT TH TT
Value of X : 2 1 1 0

Thus to each outcome ®, there corresponds a real number X(w) . Since the points of the

sample space S correspond to outcomes, this means that a real number, which we denote by
X(w), is defined for eachw e S.

1.2 One dimensional Random Variable
Definition
A one dimensional r.v is a function that assigns a real number to each and every

outcomes of a sample space.



There are two types of r.vs,
Q) Discrete random variable
(i) Continuous random variable
(i) Discrete random variable
If X is the r.v which can take a finite number or countably infinite number of values, X is
called a discrete r.v.
For example,
1) The mark obtained by a student in an examination, the possible values are 0, 50, 85, 90.
2) Number of students absented in a particular period.
3) Number of success in n trials.
4) Number of accident in a day in a particular place.
5) Number of telephone calls per unit time.
Probability function or probability mass function
If X is a discrete r.v, which can take the values X1, Xz, ...x, such that P(X=x;)=pithen p; is
called the probability function or probability mass function (pmf), provided the following
conditions are satisfied:

i) p; > 0forall i.
N n
ii) >.pi=1.

i=1

Probability distribution
The collection of pairs {x;, pi} is called probability distribution of random variableX,
which is displayed as follows:

Xi Pi
X1 P1
X2 P2
X3 P3




(ii) Continuous random variable
If X can take all the values (that is infinite number of values) in an interval, then X is
called a continuous r.v.
For example,
1. Age, height, weight etc.,
2. The density of milk taken for testing at a farm.

3. The operation time between two failures of a computers.

Probability density function
If X is a continuous r.v such thatP,[a < x < b](or) P{x —%dx <X<x +%dx} =f(x)dx,

then f(x) is called probability density function of x provided f(x) satisfying the following
conditions:
0) f(x)>0vxeR.

(i) Tf(x)dx =1,

Cumulative distribution function
If X is a r.v which is either discrete or continuous, then P(X<x) is cumulative distribution
function (cdf) or distribution function (df) of X and it is denoted by F(x).
S F(X) =P[X<X].
If X is discrete, then P[X < x]= 3 p(x)

X<x

If X is continuous, then P[X <x]= [f(x)dx.

—00

Note that, F(—) = jf(x)dx =0 (there is no chance for single value in a continuity interval)

—0

Similarly, F() = [f(x)dx =1. (By the total probability)



Note:
If X is discrete r.v, then expectation of a r.v X is defined as E(x) = Yx P(x). If X is a

continuous r.v., then E(x) = [xf (x)dx .

Problem 1:
If the r.v X takes values 1, 2, 3 and 4 such that 2P(x=1)=3P(x=2)=P(x=3)=5P(x=4). Find
the probability distribution and cdf of x.
Solution:
Given X is a discrete r.v( i.e., the values are X=x=1, 2, 3, 4).
Let 2P(x=1)=3P(x=2)=P(x=3)=5P(x=4) = k

= 2P(x:1):k:>P(x:1):g

k

= 3P(X:2):k:>P(X=2):3

= P(x:3):k:>P(x:4):%.

Since, the total probability is 1,

E+E+k+5:1
2 3 5
e . 30
Simplifies the above equation we get, k = v
.-.P(x=1)=5= 30 :E
2 61x2 61
3 61x3 61
30
Px=3)=k=—
(x=3) oL
5 61x5 61

So the probability distribution is



X=X p(x)
1 15/61
2 10/61
3 30/61
4 6/61

which is the required probability distribution.
To find cdf:-

when x<1, F(x) =0

when x<1, F(x)=15/61

when x<2, F(x)=10/61+15/61=25/61

when x<3, F(x)=30/61+10/61+15/61=55/61
when x<4, F(x)=61/61+61/61=1.

Problem 2:

A r.v X has the following probability distribution:
X=x -2 -1 0 1 2 3
p(x) 01 |k 02 |2k 03 |3k

(@) Find k (b) Evaluate P(X<2) and P(-2<x<2) (c) Find the cdf of X and
(d) Find the mean of X.

Solution:
(@) Since Y P(x)=1

0.6 +6k=1
K =%
.. The probability distribution is
X=x -2 -1 0 1 2 3
p(x) 1/10 | 1/15 | 2/10 | 2/15 | 3/10 | 3/15

P(x<2) =P[x=1,x=0,x=-1,x=-2]

7



= P(x=1) + P(x=0) + P(X=-1) + P(x=-2)
2 2 1 1 1
“15°10°15°10 2
P[-2<X<2]=P[X=1, X=0, X=-1]
=P[X=-1].P[X=0].P[X=1]
=1/15x2/10x2/15
=2/15.
Find the cdf of x:-
when x <-2,f(x) =0

X p(x) F(X)=P[X=x]
-2 1/10 1/10

-1 1/15 1/6

0 2/10 11/30

1 2/15 1/2

2 3/10 4/5

3 3/15 1

When x >3, F(x) = 1.
(b) To find the mean of x:-
E(X) =>xP(x)

:—2><i—1><i+0+1><£+2><i+3><i
15 15 10 15
16
E(x) = 15
Problem 3:
A r.vX has the following probability distribution:
X 0 1 2 3 4 5 6 7
p(x) |0 k 2k |2k |3k |K® [2K® |7K*+k

Find (i) value of kK (ii) Pr{1.5<x<4.5|x>2} (iii) The smallest value of A for which

Pr{ x<\} >% :




Solution:

(i) To find k:
O+k+2k+2k +3k+k?®+2k*+7k* +k =1
10k* + 9k -1 =0

k:iork:-l
10

1 .
k== (since 0<P(x) <1
10( (x)<1)

.. The probability distribution is

X 0 1 2 3 4 5 6 7
1 2 2 3 1 2 17

PO [0 | | Sl S ]
10 10 10 10 100 | 100 | 100

ii)Pr{15<x<45|x>2}

P(ANB)

We know that, P(A|B) =
P(B)

,P(B)#0

_ PL5<x<45)nx>2
P(x>2)

2 3
- + -
10 10
2 3 1 2 17
—t———+——+
10 10 100 100 100

S
=

5
S Pr{1.5<x,45/x>2} =

(iii) Pr{ x<\} >%

by trail,
puth =0,1,2,...
P(x<0)=0

P(x£1)=%=0.1




P(x<2)= 3. =0.3
10
5 1
PX<3)=—==
(x<3)=75=7
P(x<4)= % 0.8

The smallest value of A is 4.

Problem 4:

If f(x)= xe 2 ;x=0
0 ;x<0

(a) Show that f(x) is a pdf of a continuous r.v (b) Find its distribution function of f(x).

Solution:
(@) If f(x) is a pdf. Then
(i) f(x)>0 forall x

(i) I dx 1

Obviously f (x) = x.e% ,X >0 is a positive
- P(x) >0vx

i)

j f (x)dx = j f(x)dx+j f (x)dx

—0 —00

2

)
J' 2
0

2

1
Putt:%:xz :2t,dt=%2xdx:x=\/§t2

when x=0, t=0, x=00, t=00. There is no changes in the limits.

10



. . 1
[ f(x)dx = [v2 tze —L _qt

° J2 t2
Tf(x) dx =1
- f(x) is pdf.

b) To find df,
Given f(x)= xe 2 x>0
0 X<0

SF(X)=P(X £x) = jf(x)dx

—00
-2
2

dx

Xe

O = X

XZ
Put t:?dt:xdx

2

Whenx:O,t:O;x:x,t:X?.

%2

L F(x) = f eldt
0

—X2

F(x)=1-e

_x2

. The distribution function is F(x) ={1-¢e 2 ;x2>0.
0 ;x<0

Problem 5:
If the density function of a continuous r.v X is given by

ax 0<x<1

a 1<x<2
F(x) =

3a—ax;2<x<3

0 otherwise

11



(i) Find the value of ‘a’

(i) Find the cdf of x

(iii) If x5, X2 and x3 are three independent observations of x, what is the
probability that exactly one of these three observations is greater than 1.5?

Solution:
)} To find a,

Since [f(x)dx=1,

:jwdx+j'adx+j3a—axdx:1
0 1 2

2\! 2\3
—al X | ra(xP+a 3x—2—| =1
2 0 2 2

After simplification we get,a = %

i) To find the cdf of x
F(x) = P(X<x)

S F(x) = Tf (x)dx

—00

When x <0, F(x) =0

X
When 0 < x <1, F(x) = [f(x)dx
0

XX
= ‘([de

2
FO) =",

When 1 <x <2, F(x) = [f(x)dx
0

12



1X X
=j—dx+jadx

O2 1

L txdx 4124
ZED;X x+{§ x}

X 1
F(x)=—-=
) 2 4

When 2 <x <3, F(x) = [f(x)dx

= [f(x)dx

0

ix 21 X[S X)d
=[=dx+|=dx+ || =—= [dx
Lol

Whenx >3, F(x)=1

0 'whenx <0

X4

T :when 0<x <1

F(x) = 5—l;when1£x£2

4
§x—X——§;when2£ X<3
2 4 4 _

1 otherwise

iii)  The pmf of binomial distribution
P(X=x)=nC,P*q"™

Heren=3

Probability of success, p = %

13



Probability of failure, q = %

Pr(exactly greater than 1.5) = P(x>1.5)

1 3-1
o190 22

HX>L&=§.

1.3 Two Dimensional random variables
Definition
Let S be a sample space which is associated with the random experiment E. Let x = x(s),
y = y(s) be the two functions each assigns a real number to each outcomes s € S. Then the pair
(x,y) is called two dimensional r.vs.
There are two types of two dimensional r.vs.
1) Discrete two dimensional r.v

2) Continuous two dimensional r.v.

1) Discrete two dimensional r.v
If the possible values of (x,y) is called two dimensional discrete r.v. When (X,y) is the
two dimensional discrete r.v, the possible values of (X,y) may be represented as (Xi, y;), i = 1, 2,

3,....m...andj=1,2,3,...,n ...

2) Continuous two dimensional rv
If (X, y) can assume all the values in a specified interval or range R with the XY plane, (X,
y) is called the two dimensional continuous r.v.
Joint probability mass function of (x, y)
If (x,y) is a two dimensional discrete r.v such that P(X = xi, Y =Y;) = Pj; then Pj; is called
pmf or probability function of (X, y), provided the following conditions are satisfied
(i) P =0Vi,j

14



(i) X3Py =1.
joi

Definition of Joint probability distribution

The collection of triples {x;, y;, P;j},i=1,2,...,m,...j=1,2,..

joint probability distribution of (X, y).

Definition of Joint probability density function

., n,...arecalled the

If (x, y) is the two dimensional continuous r.v  such that

Pr{x—%dxgx §x+%dx and y—%dst £y+%dy}= f(x,y)dxdy. Then f(x, y) is said to

be joint pdfof (x,y) provided the following conditions are satisfied:
M f(x,y)>20V (x,y)eR

(i) Of Tf(x,y)dxdyzl.

Definition of Joint cumulative distribution function
If (x, y) is the two dimensional r.v(discrete
F(x,y)=P(X <x and Y <y)is called cdf of (x,y).
If (X, y) is two dimensional discrete r.v then
F(x,y)=P(X<xandY<y)=>>P,
vay xox
If (x, y) is a two dimensional continuous r.v then

F(x,y)=P(X<x and YSy)zof off(x,y) dx dy

—00 —00

Note:
(i) F(x—0)=F(-,y)=0
(ii) F(—o0,00)=1.

Marginal probability distribution for the discrete case
Definition

or continuous), then

P(X=x,Y=y,)=Pr{(X=x and Y =y,(or) (X=x,and Y =y,)(0or)(X =x,and y = y, )or ...}

15



=Pip+Pip+... .+
J
=P =2 Py is called the marginal probability function of x.
j

ie,P(X=x)=) P =P.
]

The collection of pairs {x,,P,*}i=12,..,m,... is called marginal probability distribution
of x. Similarly the marginal probability distribution of y is defined by,
P(Y=vy;) =Zpij = Py
J

The collection of {y;, P+} j=1,2, ..., n, ... is called the marginal probability distribution of'y.

For the continuous case

The marginal density function of X is f, (x) = ff(x,y)dy.

—00

The marginal density function of Y is f, (y) = [f(x,y)dx.

Definition of conditional probability and conditional probability distribution
For discrete case:
P(X=x,and Y =vy,)

P(Y =)

If P(X=x|Y=Y,)=

P. P,
=2 then —L is called conditional probability of X given Y.

P*J' *j

P.

Then collection of pairs {xi PA} is called conditional probability distribution of X given Y.
*

Similarly the conditional probability function of Y given X is defined as

P(X=x,and Y =Y,)

PO =y, X =x) === DS

16



P.
The collection of pairs {yj,Pl} is called conditional probability distribution of Y given X.

I*
For continuous case:

f(xy)
f, (¥)

Conditional density function of X given Y is F(x|y) =

Similarly F(y|x) = ff(x’ Y)

which is called conditional density function of Y given X.
X

where f(X, y) is the joint density function

f. (x) - marginal density function of X

fy (y) - marginal density function Y

Definition of Independent r.v or stochastic r.v
If (X, Y) is a two dimensional discrete r.v such that P(X= xi| Y=y;)=P(X=x;)
i.e., P(X=x; and Y=y;j) = P(X =x;) . P(Y=y))
—>Pjj = Pix . Ps
i.e., Pij=Pix. P+V iand]j.
Then X and Y are called independent random variable.
Similarly, If X and Y are two dimensional continuous r.v such that

f(x, y) = fx(x) . fv(y)
Then X and Y are called independent r.v.

Problem 1:
For the bi-variate probability distribution of (X, Y) given below find P( X < 1), P(Y <3),
P(X<1,Y<3),P(X<1|Y<3),P(Y<3 <1l)andP(X+Y<4).

Solution:

17



\X\y 1 2 3 2 5 5

0 0 0 o0z 1z s

32 32 32 32

! L L ! ! ! 1

16 16 8 g 5 5

2 1 T T T X B

32 32 64 64 64
px<1)=P(X=1X=0)=| 1+t iyt N fohos i 22,3
16 16 8 8 8 232 2 2

.
PX <D=
P(Y<3)=P(Y=3Y=2Y=1)

1 1 1 1 1 1 1
—+—+— |+ 0+ —+— |[+| 0+ —=+—
(32 8 64} ( 16 32) ( 16 32)

23
64

P(X<1Y <3)=P(X=LX=0,Y=3Y=2Y=]
= O+O+i + i+i+1
32 16 16 8
= 0+0+ 1 i+1+1
32 16 16 8

PX<LY<3)=—
32

P(Y<3)=

P(X<land Y<3) _ %2
P(Y <3) %%4

(X <1|Y <3) =8
23

P(X<1|Y<3)=

P(Y <3 and X <1) _ %2

P(Y <3| X <1)= X <D _Zé

18



P(Y <3|X <T)= .
28

P(X+Y <4)=P(X+Y=1234)=0+ O+i + i+i+i + £+l+i
16 32 16 32 32 8 32

PX+Y <4) =25
32

Problem 2:
The joint pmf of (X, Y) is given by P(x,y)=k(2x+3y), x =0, 1, 2; y= 1, 2, 3. Find all the
marginal and conditional probability distributions. Also find the probability distribution of

X+Y.

Solution:

P(x,y)=k(2x+3y),x=0,1,2;y=1,2,3
The probability distribution of given function is

S 2 3

0 3k 6k ok
1 5k 8k 11k
2 7K 10k 13k

Since XXP(x,y) =1.

=3k + 6k + 9k + 5k + 8k + 11k + 7Tk + 10k + 13k =1

:>k=i
72

Therefore, the probability distribution is

\X\y 1 2 3 P

. 3 |8 |8 |1

72 72 72 72

. |5 (2 oz

72 72 72 72

, |1 |1 B ]

72 72 72 72
|1 [ |3
! 72 72 72




The marginal probability distribution of X is

X P|*
N
72
1 24
72
, |
72

The marginal probability distribution of Y is

Y P+

. |5
72

) 24
12

s | ®
72
Pii _ Pil

The conditional distribution of X given Y =1 is

*j *1

P, 3/72 3 72 1

= X— = —
P, 15/72 72 15 5

P, 5/72 5 72 1

_ —_— X — =

P, 15/72 72 15 3

Py, 7172 7 72 7

= = X— = —
P, 15/72 72 15 15

20




X
Py _ Py

P

1
1 7
i Pi 3

gl <@

Similarly we can find the conditional distribution of X given Y =2

X i
P
0 1
4
1 1
3
2 S
12

The conditional distribution of X given 'Y =2

P.
X J
P,
0 3
33
1 1
33
: 13
33

The conditional distribution of Y given X =0

p.

Y U
P

1 1
6

5 1
3

3 1
2

21



The conditional distribution of Y given X =1

p.
Y U
P
1 S
24
5 1
3
; u
24

The conditional distribution of Y given X =2

P.
Y _v
P
1 7
30
: 10
30
; 13
30

P(X+Y)=P(X+Y =12,34,5)

3 (6 5 9 8 7 10 11) 13
=— | —F— || == |+ == |+ =
72 \72 72 72 72 72 72 72) 72

P(X+Y)=1

Problem 3:

2
The joint pdf of a two dimensional r.v (X, Y) is given by f(X,Y) =xy? +% ,0<x<2,

0 <y < 1. Compute (i) P(X > 1) (ii) P(Y<%j (iii) P(X >1|Y<%) (iv) P(Y<%|X>1] (v)

P(X<Y) (vi)P(X+Y <1). Also (a) Are X and Y independent? (b) Findthe conditional pdf of
X given Y.(c) Find the condition pdf of Y given X.

22



Solution:

(i) P(X>D = ﬁf(x,y) dxdy
01

2
2) 24 2 24
1 2
7
:j(3L+_ y
oL 2 24
3 1
ey, 7,
2 3 24 0
P(X>1):g.

(ii) P(Y <%) Hf(x y)dxdy
%2 2
H(xy +—dedy
00 8

r 2
:}Jé y X_2+X_3 dy
0 24




Il
O eV [
1
<
N
r\J|><M
+
|><
L 1
)
o
<

Il
O eV |
w
<
N
+
|~
N—
[=X
<

(iv) P(Y <%| X >1j= P(Y <%, X >1j|P(X >1)

% _5 2
2%9 24719

P Y<1|X>1 :i.
2 19

(v) P(X<Y)= H f(x,y)dxdy

24



O'LI—‘I
<|\>
a¥
+
[
—
3

Il
O t—
N <.
+
NI
\_E/
<

5 4\l
(¥
[10 96]0

PX<Y) =22
280

(vi) P(X+Y <1) = [ [f(x,y)dxdy

11-y

P(X+Y <1) = [f(x,y)dxdy
00

Also,

(@) Inorder to prove X and Y are independent, we prove
f(xy) = f(x) . fy(y)

2
f(X,Y)=xy2+% 'x=0t02;y=0to1

25



£.00= [F(x.y)dy

—00

1 2

2 X
- 2l
g(xy+8Jy

3 2 \!
3 8 0

2
fx(x):§+%,0£x£2

Similarly, f,(y) = [f(x,y)dx
2 2
= j[xyz +X—}dx
0 8

2 24

0

1
2
fy(y) =2y *+3

2
£, () xf, (y) = (g +%]x(2y2 + %)

=T(X,y)
- X and Y are not independent random variables.
(b) Conditional pdf of X given Y is given by

f(xy)
fy(y)

f(x]y)=

2 X

2y* + =
y 3

3 8xy° +x°

fxiy) =g 6y2+1

(c) Conditional pdf of Y given X is given by

26



8xy
f X)=3.—4—— "
1) 8x +3x°

1.4 Applications of Jacobian

Let us consider the two-dimensional continuous r.vs X and Y having joint pdf f(x,y).

Consider two functions X and Y as U=g(X,Y) and V=h(X,Y) where both the functions are
continuous and are differentiable. Then the Jacobian of the transformation is

ox oy
|J|:‘8(X,y):au ou |
o(u,v) x oy
EYRRY,

The transformation of U and V is done in such a way that X=g™(U, V) and Y= h™(U, V)
exist. In such a case J may be positive or may be negative. Then

k(u,v)=f(x.y) lI.
where f(x, y) is expressed in terms of u and v.

Example 1:
Two-dimensional continuous r.vs X and Y have the joint pdf

7(x2+y2).
f(x,y) =1 PYe€ 1 X20.Y20 ring the pdf of U=+/X2+Y2 .
0, otherwise.

Solution:

Let u=+/x*+y? andv=x. .v>0, u>0. Alsou>0and 0 <v <u.
The Jacobian of the transformation is

27



ou Q
OX OX

}_ o(u,v)
I oaxy)

o
oy oy
Thus the joint pdf of U and V is
g(u,v) =F(x, Y} = dxye <]
= 4xfx2 +y2e YD)
2
_ J4uve® " .u>0,0<v<u
0, otherwise
Hence the density function of U=vX?+Y? is
u \
h(u) =[g(u,v)dv = auev? [vdv = oude’ u>0.
0 0

3 —u2
- h(u) = 2u’e™ ,u=0
0, otherwise

Example 2:

Let x; and x; be two observations of a random sample of size 2 from a population having
density function

-X
f9=1° X0
0, otherwise.

Xy
X; + X,

Find the pdf of U = X3 + X;and V =

Solution:

X ]
Letu=x;+Xsand V = 1 Sincex>0,u>0and0<v<1.
X1 + X,

Here x; = uv, Xo=u(1-v).

The Jacobian of the transformation is
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O0X; 0OX,

3 9(x1,0%5) ou  ou Vv,
o(u,v u -u
(u.v) OX; OX,

ov oV

We have f(x;,X,)=e 012,
2 g(u,v) =F(xq, X,)[J| =ue™.

Now,

1 1
g(u) =Jg(u,v)dv=ue™ [dv=ue™,u>0
0 0

and h(v)=[ue™du=10<v<Ll.
0

1.5 Mathematical Expectation
Definition

The mathematical expression for computing the expected value of a r.v X with the pmf /

pdf is called the mathematical expectation, which is given below:

E(X)=)_xP(x) for X is discrete r.v.

E(X)= J'x f (x)dx for X is continuous r.v.

Properties of Mathematical Expectation
Additive Property
Statement
If X and Y are two r.vs, then E(X+Y)=E(X)+E(Y), provided all the expectation exists.
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Proof

Let X and Y be the two continuous r.vs with joint probability function fxyy(x, y)and

marginal probability function f, (x) and f, (y) respectively.

By the definition of mathematical expectation,

E(X)= Ojoxf(x) dx M

EY)= [yf(dy  (2)

—00

Therefore, E(X+Y)= [ [(x+Yy)fxy(X,y)dxdy

—00 —00

[oelo e}

] [ Xy oyydxdy+ [ Jyfiy (x,y)dxdy

—00 —0 —00 —0

Il
—_—
X

—00

[ ﬁfx,v(x,y) dy}dx+ [ yﬁfx,y(x,y) dx} dy

o0

[ xty(x)dx+ [yfy(y)dy

—00

E(X+Y)=E(X)+E(Y)
Generalization of Additive Property

The mathematical expectation of the sum of n r.vs is equal to the sum of their

expectation, provided all the expectation exists.

(i.e) E[X, + X, +..+ X, |=E[X, ]+ E[X,]+...+ E[X,]
= E(gxij = iZ::E(Xi)
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Multiplicative Property
Statement

If X and Y are independent r.vs, then E(XY)=E(X) E(Y).
Proof

By the definition of mathematical expectation,

E(X)=Oj:0xf(x)dx
E(Y)=Tyf(y)dy

Therefore E(XY)= | [xyfy y(x,y)dxdy

—00 —00

[ [y fx(x)fy (y)dxdy (Since X and Y are independent r.vs )

—00 —00

(TXfx(X) dxj ( Tyt dy]

E(XY)=E(X)E(Y)
Generalization of Multiplicative Property

The mathematical expectation of the product of n r.vs is equal to the product of their

expectation provided all the expectation exists.

(i.e) E[X, X,...X, ]=E[X,]E[X,]..E[X,]

= E(fl[xij :li[E(Xi)
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Note: 1

If X is the r.v and a and b are the constants then E[aX +b]=aE(X )+b.

Proof :

By definition of mathematical expectation,
E(X)= [xf(x)dx

E[aX +b]= T(ax +b)f (x) dx

=a T xf(x)dx+be(x)dx

=aE(X) +b(1)
E[aX +b]=aE(X)+b
Note: 2

Expectation of Linear Combination of r.vs.
n n
Let X,,X,,..,X, beanrvand a;,a,,..,a,are any n constants then E{Zaixi]_f‘ai E(Xj) .
i=1

i=1

Proof
n
E{Eai xi}: Ela;x, +a,X, +..+a,X, ]
=)

=a, E(X;)+a,E(X,)+...+a,E(X,)

32



Problem 1:

Find the Expected value of a Binomial variate.

Solution:

Given X is a Binomial variate, then its pmf given by

P(x) =nC,P*q"*,x=012,..n
n
E(x)= 2 XP(x)
x=0

n
= > xnC,p*q"*x  (-x=012,..n)
x=0

n
=npY. n-1C, ,p*q"

x=1

=np(q+p)"
= np

E(x) = np. Which is the expected value of Binomial Distribution.

Problem 2:

1

Check whether a continuous r.v with pdf f(x) =—. ! 5
T 1+X

;—00 < X < oo is having Expected

value of x or not.

Solution:

0

E(x) = [|xff(x)dx

—00

11

dx
T 1+ X2

o0
= [
-0
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== [——dx (.. f(x) is an even function of x)
X

= Ej—dx =%[Iog(1+ xz)]: —> o
0

Since this integral does not converge to a finite,
Therefore E(x) does not exist.
Problem 3:

Let X be a r.v with the following probability distribution

X -3 6 9

p(X) 1/6 172 1/3

Find E(x), E(x?) and using the laws of Expectation, evaluate E[2x+1]°.

Solution:

E(x) = zo X P(X)

:—3><E+6><1+9><1
6 2 3
11
E(X)=—
(9=
2\ w2
E(x%) = 2 X" P(x)
x=0
=9xl+36x£+81x1=%
6 2 3 2
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- E[2x+1F =Efax? +1+ 4x]
= 4E(x?)+1+4E(x)

—ax B 14t o9
2 2

E[2x +1f =209
Problem 4:
a) Find the expectation of the number on a die when thrown

b) Two unbiased dice are thrown. Find the expected values of the sum of numbers of

points on them?
Solution:

a) Let X be the r.v respectively the number on a die when thrown.
o x={1,2,3,4,5, 6}

.. X can take any one of the values 1, 2, 3, 4, 5, 6 each with equal probability % .

Hence, E(x) = 1><1+1><2+1><3+l><4+l><5+£><6:Z
6 6 6 6 6 6 2

. . 7
It means the average toss of a long period one will get I

b) The probability function of X for the sum of numbers obtained on two dice is
Values 2 |3 (4 |5 |6 |7 |8 |9 |10 |11 |12
Probability | 1 2 3 4 5 6 5 4 3 2

36 |36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36
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E(x) = io X P(x)

=2><i+3><£+4><£+5><iJr6><£+7><£+8><£+9><i+10><i+11><£+12><i
36 36 36 36 36 36 36 36 36 36 36

:3—16[2+6+12+20+30+42+4O+36+30+22+12]

= i>< 252
36

E(x)=7
Problem 5:

In four tosses of a coin, let x be the number of heads. Tabulate the 16 possible outcomes
with the corresponding values of X. By simple counting, derive the distribution of X and hence

calculate the expected value of X
Solution:

The sample space for tossing of a coin four times is
S = {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTTH, THTH, HTHT, THHT,
TTHH, HTTT, THTT, TTTH, TTHT, TTTT}

Il |ITxT ||+ = | =
Outcomes Tz |ET |Z|E|F|HT|DFIFIEIEIE | TIE
I|I | I |T|T||TE|TIF|ET|T|F|F|F
ITIT |z |F| |z |HZI|HF|ZT|F|F|F|F|F
No.of Heads |4 |3 313 3 |2 2 212 |22 |2 |2 1|1 110
1 4 1 6 3 4 1 1
R X:O =—, X:l =—=—, X:2 =—=—, X:3 = —— X:4 _ —
p(x=0) T p(x =1) 62 p(x=2) 68 p(x =3) 16 4IO( ) 16

.. The Probability distribution of X is given by
X 0 1 2

o) | 1|1
16 4

3
1 |1
4

o |
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E(x) = io X P(x)

=0x1i+1x1+2x§+3x1+4x%
1 3 3 1
“474747;
E(x) = 2.
Exercise:
1. Define random variable with examples.
2. Define distribution function and state its properties.
3. Adiscrete r.v X has the following probability distribution:
X 0 1 2 3 4 5 6 7 8
P(x) | a 3a |5a |7a |9 |1la |13a |15a |17a
i) Find a ii) Find P(x<3) iii) Find the variance and mean of x
iv) Find df of x.
4. A continuous r.v X that can assume any value between x = 2 and x = 5 has the density
function given by f(x) = k (1 + x). Find P(x<4).
5. A continuous r.vhas a pdf f(x) =kx?e ™ ;x> 0.Find k, mean and variance.
6. The df of r.v X is given by F(X) =1-(1+x)e™™, x>0. Find density function, mean and
variance of x.
7. Find cdf for f (x) = {Xexzu X2 0.
0 ;o X<0
8. Define Jacobian of transformation.
9. Define marginal and conditional distributions.

10. State and prove additive property of expectation of two random variables.

11. State and prove multiplicative property of expectation of two random variables.
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Unit— 11

Discrete Distributions

2.1 Introduction

2.2 One —point distribution

2.3 Bernoulli Distribution

2.4 Binomial Distribution

2.5 Poisson Distribution

2.6 Geometric Distribution

2.7 Negative Binomial Distribution

2.8 Hyper Geometric Distribution

2.9 Multinomial Distribution

2.10 Discrete Uniform Distribution

2.11 Fitting Binomial and Poisson Distributions

2.1 Introduction

In this Unit, we shall study of the probability distributions that are used most prominently

in statistical theory and application. We shall also study their parameter that is the quantities that
are constants for particular distributions but that can take on different values for different
members of families of distributions of the same kind. We shall introduce number of discrete
probability distributions that have been successfully applied in a wide variety of decision
situations. The purpose of this Unit is to show the types of situations in which these distributions

can be applied.
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It may be mentioned that a theoretical probability distribution gives us a law according to
which different values of the random variable are distributed with specified probabilities
according to some definite law which can be expressed mathematically. It is possible to
formulate such laws either on the basis of given conditions (a prior consideration) or on the basic
of the results (a posterior inference) of an experiment.

This unit is devoted to the study of univariate discrete distributions like Bernoulli,
Binomial, Poisson, Geometric, Negative Binomial, Hyper geometric and Discrete Uniform
distributions. We have already defined in the previous Unit about distribution function,
mathematical expectation, moment generating function, characteristic function and moments.

2.2 One Point Distribution or Degenerate Distribution

A degenerate distribution or one point distribution is the probability distribution of a r.v
which only takes a single value.

Examples include a two-headed coin (biased coin) and rolling a die whose sides all show
the same number. This distribution satisfies the definition of "random variable" even though it
does not appear random in the everyday sense of the word; hence it is considered degenerate.

The simplest distribution is that of an r.v X degenerate at point k, that is, P{X=k} =1
and = 0 elsewhere. If we define

0 if x<0,
e(X) = )
1 if x>0,

the distribution function of the r.v X is e(x—k). Clearly, E(X"), n =1,2, ..., and My(t)=e*. In

particular var (X) = 0. This property characterizes a degenerate r.v. The degenerate r.v plays an
important role in the study of limit theorems.

2.3 Bernoulli Distribution
Definition

A random variable X which takes two values 0 and 1 with probabilities q and p
respectively i.e. P(X=0)=p; P(X=1)=q is called a Bernoulli variate and it is said have a Bernoulli
distribution. A random variable X is defined to have a Bernoulli distribution if the discrete

X 1-X _
density function (or) pmf of X is given by ~ P(X =x)= p*{L—p)™ for x=0or1 where
0 otherwise

the parameter p satisfies 0<p<1 and g=1-p.
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0 1 X
Figure: Bernoulli Density

Definition of moment generating function (MGF)

A moment generating function of r.v X (discrete / continuous) is defined as My (t) = E
(etX).
For, discrete r.v, My (t) = E (e%)=Ze%p(x)

For, continuous r.v, My (t) = E (€%) = [e™f(x)dx

—00

Properties of MGF:

r

(i) The coefficient of % in My () is u;.

By the definition of MGF,
My (t) = E(e")

_ E(1+5|+@+@+...+(tx—)r+_} (e =1+%+X—2+...j

u 2! 3! r!

r

t t? _ t )
_1+iE(X)+EE(X )—I—...—l—ﬁE(X )+
tl t2 r
Mx(t)=1+iu1+zuz Tt

1 '
Therefore, the coefficient oft— =4, =Mean
1!

2 !
The coefficient of% = 1, =Mean square value.
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- var(x) = pp = pj — (1)’
o d

i) — M, (1) o =1
()dt,— x()|t70 I3

i.e., " derivative of MGF at t=0 gives p’

MGF and hence Mean and Variance
If X has a Bernoulli distribution, then E(X )=p, V(X )=pg and M, (t)=pe' +q

Proof:

By the definition of mathematical expectation,

.. Mean= E(x)=p.

V(X)=E(x?)-[E(X)F

~E(X2)=3x7P(x)

:i X2 pqu—x
x=0



=p(1-p)
V(X)=pg.
.. Variance=pq.

By the definition of MGF,

Problem 1:

A random experiment whose outcomes have been classified into two categories called “success”
and “failure” represented by the letters ‘s’ and ‘f’ respectively is called a Bernoulli trail. If a
random variable X is defined as 1 if a Bernoulli trail results in success and 0 if the same
Bernoulli trail results in failure, then X has a Bernoulli distribution with parameter p=Probability
of success.

Problem 2:

For a given arbitrary probability space(Q2,A,P)and for AcA, define the r.v X to be the indicator
function of A; that is, X(w)=1,(@); then X has a Bernoulli distribution with parameter

p=P[X=1]=P[A].
2.4 Binomial Distribution
Definition

A r.v X which takes two values 0 and 1 with probabilities g and p respectively. i.e.,
P(X=1)p; P(X=0)=q is called a Bernoulli variate and its said have a Bernoulli distribution.

If the experiment is repeated n-times independently with two possible outcome,then they
are called Bernoulli trials.

An experiment consisting of a repeated n number of Bernoulli trails is called Bernoulli

experiment.
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Binomial Experiment

A binomial distribution can be used under the following condition:
(1) Any trail with two possible outcomes that is any trail result in a success or failure.
(i1) The number of trials n is finite and independent,when n is number of trial.

(iii) a probability of success is the same in each trial. i.e., p is the constant.

Definition
A random variable X is said to have a binomial distribution, if its pmf is given by

nC,P*q",x=0,12,...n

_ whereq=1-p
0 ,otherwise

P(X=x)={

It is denoted by B(n, p), where n and p are parameters
Applications of Binomial Distribution
1. The quality control measures and sampling process in industries to classify the items
are defective or non-defective.
2. Medical applications as a success or failure of a surgery and cure or non cure of a
patient.
3. Military application as a hit a target or miss a target
Derivation of mean and variance of B (n, p):

By the definition of mathematical expectation,

E(X) = Zn:x P(x) :Zn:xnCX p*gq"
x=0 x=0

— npin _lCX prlq n—-Xx

x=1
=np(q+p)"™ (bybinomial expansion)

=np(1)  (g+p=1)
Mean = E(X) = np 1)
Var(x) = E(x%) - [EX)]°

E(x?) = 3 x2P(x)
x=0
- io[x(x—l) +X]p(x)
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3 X(X—D)p(x) + ioxp(x)

x=0
n
= > x(x-1).nC,p*q" ™ + np (From (1))
x=0
o n(n_l) 2 AX=2~N-X
= -1).——=n-2C . .
> X(x=D 0 = =2C,,p"p g

=n(n-1)p*Y n-2C, ,p**q"* +np
x=0

=n(n-1)p(a+p) "+ np

=n(n-1)p*+np

E(x’) = np (np + q)
Var (x) = E(x%) - [E()]°

=np (np +q) - (np)°
= n?p? + npq - n°p?

Var (x) = npq
MGF and hence mean and variance
By the definition of MGF,

M, (t) = E[e™]

= 3 e%p(x)
x=0

etXnCXqun—X

M:

0

X
Il

nCX (pety(qn—x

Il
M3

x=0

= nCO(pet )Oq" + nCl(pet)lq"‘l ot nCn(pet)nq“‘”
=q" + nCl(pet)q”‘1 +...+(pet )”
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M, () = (a+pet )

Differentiate with respect to t, we get

d n_
M ®= n(q+pe')".pe’
t
Putt=0, %Mx(t) =n(q+p)"pe

Mean=np =y

d )
GV =n(@-+ pe")" L pe'

= np(q + pe! )He‘

d? t\n-1,t | At ty-2 ot
dt_zMX(t):np q+pe) e +e (n—1).(q+pe)P pe

2
3? M, (8] 1o = npiL+ (n -Dp)

np+np® —np® =,
s var(x) = py — ()’
=np-+n“p* —np* —(np)°

Var (X) = npq

Definition of Moments

Moments about origin ., is defined as the expectations of the powers of the r.v X. That is

w, = E(x"). Similarly, the central momentsabout mean is defined as i, = E(x-)".
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Recurrence relation for the central moments of a B(n, p)
By the definition of k™ order central moment p is given by

e =E(x—w)* =E(x—np)"

n

=Y (x—np)“nC,p*q""

x=0

=}

Z(x np)*nC,p* (L -p)"

>

=3"nC, (x—np) p*(@-p)"”

x=0
Differentiate with respect to p, we get

4o = 2nC. o) (b7 (0L B D)+ L )00 P -e) )f

After simplification, we get,

iy

=—nk + 1
dp Mg Mks1

Central moments of B(n, p)

Using the above recurrence relation we may compute the moments of higher order,

provided the moments of lower order, that is g, =1and g, =0.

pPq d—+ nk
S Mg = dp My_1

Putk =1,
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d
Uy = pq[d_pul + nuo}

=po0+n]
= npg, which is variance of X
Mz =NPQq

Putk =2,

=pq d +2n
M3 = dp“z Hy

- pq{di(npq)w}
p

= npq(1-2p)

Putk =3,

=pq i +3n
Mg = dp H3 Ho
d
= DQ{d—p[HPQ(l— 2p)] +3n(npq)}

d
= pq{nd—pp(l—p)(l—ZpHSnzpq}

= npqfl+3pq(n —2)}
These are the first four binomial central moments.

The first four raw moments (or) moment about origin of B(n, P)

By the definition of moments about origin p; = E(x")
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To find the first four raw moments:

Putr=1
u = E(x)
= > X(X)
x=0
n
= 2. xnC,p*q"™
x=0
— npzn _1Cx px—lqn—x
x=0
=np (g+p)"*
W =np
uy = E(x?)
12
= > X“p(x)
x=0

= 2XX-DP(+ X pX)

x=0

—n(n-1)p? ¥n-2C, ,p*%q"* +np

X=2
=n (n-1)P (q+p)™* + np
W, =np(np+q)
ws =E(x%)
= > x%p(x)
x=0
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= Zn:[X(x ~D(x—2)+3x(x-1) +x]nC,p*q"™*

x=0
=n(n-1)(n-2)p*> n-3C, ,p*q"* +3n(n-1)p>> n-2C, ,p*2q"™ +np
x=0 =0

wy =n(n—1)(n —2)p* +3n(n —1)p* +np

wy = E(x%)

i{)x“p(x)

[X(X =D)(x — 2)(x —3) + 6x(X —1)(Xx — 2) + 7x(x =1) + x] nC,p*q"~*

I
M-

0

x
Il

= i X(X=1)(x —2)(x=3)nC,p*q" * +6 i X(X=1)(x —2)nC,p*q" >
x=0

x=0

n n
+7> . x(x=)nC,p*q" ™+ >.x nC,p*q" ™~
x=0 x=0

=n (n-1) (n-2) (n-3)p*(p+a)""+6n(n-1)(n-2)p*(p+a)"*+7n(n-1)p*(p+q)"*+np
uy =n(n=1)(n-2)(n-3)p* +6n(n—-1)(n—2)p> +7n(n-1)p® +np.
Additive property of B(n, p) or Reproductive property
Statement

If X~B(ny, p) and Y~B(n2, p), then X+Y ~B(n1+n,, p) where X and Y are independent.

Proof

We know that, the MGF of B(n, p) =(g+pe")".
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~.The MGF of X ~B(ny, p) = (q+pe')"?.

Also the MGF of Y~B(n, P) = (q+pe')"2.
We know that, If X and Y are independent r.vs, then

My () = My (1) . My (1)

=(q+pe")"t.(q+pe")"?

ng+n2

=(q+pe)

+N2

“Myoy ©=(@+pe)™
Which is the MGF of B(ni+n;, p)
- (X+Y) ~ Binomial distribution
Note

If X1, Xa,..., Xk are independent binomial variates with parameters (n,p), (n2,p),..., (Nk,p)

respectively,then X;+X,+...+X is also a binomial variate with parameter (ny+n,+...+ny, p).
Mode of Binomial distribution
Definition
The value of x at which p(x) obtains maximum is called mode of the distribution.
Let X be a binomial r.v. Then P(X=x)=p(X)=nC,p* ¢"*; x =0, 1, 2,...n
Themode of the binomial distribution is defined by mq and it is given by
p (Mo-1) <p (Mo) = p (mo+l)

Consider,

p (mMo-1) < p ('mo)
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1 .n— _1 _
NCpny 4P™ 9" M <nC, pMog" M0

(n—mg)Img!
(n—my +1)(m, -1

9<1
p

mo< p(n+1) e (1)
Consider,
P(mo) >p (mp + 1)

mo+1 n—(mg+1)

NCpo,P™0q" ™ >nC, ,p™"q

(n—my —Di(my +D!_ p
(n-mg)(me)! g

from (1) and (2)

np—q<me<p (n+tl)

For checking:

whenn=10,p=1/2,q=%

4.5 <mps5.5.

Characteristic function and Cumulative function or cumulative generating function

The characteristic function is defined
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¢y (t) = E[e™]
Cumulative generating function is defined by
i, (t) =log M, (t)
Characteristic function of B(n,p)

By the definition of characteristic function,

0y (t) = E[e™]

e™p(x)

M:

x=0

eitxncxpanfx

M:

x=0

¢y (1) =(q+pe")"
2.5 Poisson distribution
- Simen Denis Poisson
Definition

A random variable X is said to follow the Poisson distribution if its probability mass

function is given by,

e\

P(X=X) =p(x) =—

Here the A is the parameter and A> 0
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Poisson distribution as a limiting case of Binomial distribution:

Poisson distribution as a limiting case of Binomial distribution under the following
condition:

i) The number of trial n is infinitely large. i.e.,n — 0.
i) The constant probability of success p in each trail is vary small. i.e.,p — 0

iii) np = A is finite, where A is a positive real number.

Proof:

In the case of Binomial distribution,the probability of x success is given by,

p(X =x) =p(x) =nC,p*q" ™

1000200 e

Putnp=2%; p=A/n

q=1->
n

Xt n n

s p(x) = n(n—1)(n—2);..[n—(x—1)][1j (1—£j -

x''n" n n n n n

N T 3K

Taking limit n — oo, we get

_Xnan-1n-2 n-(x-1) _[1_&)”(1_%‘*
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—AAq X

p(X=x)=p(x)= € x=012,...00

x!
which is the pmf of Poisson distribution.

.. Poisson distribution is the limiting case of binomial distribution.

Aliter

The MGF of B(n ,p) is
M, () =(q+ pe')
Putnp=2; p=A/n

q=1->
n

n
LMA0=@—&+&€j
n n

:(14_@}
n

Taking limit n — oo we get

g X
x!

p(X=Xx)=p(x)= x=0.12,.0

which is the MGF of Poisson distribution.
.. Poisson distribution is limiting case of Binomial distribution.

Mean and variance of Poisson distribution

Mean, E(X) = ix p(x)

x=0
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~.Mean E(X) = A

Variance (x) = E(x?) - [E(X)[
E6) = 3 x2p(x)
x=0

e X
X!

= S Ix(x 1)+ x]
Xx=0

0 —An X 0 —An X
=Zx(x—1)e A +er A
x=0 x=0 X!
E(x®)=22+A

Var(x) = E(x*) - [E)F
=22 40— 2
Var(x) = A

..Mean = Variance = A.
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MGF and hence mean and variance of Poisson distribution
By the definition of MGF,

M, (t) = E[e*]

M, (t) =€ D
X
To find mean and variance

By the property of MGF,
M, (t) = "€ D aeh)
M, (D)]ro =€ DA% =1
M, () =%
M, ()= 2eter
M, (t) = x[e‘.e“et‘l) aet e D .et}

My (O)io = AR +1] =22 +h=p,
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! ’ 2
Var (x) =p,=p, _(Hl j

= M2 +h - A2
Var (X) = A
.. Mean = Variance = A.
Recurrence formula for the central moments of the Poisson distribution:

For Poisson distribution with parameter; the recurrence formula is,

d
Hra = 7\": dﬁ;\’r + r'“r—1i|

Proof

By definition of r' order central moment is given by

e =E(x-p)’

Differentiate with respect to A, we get,

A= 3 oy e ot ke () + () r(x— 1) ()]
dr w=oX!

dw
= 7\'d—7: =My —AF

57



d
= M1 = }“% AU

d
= /Ur+1 = ﬂ’[ d/lj{ + rlur—l:| '

The central moments i, W2, M3 and y:

The recurrence formula for central moments of Poisson distribution is,

d
oy = x% AR s (*)

Also, we know that, po =1
M1 =0.

In order to get Wy, put r=1 in (*),

dp
S, =A—L 4
2% L 2%

Hp =M.

In order to get ps,Putr=2in (¥*),

d
g = xﬁ + 20y,

= L1+ 2)(0)

My =2

In order to get pg,Put r =3 in (¥*),
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AT =k%+3ku2
=A1+3AA
t, =A+3)2
W =0, u, =X, g =A, p, =A+32\2are the first four central moments.

The first four moments about origin:

By the definition of ™ order raw moments,
B = E[Xr]
s =EX) =E(X)

= 2. X.p(X)
0
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0 —7\.}\‘X

= 2 [X(x =D +x]

x=0 X!

—l}\‘X —XKX

- 3x°

= i X(x-1)
x=0

’

Hy, =A%+

Also, i, = E(x%)

My = ng p(Xx)
x=0

S IX(X=D)(X = 2) +3x(X ~1) +X] _w

x=0

—AAq X 4& KX

+ Z3x(x 1)

= S x(x—D(x-2)°
x=0
—e %t +3e7M0% +
Hy =20 +302 44

Also ;,t4' =E(x*)

Hy = ZX4 p(x)

x=0
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0

X=

0

e M\
X!




e X
X!

= i[x(x —D(X—2)(x =3) +6X(Xx =) (X —2) + 7X(X —1) + X]
x=0

e—kx4kx—4
X(X=1D(x—-2)(x=3)(x—4)!

= Sx(x~1)(x - 2)(x—3)
x=0

e‘k}??@‘*
X(X =) (x—2)(x - 3)!

163 X(X-1)(X~2)
x=0

—AA 24 X—=2 o0 —An X
e AN ZXe A

X(X =D (x—-2)! i w—o X

+7 ix(x -1
x=0

!

g =2 +603+702 + 0.

Additive property:
The sum of independent Poisson variates is also a Poisson variate.

i.e., X1, Xy, .... Xp are n independent Poisson variates with parameter A1, Ay, ....A,. Then

X1+ Xot ...+ X, is also a Poisson variate with parameter A3 + A, +.... + Ap.
Proof:
We know that the MGF of Poisson distribution is,
My (1) =e"¢'
Also we know that,
Myt ixp iy () = My (:Myo (1)..M, (1)

t t t
—ehl D perl D el

Ao Moy (£) = %2R XE Dwhich s the MGF of Xy + Xt ...+ X, with parameter

M+ Ao+ A

61



oo Xy + Xot ...+ X, is also Poisson variate.
Examples of a Poisson distribution (Real life Problems)

Number of printing mistakes at each page of a book.
The number of road accident reported in a city per day
The number of death in a district due to rare disease.

The number of defective articles in a pocket of 200

o & w0 NP

The number of cars passing through a time interval t.

Theorem 1

If X and Y are two independent Poisson variates with parameters Aj;, Ap,then the

conditional distribution of (X|X +Y ) is Binomial.

Proof

Given X and Y are independent Poisson variates with parameter A; and A, respectively.

P(X=m)= M

; X=0,1,2,...,m, ...

e—}\,z 7\’2n

~P(Y=n)= ;Y=0,1,2,...,n, ...

S PXX+Y) =P(X=m[X+Y=n)

_P(X=m,X+Y =n)
P(X+Y =n)

_P(X=m,Y=n-m)
~ P(X+Y=n)

_P(X=m)P(Y =n-m)
B P(X+Y =n)
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. Xand Y are independent.

e_Mle e—kg;\‘gn—m
omt T (n—m)!
e 12 (), +,)"

n!

m
|
Multiply and divide by[ - j

A+ Ay
m n-m
B n! A Ay
(n—m)Imf{ A, +2, A +A,
=nC,,p"q" Mwherep = M q=—-2
m L+, Ay + Ay

Which is the pmf of binomial distribution.

- If X'and Y are two independent Poisson variate, then the condition probability of X[ X+Y is

Binomial.
Theorem 2

If X is a Poisson variate with parameter A and conditional distribution of y | x follows

binomial with parameters n and p, then the distribution of Y follows the Poisson distribution with

parameter Ap.
Proof

Given X is a Poisson variate with parameter A.

-4 97X

L P(X =x)=p(x) = x=012,..0

xt
For a Binomial distribution P(X =x) = p(x)=nC,p*q"*;x=0,1, 2, ...n
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Then we prove that,Y~Poisson (Ap)

P(Y=m,X =n)
P(X =n)

S PIY =m|X =n]=

=P(X=nY =m)=P(Y =m/X =n).P(X =n)

—AAaN
— nCmpmqn—m.%

“PY =m]=3P(X =nY =m)

< m.n-m e—}»kx
= > nC,p"q . (from (1))

e—x mxm () n-m
_eTpM & ()
m! n=m (n_m)!

_e?p)"
m!

which is the pmf of Poisson distribution with parameter is Ap.

~.If X~Poisson (1) andY|X ~ B(n, p), then Y ~ Poisson(’.p).

Theorem 3

1)

If X and Y are two independent Poisson variates then X-Y is not a Poisson variate.

Proof

Given,

M, ()= ekl(Et -
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_ ah2(et-D
M, (t) =e"2

M,y (1) = M ()M, (1)
=M, (.M, (-1)

t -t L. ] t
— M D g*2( " Dwhich is not in the form of e*©

So difference X-Y is not a Poisson variate.
2.6 Geometric Distribution (x-1 failures preceding the first success)
Definition

A random variable X is said to follow a Geometric distribution if it assumes the non-
negative value and its pmf is given by,

x-1 _
P(X =X): q p X_l’2’31-‘--aw
0 otherwise
Here p is the parameter, q=1-p, 0<p<l
(or)
P(X = x)= qgp X =0,l,2,3-,...,oo
0 otherwise

x failures preceding the first success.

Note

1. P(X =x)=q*"pdenotes the probability that there are x-1 failure preceding the first
success.
2. We know that, the total probability is one.

That is, P(X =x)=0"""p

:iP(X = x)=§qx‘1p

x=1 x=1
=p+pa+pg’ +...
=p[l+q+q®+..]
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=p(l-q)~
p p

1-q p
SP(X =x)=1
x=1

The total probability is 1.
3. Prove that for a Geometric distribution, the variance is always greater than mean.

Solution

For Geometric Distribution,Mean = i .
p

Variance = iz

p

- |
S |-

Variance(X) = 9« mean
p

Variance(X) > Mean.
Mean and Variance:

By the definition of Expectation,

E(X>=§lx.p(x)

=¥ x.q"p

x=1

:pleqx—l

x=1

=p[l+2q+3q° +..]

=p(L-q)~
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()=
p

Var (X)=E(x?) —[E(x)]*

2q 1 [1)2
p> p \p

_2q+p—1
p2
Var(X)=2q;q = iz
p

MGF and hence Mean and Variance:
By definition of mgf,
t

__pe
) e

M, (t)=pe‘ (1—qe')™
My ' (t)= p{et (—1)(1— ge' )_2 (— ge' )+ (1— ge' )_1et }
M x’(t) |t:0: p{% +1}

pe P

P+q

_T

=4

1
p

- Mean p; =

T |

M, ()=Plge? (1—ge')? +(1—ge') "e'}
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My (1) = plae® (-2)A—ge') °(—qe') + (1—ge') ?qe? 2) + (1—ge') ' +e' (-1)A—qe') *(—qe")}
My (1) o =PRa%(L-0)° +(L-0) 229+ (1—0)* +q(l-q) 2|

p° p®> p p’

2
2q2 +2_q 1

p> p p
29° +2pq+ " (w
:quqp Var (X)=p, =p, —(iy )2
_29°+2(1-q)q+1-q _“_Q_[Ejz

p? Pt p

1+q-1 a
_ 2 Var (X)=—

. p

Mx (t) |t:O:/u2

Memory less Property of Geometric Distribution
Statement

If X has a geometric distribution then for any two positive numbers m and n,
P(X >m+n| X >m)=P(X >n). We need m+n trials for getting first success, given than m

consecutive failures is equal to the unconditional probability of at least n trials to get their
success. Here m failure is not in memory.

Proof

P(X>m+nnX>m)
P(X>m)

PX>m+n|X>m)=

_P(X>m-+n)
~ P(X>m)

The pmf of geometric distribution is,

PX=x)=q""p; x=123,..,©
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foranyKk,

P(X > k) = 3 p(x)

x>k

= >q*"

x=K+1
=q“"p+g“*Tp+...
—q“p+q“p+....
=pg[1+q+q*+..]
=pg‘(-q)*
P(X > k) =g*

P(X>m+n)=q™"

P(X>m)=q"
p(X>n) =q"
P(X>m+n|X>m):m
P(X>m)
=qm+n
qm

P(X>m+n|X>m)=q".

2.7 Negative Binomial Distribution

Let X denote the number of failure preceding the r'™ success, then P(X=x) denotes the
probability that there are x failure preceding the r™ success in x+r trial. Clearly the last trial is
success with a probability P.

In the preceding (x+r-1) we must have a x failures and r-1 success, in any order, whose
probability function is given by,
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x+r-1, P™q"
Hence the probability of x failures and ™ success is given by,
P(X=x)=x+r-1. P'q"
Definition

A random variable X is said have a negative binomial distribution if its probability mass
function is given by,

P(X=x)=x+r—1cr_lPqu; x=012,...
Here p and r are parameters.
(nP(X =x)=-r, P'(-9)*; x=012,..

Note
Geometric distribution is a special case of negative binomial distribution when r=1.
MGF and hence Mean and Variance

By definition of mgf,

My (1) =E[e"]

- zo e™p(x)

tx r X
e"x+r-1c .pq

Il
e

=p' Y (e'g) x+r-1¢, ,

x=0

) (r+1)r }
T

shol {2

=p [1+rqe +(qge")
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r

p .
L-qe')

Mx(t)=

To find Mean and Variance

We know that

My (t)=P'[1-qe']”"

M, =P (-r)@-qe’) " (~qe')

My (O] =P (-1)(L-0) " (-q)
=rP'q(P) "

rP'q '
= PI'+1 = “1

.. Mean = |
P

M, ’ (t)=rgP" (L—qge") "e!

M, ©=rgP L ge' ] Vet et (~(r +1)A-ge) D (~ge")]

My ()l =roP" {1-0) Ve +e°(-(r + D) - a) ? ~q
—rgP" P 1 (r+1)gp 2 |

_rgP"  rgP"(r+1)q
- PH—l + Pr+2

rq rg?(r+1)
=4t —
P p?

rrq r(r+1)q?
S L G e’ B
MZ P PZ
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Var(X)=u, — (4 )?

rq r(r+1)q? (rq}z

=t ———| —
P p? P
rq _1+ (r+1)q _g}
P P P

_rq_P+(r+1)q—rq}
P P

rq
Var (X) = oz

Additive Property of Negative Binomial Distribution

Statement

Let X, and X, be the two independent negative binomial variates with same parameter p
and different numbers of successesr, and r,then the sum X, + X,is also a negative binomial
variate with parameters pandr, +r, .

Proof
We know that

The mgf of Negative Binomial Distribution is,
My ()=P"(1-qe’) "
M, ()=P"(1-qe")™"
M, ()=P"™*(1—qge")™"
My =M ©. M, ©)
=P"(1—ge') ™ xP?(1-qe")"?

— Pr1+r2 t)—(rl+r2)

(1-qe

which is the mgf of Negative Binomial Distribution.
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2.8 Hypergeometric Distribution

If X represents the number of defectives found, when n items are drawn without
replacement from a lot of items containing k defectives and (N-k) non-defectives, clearly

kC, (N —k)C

P(X =r) = C 0 -y =04,2,...,min(n, k)

Note:

If n > K, then the maximum value of X is k;If n <k, then the maximum value of X is n,
That is, the maximum value of X is min(n, k), that is, r can take the values 0, 1, 2, ..., min(n, k)
Definition:

If X is a discrete r.v that can assume, non-negative values 0, 1, 2,..., such that its
probability mass function is given by

kC (N -k)C
P(X =1) = o Con :r=012,...,min(n,k)
NC

Then X is said to follow a hypergeometric distribution with the parameters N, k and n.
Note:

1. In the probability mass function of X, r can be assumed to take the values 0, 1, 2, ..., n, which
is true when n < k. But when n > k, r can take the values 0, 1, ,2, ... , k. In other
words,P(X=r)=0, when r = k +1, k+2,...n. This values (namely zero) of the probability is
provided by the probability mass function formula itself, since kC, = 0, for r =k+1,
k+2,...,n.Thus in the values of P(X=r) min(n, k) can be replaced by n.

2. Hypergeometric distribution is a legitimate probability distribution, since

. : kCr(N_k)C(n—r)
P(X =r)=
2PXED= 2T,
:LNCn =1 since
NC,

>KC, (N —K)C,_, = coefficien tof X " in (L+x)* (L+x)"*
r=0
= coefficient of X" in (1+X) = NC,

73



Mean and Variance of Hypergeometric Distribution

E(X)=)xP,

Z(k 1)C(r 1)(N k)C(n r)

NCn =ty
k n-1
= NC Z(:)k Cr(N -1-k )C(n—l—r')
(on putting k"=k—-1 and r'=r-1)
=——(N-1)C
NC ( ) n-1
nk

E(X?)=E{X(X -1+ X}

- EX (XD T

:W+Z(r(r KC, .(N —k)C

r=0

(n- r) C

_nk_ k(k=1)3
k'C..(N-2-k")C
N NC ; ( ) (n-2-r")

(on putting k' =k —-2and r'=r-2)

nk , k(k=1)
N NC

k=

(N - 2)Cn—z

n

nk k(k Dn(n— 1)( 2)C
N N(N -1) "2
Var(X) = E(X*)-{E(X)}*

_nk _ k(k=Dn(n-1 n’k’
N N(N 1) NE
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nk

:m[N(N -D+N(k-)(n-1)— (N -1)nk]

k(N —k)(N —n)
T N(N-1)

Note:
If we denote the proportion of defective items in the lot as p, i.e., p= %and g=1-p,

then E(X) = np and Var(x) = npq {%}

Binomial Distribution as Limiting form of Hypergeometric Distribution
Hypergeometric distribution tends to binomial distribution as N — « and N p

Proof:
If X follows a hypergeometric distribution with parameters N, k and n, then

kC, (N -K)C,
P(X=r)= NG ,r=012,...,n

n

k(k=1)..(k=r+1) (N=K)(N -K-1).(N-k-n+r+1)
r! ' (n—r)!
n!
N(N—-1)..(N—n+1)

n!
r!(n—r)!><

e S e
1o - 2108

(by dividing each factor in the numerator and denominator ny N)
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Putting %= p and proceeding to the limitas N — oo, we get

N lim 00

_p PX=r}= nC,.p @1-p)"™"

k

N
=nC,p'q"";r=012,...,n

Thus the limit of a hypergeometric distribution is a binomial distribution.

Note:

We know that the binomial distribution holds good when we draw samples with
replacement (since the probability of getting a defective item has to remain constant), while the
hypergeometric distribution olds good when we draw samples without replacement. If the lot
zize N is very large, there is not much difference in the proportions of defective items in the lot
whether the item drawn is replaced or not. The previous result is simply a mathematical
statement of this fact.

2.9 Multinomial Distribution
Definition

Multinomial distribution is the generalization of binomial distribution. Consider k events
Ei1, Ea,..., Ex. The event E; occurs X; times, E; occurs X, times and so on, with the corresponding

probability p1, p2, ...pk respectively.

Let us assume that the probability of getting i event in x; times is P, i=1,2,3, ...k
Then the joint probability function of k events is given by,

- X X X
P(Xy, Xz, X ) = - I-pll-pzz---pkk
X 1%, X
nt koo
[Tx!

This distribution is called multinomial distribution,where (p1+p2+ ...+px) = 1, N = X3 +Xo+
. Xk

For example, if a fair die is tossed twelve times, the probability of getting 1, 2, 3, 4, 5 and
6 points exactly twice each is given by
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2 2 2 2 2 2
121 1V 11NV 1
P(X =2.X, =2 X3 =2,X, =2 X5 =2 Xg =2) =~ oo, X(E) (Ej (Ej (Ej (Ej (Ej

=0.00344

MGF of Multinomial Distribution

To derive MGF, first let us consider a trail which has two outcomes A;, As.

Assume the outcome A; occurs X; times and A, occurs X, times then the probability of
getting A1, X3 times and A,, X, times is given by the function,

n!

prp;2 where p;+p;=1andn=x;+ X
X 1X5!

P(X1,X,) =

My x, (1) = E(€1712°2)

— Zetlxl+tzxz ) p(Xl, X2)
X

|
_ t1X1+toX n: X1 ~X2
=2 etiTF ——pitp,
X X, 1X,!

= (pletl +p,e'2 )1
Which is the MGF of p(xi1, X2). By simply extending this result the mgf for multinomial

distribution can be written as,
My, xp.x, (1) = (pletl +p,e'2 +..+p.e'k
From this MGF, we can find mean and variance as follows:
M, (1) = (pe" + p,e® +....+ pe* ||
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a M. (t) = n(pletl +p,e2 +...+pe'k )H xp;e"

d n-1
< Mx Ol =nlpL+pz +- 4P )
=

Mean =p'=np;

d ,
Y M, (t) = np, [et' (pletl +p,e? +..+ p,e* )]

2
ddi? M. (t) = np, [e‘i (n —1)(pletl +p,e% +...+ pe" )"_2 x pieti]

-1 .
+(pletl +p,e? +...+pe'k xet']

d? _ 0
dt—zMx(t)\ti_O =P [(N =Py + Py e+ D) P+ (PL P H )"

=np;[(n-)p; +1]
=n(n-1)p;” +np,
W, =n(n—1)p,” +np,

var(x) = — (1

=n(n-2)p;’ +np; +(np; )
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=np;[(n-Dp; +1-np;]

=np;(1-F)
=np;q;
V(X) =np;q; -

2.10 Discrete Uniform Distribution
Definition

A r.v X is said to have a discrete uniform distribution over the range [1, n] if its pmf is
expressed as follows:

1
= for x=12,...,n
P(X=X)=14n )
0, otherwise

here n is known as the parameter of the distribution and lies in the set of all positive integers. The
above equation is also called a discrete rectangular distribution.

Such distribution can be conceived in practical if under the given experimental
conditions, the different values of the random variable become equally likely. Thus for a die
experiment and for an experiment with a deck of cards such distribution is appropriate.

To find Mean
E(X=1) =Zxp(X)
_xit
n
1 n
=) X
n&
_1n(n+l)
n 2
Mean = ——
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To find variance:
v(x) = E(<*) - [E(0

E(x?) ==x*p(x)
=2iZl
n

_n(n+1)(2n+1)

_Lse va, =1+2°+3 +..+n% S, = 5
n

1 n(n+1)(2n+1)

n 6

SV(X) =

(n+1)(2n +1) _(n +1J2
6 2

_n+1((2n+1) n+1
2 3 2

_n+l 4n+2—3n—3)

V() = (n +1)(n—1).
12

To find mgf

By the definition of mgf,
M, (t) = E[e”]
=>e™p(x)

:Ze”‘1
n

t t
lzn:etx (..etJrethrestJr +ent:e (1-¢" )j
n

1-¢

80



_let(l_ent)
M, ()= n (1-e') °

2.11 Fitting a Binomial and Poisson Distributions

Fitting a Binomial Distribution

When a binomial distribution is to be fitted to observed data, the following procedure is
adopted:

1. Determine the values of p and g. If one of these values is known the other can be found
out by the simple relationship p = (1-q) and g = (1-p). When p and g are equal, the
distribution is symmetrical for p and g may be interchanged without alternating the value
of any terms and consequently terms equidistant from the two ends of the series are

equal. If p and g are unequal, the distribution is skew. If p is less than% , the distribution

is positively skewed and when p is more than% the distribution is negatively skewed.

2. Expand the binomial (p+g)n. The power n is equal to one less than the number of terms in
the expanded binomial. Thus when two coins are tossed (n = 2), there will be three terms
in the binomial. Similarly, when four coins are tossed (n=4) there will be five terms and
SO on.

3. Multiply each term of the expanded binomial by N (the total frequency) in order to obtain
the expected frequency in each category.

The probability of 0, 1, 2, 3, ... success would be obtained by the expansion of (p+q)n.
Suppose this experiment is repeated for N times, then the frequency of r success is;

NxP(r)=Nx "Cq""p'

Putting r = 0, 1, 2, ..., n, we can get the expected of theoretical frequencies of the
binomial distribution as follows:
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Number of Success (r) Expected or theoretical frequency

(NP()
0 N gn
1 N "C,q"'p
2 N "C,q" 2p?
r N "C.q""p'
n N pn

Example:

8 coins are tossed at a time, 256 times. Find the expected frequencies of success (getting
a head) and tabulate the result obtained

Solution:

p:%;qzl_n:S;N:256

The probability of success r times in n trials is given by "C.q""p".

S P(r)="C,q""p’
8—r r
o)
2 2
8
+of)
2

Frequencies of 0, 1, 2, 3,..., 8 successes are:
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Success N P(r) Expected frequency
0 1 8 1
256 ——x ®C,
256
1 8
256 L _x 5C,
256
2 28
256 —1_x 5c,
256
3 56
256 5c,
256
4 70
256 = x ’c,
256
5 56
256 L 5C
256
6 28
256 L 5C
256
7 8
256 L« 5c,
256
8 1
256 L 5Cq
256

Fitting a Poisson Distribution

When we want to fit a Poisson Distribution to a given frequency distribution, first
we have to find out the arithmetic mean of the given data i.e., X =m when m is known the other
values can be found out easily.

-1 17X
NP(X =x) = N xZ f X =012,...,,
X!

NP(X =0)= Ne™

NP(X =1)= NP(X = O)x?

NP(X = 2) = NP(X :l)x%
m

NP(X =3)=NP(X = 2)><§

NP(X = 4)) = NP(X = 3)><%and 50 on.
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Example 1

100 Car Radios are inspected as they come of the production line and number of defects
per set is recorded below:

No. of Defects 0 1 2 3 4

No. of sets 79 18 2 1 0
Fit a Poisson distribution to the above data and calculate the frequency of 0, 1, 2, 3 and 4 defects.

% =0.779)

Solution
Fitting Poisson distribution

No. of Defectives (xX) | No. of Sets (f) (fx)
0 79 0
1 18 18
2 2 4
3 1 3
4 0 0
N =100 Yfx =25

X =22 _025=2
100
e =0.779

NP(0) =Ne ™ =100x0.779 = 77.90
NP(1) = N P(0) x? =77.90%0.25 =19.48

NP(2) = NP(1) x% =19.48><O'—225 _2.44

NP(3) = NP(2) x% — 2.44><0'—§5 ~0.20

N P(4) = NP(3)X%=O.20X% ~0.10

Example 2
Fit a Poisson distribution to the following data and calculate the theoretical frequencies:

X: 0 1 2 3 4
f: 123 59 14 3 1
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Solution

X 0 1 2 3 4
f 123 59 14 3 1 Y200
fx 0 59 28 9 4  Yf&x=100

Mean = @ 0.25
200
NP(O) = Ne™
=200 xe0°

=200 =x6065=121.3
Conclusion of expected frequencies:

X Frequency N P(X=x)
0 NP(0) =121.3 121
m
1 NP(0) ' =121.3x5 = 60.65 61
2 NP() x% _ 008535 1546 15
3 NP(2)><%:15'16X5 ~253 3
4 NPE)x 1 = 293%5 _ 4 5 0
4 4
Total 200

Exercise

=

Define one-point distribution.
Define Bernoulli distribution and derive its mean and variance.

For a binomial distribution mean is 6 and standard deviation is~/2 . Find the first two
terms of the distribution.

Derive mgf of Binomial distribution and hence find its mean and variance.

Derive mgf of Poisson and hence derive its constants.

State and prove memory less property of geometric distribution.

Define multinomial distribution.

w N

No ok
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10.
11.
12.
13.

Derive the moment generating function and hence find its mean and variance of
geometric distribution.

Define negative binomial distribution and derive its moment generating function and
constants.

Bring out the relationship between binomial and Poisson distributions.

Define characteristic function. Also, state its properties.

Define moment generating function. Also, state and prove its any two properties.

Define discrete uniform distribution and derive its constants.

*hkkkkikk
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Unit — 111

Continuous Distributions

3.1 Introduction

3.2 Uniform Distribution
3.3 Normal Distribution

3.4 Cauchy Distribution

3.5 Lognormal Distribution

3.1 Introduction

In this unit, several parametric families of univariate probability density functions are
presented. Also, mean, variance, moments, moments generating functions and characteristic
functions of some continuous distributions are discussed elaborately.

3.2 Uniform Distribution (or Rectangular distribution)
Definition

A random variable X is said to have a continuous rectangular (uniform) distribution
observes an interval (a, b)

i.e., (—o<a<b<o), ifits pdf is given by,

1 .
f(xa,b)= —b_a,lf a<x<b
0, otherwise

87



Remarks:

1. a and b (a<b) are the two parameters of the distribution. The distribution is called
uniform distribution over an interval (a, b) since it assumes a constant (uniform) value
forall x in (a, b).

2. The distribution is also known as rectangular distribution, since the curve y = f(x)
describes a rectangle over the x-axis and between the ordinates at x =a and x = b.

3. A uniform or rectangular variate X on the interval (a,b) is written as : X ~ U[a, b] or

X ~R[a, b]
4. The cumulative distribution function F(x) is given by:
0 ,X<a
F(x) = )g—_a,a<x<b
1_ ,X>b

Moments of Uniform Distribution

Let X ~U[a,b]

b
py =[x (x)dx
a

b
:ijxrdx
—-a
B 1 br+1_ar+1
b-a r+1
In particular,
1 (b?-a®?) b+a
Mean =E(X)=pn; = =
(x) M b—a( 5 ] 5

andp, =—— ==(b*+ab+a
H2 b—a[ 3 J 3 )

. Variance= Var (x) =, — (ui)z

- var(x) = %(b2 +ab+a’)- {% (b+ a)}
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1 2
var(x) =—(b—a)~“.
(X) 12( )
MGF of Uniform distribution

M, (t) = ?etxf (x)dx

Characteristic function
b
o, (1) = je't"dx
a
ibt . iat

e —¢€

=—— t#0.
it(b—a)

Mean Deviation about Mean (1)

b
1 =E[X—Mean| = [|X —Meanff (x)dx

a

b
" 2
(b-a)/2
b | |t|dtwheret:x—ﬂ
b—a_p a2 2
(b-a)/2 3
:LZ I tdt:M
b-a | 4
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Example 1:

If X is uniformly distributed with mean 1 and variance 4/3, fine p(X<0).
Solution:

Let X ~ U[a,b],

So that p(x):i,a<x<b
b—a

Given mean = 1 and variance = % .

1 1 s 4
—>Mean ==(b+a)=1=b+a=2 and Var(x)=—(b—-a) ==
2 12 3

48

= (b-a)y ==

b-a) =3

=(b-a)’ =16

=b-a=14

Solving, we geta =-1 and b = 3; (a<b),

= p(x) :%;—1< X<3

P(X<0)= Tp(x)dx
=

Example 2:

If X has a uniform distribution in [0, 1], find the distribution of -2 log X. Identify the
distribution also.

Solution:
LetY =-2log X.

Then the distribution function F of Y is given by:
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Gy (Y)=P(Y <y)=(-2log X <Y)

Y
S ———

:1—ejf(x)dx
0

y

e 2 Yy
=1- [ ldx=1-e?2
0

d 1 -
Gy(y)=@G(y)=§e 0<y<oo.

3.3 Normal Distribution or Gaussian Distribution

A random variable X is said to follow a normal distribution if its pdf is given by,

L 4
f(X)= e 2o/ —0< X<0
9 o+ 2r
—00< U< 0
c>0

Here, f(x) is a legitimate density function as the total area under the normal curve is unity.

To prove that total probability is one,

T £ (x) dx= T \/1_ ) g

S o271
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put t=>_H

J_o

=——dx

\/_o

= dx = +/2cdt
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" Tf(x)dx =1

f(x) is a legitimate density function.
Mean and Variance of N(u1,6°)
If X ~ N(p,6%), then E(X) = p and V(X) = 6%

Proof

E(X):Txf(x)dx

Put

> X= +\/EG'[
J_c H

——dx

J2c

dx=+/2cdt

tzx/zcsdt

= J.(u+\/§ct)m/_

:T T(p+\/§cst)e_t2dt

:% jpe‘tzdu% jﬁcte“zdt
T _» T _»
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:% Te‘tz \/\/__G jte dt

:Tx\/_—k{/__ x(0)=u= ,ul

~.Mean = E(X) =

To find variance,

E(X?)= szf (x)dx

—00

Put

:—dx
V2o

=dx=+2cdt

= +/20t \/E dt

o] e Vao
:T(p2+202t2+2u\/§0t) L e_tzx/icsdt

2 oV2n

% [ue ™ dt+T [20t% dt+T (22 oteat

Te dt+Tjt2 e dt+\/_2\/_ucjte dt
T

a\a

2 2
_ K 26 2, -t2

X TE+—><2 te™ dt+0
-l e
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2 20- 3
=u"+ r
e (%)
, 20° A
= —+ X —
N 2
H p+o

=p’+0° —p

~Var(X)=0o"°.
Standard Normal Variate or Standard Norman Distribution
—H

e X . . .
If X follows normal distribution N(u, o°),then z= is a standard normal variate with

mean zero and variance one and is denoted by N(0,1).

The pdf of standard normal variate is given by,
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—X

f(x)= —e2 —00< X<

Jor

MGF and Mean and Variance

My (t)=E[e™]

= Te‘xf(x) dx

o\ 2T
Put
2=X"H o x—z54n
o
dz:ldx
(e}
= dXx=cdz

1 < toz— —
:—Ie”e 2 4z

N2 7

e“t OJ? (Z ZIGZ) dz

—00

Add and subtract by ot
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Mt o 1 22—2th+02t2—02t2
— ez j e 2( jdz
V2T
_ M T 7%(270{)27042] ,
27
e o’ T -y
= dz
Jor €° -
Put
U=z- ot
du=dz
czf 2
e“te 2 o _U-
= T j e 2du
2L 1 = v
—e'e 2_—_le 2qdu
N 27 _'[O
(-.- the total probability of Standard Normal is one)
2
GZt
My(t)=e""" 2
To find Mean and Variance
2
t+c52t—

2 3
=1+t +6—2t +E +G—2t +£ +G—2t +
Pl ) Tt

2 2

=1+iu+§c +§” +

97



The coefficient of %=M=u1

. Mean = L.

2
The coefficient of%is o’ +u’.

’

S, =0+t
! ! 2
s Var(X)=u, _(ﬂlj
— 52 +,Ll2 _ﬂz
~Var(X)=o?

The first four Moments about Origin

2
2t
t+ Jh—
put+o

M, (t)=¢e

{H+62%]
5]

2 3 4
=1+t +G—2t +ﬁ +G—2t +E +G—2t +ﬁ +G—2t +
SRS T LR BT] LR BT] LR B

2, P, 2 st
=1+£M+§G +E(u +uct+o" —
3 5 ., ot s't? &%
+—|pn +3u°c"—+3 —
gt T T g
2 3 4
+ﬁ 4+43G—2t+626—2t +4 o't +G—2t +
alt TR TR A2 2 ||

,u1' =The Coefficien t of ]t_!: 7
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’ 2
1, =TheCoefficien t of tz—':az + 1’

' 3
1, =TheCoefficien t of ;—':3;102 +u’

4

1, =TheCoefficien t of %z&yz +6u’c? +ut

The First Four Central Moments
We know that, z, =1, 1, =0

By the definition of central moments,
e =E(X- H)r

C oy =E(X—p)?

= Ojo(x — pff (x)dx

1( X—p 2
Fonf Lo e
= [(x- e dx
Bl
Put
(=X H
V2o

—X—u=+/2ct , X=+vJ20ct+
[ u

:dt:idx

J2o
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Put t’=y —=2tdt=dy

2= 3t
[ Ze_Yd
T gy y
2
Jr \2
_2°Jn
e
M, =0’
(or)
!’ !’ 2
Ha=Hp —(Hy)
—o? + % -2
Ha =c"

Ha=Hs —3u, py +2(y )°

=3uc’ + u® -3(c” + p)u+2u° =0
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Sy =0

o=ty —Aptg g +611, (g )~ 31y )*
=30" +6u%0” + 1t —4(Buc? + 1¥)u +6(c” + pu?)u? —3u?
=3c* +12|,L2c52 —12u2c52 +7pt —7pt

oo, =30

The r'™ Central Moments of Normal Distribution

If X is a normal variate then the all odd order central moments does not exists, but all
even order central moments exists.

Proof

By the definition of r™ order central moment

me=E(X-p)’

= T(x —w)'f(x)dx

ey \2
:T(x—u)r L e_z("uj dx

ov2n

Putt==_#

V2o

:X—,uzx/zat : X=\/§at+,u

_dx

V2o

—dx=dtv/2c

=dt

w=[(2ot) e 2 odt

1
o2
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w =20 et at M

Case (i)
If ris an odd integer, r = 2n+1.

From the equation (1),

2n+1

2? 2n+1 o 2

“2n+1_T_w
Ly =0, N :0,1,2,....(-.-t2"+1e‘t2 is an odd function)

Hl: “3:”'5 :__.:O
Case (ii)

If r is an even integer, r = 2n.

n __2n « 2
2o [tne ™ ot

Hon = \/%

2n GZn

Jr

< 2
[t?re ™ dt
0

1
Put y=t> =t=,fy=y?
dy=2tdt

2dt=idy

2,/

2I’1 GZF‘I 0

>y 1
=2 2 2[y2e¥—"=d
Haon /_Tl: E')‘y € 2 /—y y

2n

2n 2n o ,_+

[y 2edy
NI
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2n cTZn 0 (n 5}1 ~
= e”’d
Nl y
2" %" 1
= Irn+= 2
Han \/E ( 2) (2
After simplification, we get,
1, =135.7...(2n-1).c°n (3)

whenn=1,p,=1.6"% =?

whenn=2,p, =3.6%? =35"
and so on.

The Recurrence relations of Central Moments

We consider the equation (2),

Putn=n-1, 2n = 2(n-1) = 2n-2

Also,

n-1 __2(n-1)
Han-2 :Lr(n _1+%j

Jn
2!’]—1 GZn—Z ( lj
-2 % pfn-= 4
Hon-2 \/; 5 (4)

From the equations (2) and (4), we get,
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Han _262 2n-1

Mon-2 2

Han _on-1)6?
Hon_2

= o =(2n-1)6% iy,
which is the recurrence relation of the even order central moment of normal distribution.
Additive Property (or) Reproductive Property:
If X,,X,,..X,are n independent normal variates with mean z, ., ,... 1, and variance

n n
2 2 2 . . . .
o, ,0, ,...0, respectively,then E a;X;is also a normal variate with meanZaiui and
i=1 i=1

n
variance > a,0;”.
i=1

Proof

The mgf of normal distribution is,

o2t?

M X (t) :eﬂHT

=M, (t)=Ma1x1 (t)-Mazxz ... Manxn (1)

> ajXj
i=1
2 2.2 2 2.2
amuw a”sz
=e 2 e 2.
n n_.2 2.2
aj“oj°t
Daimite 2T
—pi=l i=1
M, (t)=e
> ajx;

i=1

Which is the mgf of normal distribution with mean Zai X; and varianceZai o,
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3.4 Cauchy Distribution

Let us consider a roulette wheel in which the probability of the pointer stopping at any
part of the circumference is constant. In other words, the probability that any value of 6 lies in
the interval [-n/2, 7/2] is constant and consequently 6 is a rectangular variate in the range [-n/2,
n/2] with probability differential given by:

U/z) do, -7l12<0<xl2
0, otherwise

dP(8) ={

Let us now transform to variable X by the substitution : x = r tan6 = dx =r sec® 6d®0.

Since —n/2<0<x/2, the range for X is from —oo t0 oo. Thus the probability differential of X
becomes:

1 dx
dF () = 7 rsecto

1 dx
T |r{i+ (x2 /12 )$|

r dx
=— X —o0 <X <00

T X% +r?

In particular if we take r = 1, we get, f(x) = 1. !

T 1+ %2

—0 <X <00

This is the pdf of a standard Cauchy variate and we write X ~ C(1,0).
Definition:

A random variable X is said to have a standard Cauchy distribution if its pdf is given by:

and X is termed as standard Cauchy variate.
More generally, Cauchy distribution with parameter A and p has the pdf.,

gy(Y)=— " 1, —o<Yy<wA>0 . ()

T2+ (y - )’
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and write X ~ C(A, W). But putting X = (Y - p)/A in (2), we get (1),hence if Y ~ C(A, W) then X
= (Y - w/x ~C(1,0).

Characteristic function of Cauchy distribution

If X is a standard Cauchy variate then
Py (t) = E[eitx]
= je‘“ f (x)dx

0 itx

b (=" -°

T 1+X

5 dx 3)

To evaluate (3), consider standard Laplace distribution

f,(2) = %e_z o<z <

1
2

Then ¢, (t) = ¢, (1) = E(e"™) = it

Since ¢, (t) is absolutely integrable in (—oo,0), we have by Inversion theorem,

Lot = - oot

2
o A-itz
ST R
2m 1+t
g 1% e .
= ed=2 - dt [changing t to —t]
T 1+t
- - —M 1 0 eitZ
On interchanging tand z, we have = €' =— j L dz .......... 4)
T 1+

From (3) and (4) we get, ¢, (t) =e !,
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Additive property of Cauchy distribution

If X3 and X, are independent Cauchy variateswith parameters (A3, H1) and (A2, M)
respectively, then X; + X, is Cauchy variate with parameters ((A1+4z, Ha+ o).

Proof:
0, () = xp fiyt =4[t} (1=1.2)
¢x1+x2 ()= ¢x1 (t)¢x2 (t)

=exp [it (g +12) = (24 +7‘2Xt|]
and the result follows by uniqueness theorem of characteristic functions.

Moments of Cauchy distribution

E(y) = [y(F(y)dy

—00

0

y
= ———dy
n_{okz +(y-n)°

AT (y-p+p

_n_{o%2+(y—u)2dy

_ _T dy _T (y-n
T+ (y-p)? LA+ (y-p)’

: Tz . :
Although the integral = j —Zdz, is not completely convergent, that is

22 +z
n’ 7 "t Z
lim | ———dz, does not exist, its principal value, viz, lim JﬁdZ, exists and is equal to
noe S AT+ el AT+ 2

zero. Thus, in the general, the mean of Cauchy distribution does not exist. But, if we
conventionally agree to assume that the mean of Cauchy distribution exists (by taking the
principal value), then it is located at x = p. Also, obviously, the probability curve is symmetrical
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about the point x = . Hence for this distribution, the mean, median, mode coincide at the point x
=M.

o =EQY=)° = [ (-0 )ty = | K(y(yf) :

which does not exist since the integral is not convergent. Thus, in general, for the
Cauchy’s distribution the moment p, (r > 2) do not exist.

Remark:

The role of Cauchy distribution in statistical theory often lies in providing counter
examples, e.g., it is often quoted as a distribution for which moments do not exist. It also

provides an example to show that ¢, ., (t) =0, ()9, (t) does not imply that X and Y are
independent.

Let Xy, Xo,...,X, be a random sample of size n from a standard Cauchy distribution. Let

— n —_—
X=>X, In. Since E(X;) does not exist. E(X) does not exist and the definition of an unbiased
i=1

estimate does not apply to X, Cauchy distribution also contradicts the weak law of large
numbers.

Example 1:
Let X have a standard Cauchy distribution. Find a pdf for X and identify its distribution.
Solution:

Let X has a standard Cauchy distribution, its pdf is:

The distribution function F(.) of Y = X? is:

G, () =P(Y £y)=P(X> <y) =pl-Jy <X < y)

7
\J’rf(x)dx 21 lf))‘( =;tan HJy)o<y<oo
=Y

The pdf g«(y) of Y is given by:
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9,y) =;¥y[ey(y)]

2 1t
n (1+Y) Z\N
-1/2

:E l+y

1 y?
B 11 ( )1+1,y>0
B = | 1+y)2
(2 zj Y

11
This is the pdf of Beta distribution of second king with parameter (E’EJ

3.5 Log Normal Distribution
Definition

The positive random variable X is said to have log normal distribution if logeX is
normally distributed. Let Y=logeX is normally distributed.

Let X be a positive random variable and let a new random variable Y=logX. If Y has a
normal distribution, then X is said to have a log normal distribution.

For x > 0:
The cdf is
F(X) =Pr(X <x)
=Pr(log X <logx)
=Pr(Y <logx)

log x

= [f(y)dy
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y
. ov2r
Let y =log,
dyzldu
u
y=-oo,u=0

y =log x,u = X

x 1 logu—u \’
S F(X) = 1 .[e 2( E ﬂ) = du
o 0 u

N

X _1(logu— :
F(x)=J. L . = =du

yUuo~2r u

Foru<0,f(x)=0

1Iogu—y2

i

. _)J——e e u>0
s Fx) = Vo 2r

0 u<o0

Which is the pdf of log normal distribution.

Note:

If x~N(u,o°),then y=e* is called lognormal random variable. Since its logarithm
log y =loge” = X is a normal random variable.

Moments and hence mean & Variance

By the definition of r'"™ moments about origin,
p=E(X")

= El(ey)rJ y=log X

= E[e""]
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=g @
To find mean and variance:

Putr=1in (1), we get

Putr=2,
M, =€
2 +0?)
, =
. 2
cvar(X) = w4 — (1)
[ 2
o2 2\ u +—]
—e’¥ ") 4 e
— e2,u+20'2 e2,u+a'2
Var(X) = e+ (e"z‘l).
Exercise

1. Define uniform distribution and derive its mean and variance.

Draw the curve for the distribution function of the normal distribution.

3. Define Normal distribution. Derive its MGF, Mean and Variance. Also, Derive
its first four moments about origin.

4. Define Cauchy distribution. Give its expectation value.

Define lognormal distribution and derive its constants.

6. Derive mgf of lognormal distribution and hence find its mean and variance.

N

o
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Unit- 1V

Continuous Distributions (Continuation)

4.1 Introduction
4.2 Exponential Distribution
4.3 Gamma Distribution

4.4 Beta Distribution of first and second kinds

4.1 Introduction

In this unit, several parametric families of univariate probability distributions are
presented. Also, mean, variance, moments, moments generating functions and characteristic
functions of some continuous distributions are elaborately explained.

4.2 Exponential Distribution

The exponential distribution has been used as a model for lifetimes of various things. The
length of the time interval between successive happenings can be shown to have an exponential
distribution, provided that the number of happening in a fixed time interval has a Poisson
distribution.

0] Exponential is a special case of the Gamma distribution.
(i)  Also, sum of independently identically distributed exponential random variables is
gamma distribution.
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Definition:

A continuous r.v X is said to follow a exponential distribution with parameter A>0 if its pdf is
given by,

f(x)=1e™™, where 0 < x <o

Moments, Mean and Variance

By the definition of ' moments about origin,

e =E(X")

=Tx'f(x)dx

=[x re M dx
0

Putr=1;, 4 =—, Meanzi.
A
Put r=2; My =—
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Var (x) = u2' - (Hlljz

2l (1]2
2 A

2 1
2R
1
Var(x):?.

MGF and hence Mean and Variance
By the definition of mgf,

My (t)=Ee™ |

= [e™ f(x)dx
0
= [e*he ™ dx
0
=\ je”‘e*“dx
0
:k]?e‘(k‘t)x dx
0
—(-t)x 1%
-(A-1) ],
:7{0 +i}
A—t

Mx(t):%which is the mgf of exponential distribution.

To find Mean and Variance:
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t t* t° t'
=+ o+ g+t
Ao OX A

1t 2¢2 3¢ rt
=ttt Sttt
AL 20 3 Ao

The Coefficient of %is %= ﬂl, =Mean

2 '

. t°. 2
The Coefficient of 2 is 7= Uy

! ’ 2
Therefore, variance u, =u, — ( A )

2 1 1

R R
MeanzlandV(X)zi2
A A

Memory less Property of Exponential Distribution

Statement
Let X be exponential distributed r.v with parameter A. Then any two positive integer m
andn,P.(X >m+n| X >m)=P(X >n).

That is, Let X be the life time of a given component, then the conditional probability that
the corresponding until last m+n time units given that, it has lasted m time units, is same as

initial probability of lasted n time units.
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Another way, we can say that an “old” functioning component has the some life time
distribution as a “new” functioning components or that the component is not subject to fatigue or
to wear.

Proof

P(X>m+nnX >m)
P(X >m)

LHS=P.(X >m+n|x>m)=

_P(X>m-+n)
~ P(X>m)

Given X is an exponentially distributed r.v
S f()=1e, x>0

For any Kk,
P (X>K) =jf(x)dx
k

[e e}

= jke‘kx dx

P.(X>k) =g
P(X >m+n)=e MM

P(X>m)=e""

P(X>n)=e™"
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P(X>m+n)

P(X>m+n|x>m)=
P(X>m)

—Am-Ain

e
e—km

_ e—kn

P.(X>m+n|x>m)=P,(X>n).
Median of Exponential Distribution

The median is defined as the value of the variable which divides the total area into two
equal parts. The median is defined is,

med
1

!f(x)dx=% (or) ]o f(gdx=>

med

md 1
Consider, [ f(x)dx =5
0

md e 1
= Iie dx==
5 2
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= -Amd=logl-log?2

= —-Amd=-log2
1
= md==log2.
A
4.3 Gamma Distribution (Two Parameter form or Erlang Distribution)

Definition

A continuous random variable X is said to Erlang distribution or Gamma distribution A>0
and k>0 if its pdf is given by,

7\’k kal —AX
f(x)= W forx=20 | here 1"(k):jx"‘1 e X dx
0 otherwise 0

Note:

Prove that the total probability of Gamma distribution is 1.

To prove j f (x)dx=1
0

© © Ak k-1 L—-Ax
S LHS = f(x)dx = j“—edx
> > Tk

:}\'_k]?xk—l e—kX dx
I'(k)g

MGF and hence Mean and Variance of Gamma Distribution

By the definition of mgf,

My (t)=E[e* |
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To find Mean and Variance
t K
Mx(t)z(l—xj

2
=1+E£+M(lj +
A 2! A

2
:1+K£+Mt_+
AL 2 2

!

The Coefficient of£=5 =4, =Mean
T 2

2 ’
The Coefficient of t—: k(k +1) =1L,
2! 22

' 1\ 2
s Var(X)=p, =u, _[lulj

k(k+1) k2
I
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k2 +k-k?
7\‘2

k
Var (X) =}¥—2 .

Moments and hence Mean and Variance

By the definition of r™" moments about origin,
Ly :E[Xr]

:Txr f(x) dx
0

A o
— J'X(k+r) 1e AX dx

(k)

_ 2 Ilk+r) (._.Ixn_le_ade:¥J

—

(k) XKH

r(k+r) 1
r(k) 2

' 1T(k+r
A 1(k)

N—

Ky 1)

To find Mean and Variance

Put r=1in (1), we get

T (k—D)!

_1k(k-1)!
A (k=1)!
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Put r=2in (1), we get

> | x

M =
' 1T(k+2)
2 =32 (k)
1 (k+D)!
a2 (k-1)!
_ 1 (K+Dk(k-1)!
22 (k=1
o k(k+1)
e mTE
Var (X)=u,
’ ! 2
=K, _(Mlj
k(k+1) k2
T2z
k? +k —k?
T
k
Var(X):F.

Additive Property (or) Productive Property

Statement

The sum of a finite number of independent Erlang variables is also a Erlong variable, that
isif X, X,,..., X, are independent Erlang variables with parameters(Z,k, ),(4,k,),....(4,k, ) then

X, + X, +...+ X, is also an Erlang variable with parameter (1,k, +k, +...+k_ ).

Proof

-k
The mgf of Erlang distribution isM , (t) :[l— %)
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We know that,

MXl+X2+....+Xn (t):Mx1(t) sz(t) MXn (t)

—ky -k, —(ky+ky+.. +k,)
L L N .
A A A

(ky+ko+..+kp)
:(1—%j which is the mgf of Erlang distribution with parameters

(K, +Kky +..+K,).

.. The sum of n independent Erlang variables is also an Erlang variable.

Simple Gamma Distribution (or) Simple Erlang Distribution (One Parameter Form)

When A=1 the general Gamma distribution (2 parameters) form is called one parameter
form or simple Gamma Distribution.

Definition

A continuous random variable X is said to follow simple Gamma distribution with
parameter k, if its pdf is given by,

1 k-1 5—X
F(x)= mx e x>0,k >0

0 otherwise

Note

When k=1 the general Gamma distribution reduces to exponential distribution
f (X)=Ae ™ with parameter A.

MGF and hence Mean and Variance of Simple Gamma Distribution

By the definition of mgf,
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To find Mean and Variance

We know that,

.. The Coefficient of %is k= ,ul',.'.

2

1
r'(k)

.
B kel

)1

Tk

\_/
/-\

M, ()=0-1)"

My () =(1—1)*

I
(1-x) _1+£x+

(1-t) =1+ It

ka letx Xdx
0

1 r(k)

)k

n(n+1) w24
2!

k(k+D)
I

t, ot
=1+—k+—k(k+1)+...
r 2

The Coefficient of %is K(k+D)=p,

4, =k =Mean.

’ 7\ 2
oy =Var (X)=u, _(/Jl)

—k(k +1) - K2

=k? +k—k?
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Var (x)=k

Relationship between a Gamma variate and normal variate

Let X be a normal variate with parameters 4 and o° Then the variate Y given by the

transformation Y = l(x_—ﬂ

2
. . 1
j becomes a Gamma variate with parameterE .
(o2

Proof

Given X be a normal variate with parameter x and . Then its pdf is,

f(x)dx = e-g[ng) dx —o0< X<

= dy:@dx
O
O
= dx=——=d
By
.. The pdfofy is
f(y)dy =

L eV .2 dy —o<y<oo
o2z 2y

1
f(y)dy = ey 2dy, 0<y<ow
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Which is the pdf of simple Gamma distribution with parameter% .

Theorem 1

Show that under certain conditions simple Gamma distribution tends to normal
distribution. In other words, show that the limiting form of Gamma distribution is normal.

Proof
Let X be a Gamma variate with parameter k, then its pdf is,

1
f(X)=——x*te™, 0<x<oo,k>0
(x) (k) o0

Mean and Variance of the Gamma variate are equal and given by k.

.. Mean = V(X) =k.

Then the standard gamma variate is defined as z = X—_k.
Jk
MGF of z is,

X -tk
=E e&e&]




Taking logarithms on both sides,

—k
_ k[, U
IogMZ(t)Iog(e (1 \/Fj }

=—tvk —klog (1—%}

=—tJk+Kk| - Iog(l—ﬁjj

——t\/E+k_L+£+L+ --—Iog(l—x)—x+x—2+x—3+
NraETaE At & R

tk t2
=tk ——F—F——+
Jko 20 3Jk

Taking limit k — coon both sides we get,

tz
lim log M, (t)=—
Jim logM, ()=

t2
lim e°Mz() —¢ 2

k—o

t2

lim M, (t)=e 2
k—o
which is the mgf of standard normal variate. Therefore, limiting case of standard Gamma variate
becomes normal variate.
4.4 Beta Distribution of first and second kinds
Beta distribution of first kind
Definition
A continuous r.v X is said to follow a beta variate of first kind if its pdf is given by,

XM L-x)
0 5 mn)

,0<x<l m>0andn>0
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This distribution is called beta distribution of first kind with parameters m and n.

1
Since the total probability is equal to 1, we havejf(x) dx=1
0

Note

The MGF for the beta distribution does not have a simple form. However the moments
are readily found by using their definition.

Moments of Beta distribution of first kind

By the definition of r™ moment about origin is given by,
Ly :E[Xr]

:}xr f(x)dx

We know that
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" I(m+n+r) (m)r(n)

'+ T(m+r)f(m+n)
He " I(m+n+r)r(m) M

which is the r' moment about origin.
To find Mean and Variance
Put r=1in (1), we get

r T(m+)T'(m+n)
“T(Mm+n+1) I(m)

1

__mI(m) I(m+n) .. _
~ m+nC(m)+n (m) (T +B=nr(m)

m

!
W =
m+n

Put r=2in (1), we get

' T(m+2)I'(m+n)
" T(m+n+2) T'(m)

2

_ (m+)mC(m) T'(m+n)
~ (M+n+1)(M+n)T(m+n)T(m)

B m(m+1)
B (M+n)(m+n+1)

|2%)

! !/ 2
"y =Var (X) = p, _(/ul )

. mm+)  om?
T (Mm+n)(M+n+1)  (m+n)?
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m [ m+l m }
“(m+n) m+n+1 m+n

_m C(M+1)(M+n)—m(m+n+1)
“(m+n)| (M+n+1)(m+n)

m n
“(m+n) (M+n+1)(m+n)

~ mn
C(M+n+)(m+n)?’

Mo

Beta distribution of second kind
Definition
A continuous r.v X is said to be beta variable of second kind if its pdf is given by,

1 Xm—l

, 0<x<o, m>0andn>0
(m’ n) (1_ X)m+n 0

f(x)=
(X)ﬂ

This distribution is called beta distribution of second kind with parameter m and n.

Since the total probability is 1, we have

Tf(x) dx=1
0
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Moments of beta distribution of second kind

By the definition of r'" moment about origin,
Hy :E[Xr]

:Txr f (x) dx

1 X m-1

:_([Xr ,B(m,n)( _X)m+n

dx

1 o0 Xm+r—l
= d
ﬂ(m,n)l e

X(m+r)—1

1
B(m’ n) 5 (1+ X)m+r+nfr

— B(m+r,n—r)

B(m,n)

_B(m+r,n—r)

B(m,n)

_I'(m+r)C(n—r) /T(m)I(n)
CI(m+r+n-r)/ [(m+n)

_(m+nTrn-r) r(m+n)
CI(m+r+n-r)  T(m)T(n)

r I'm+rI'n-r M
M T T(m)T(n)

To find Mean and Variance

Put r=1 in equation (1) we get,

r I'(m+1) I'(n-1)
* 1(m)r(n)

_ mI(m) I'(n-1)
I(mn-1)T(n-1)

(- Tn=(n-)r(n-1))
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!

m
=—— = Mean
Hq n_1
Put r=2 in equation (1) we get,
! ! 2
Ho=H, _(“’1 )

_ (mM+Ym — m
(n-D(n-2) (n-1y

2

~m [m+1 m
n-1{n-2 n-1

m [ (Mm+)(n-1)—m(n-2)
n-1{ (n=D(n-2)

m _mn—m+n—1—mn+2m}

n-1| (n=-D(n-2)
_ m(m+n-1)
SR

Problem 1:

Let X and Y be the two independent Gamma variate with parameter m and n respectively.
Then the variates U=X+Y and v =% for independent and the variable U is the Gamma variate
+
with parameter m+n and V is the g variate of first kind with parameter m and n.

Solution:

Given X and Y be the two independent gamma variates with parameter m and n. Then
their probability density functions are,

Xm—le—x
f(x)dx= dx; 0<Xx<oo,m>0
I'(m)
and
yn—l -y
f(y)dy= dy; 0<y<oo,n>0

I'(n)
Also given X and Y are independent, the joint probability function can be written as,
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f(x,y)dxdy=f, (x)f,(y)dxdy

m-1 ,—X m-1 .-y
_X F e’y _ e dx dy
m n

~f(x,y)dxdy= e ) x ™Iy gx dy )

I'mI'n

Let,

X
X+Y

U=X+Y and V=

=Y=U-X :>V:3:>X:UV

=U-UV
Y=U@1-V)
X=UV; Y=U@-V)
For this transformation, the product dxdy in equation (1) is modified as |J|.dudv.
X
j=|ou

%y
ou

2[22[R

_ \) u
_‘(1—\/) -y

=—uv—-u(l-v)
=—Uuv—Uu-+uv
J=-u
~3|=u
Given 0<x<oo, 0<y<oo.
When X=0, UV=0

= u=0 or v=0.
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When Y=0, u(1-v) =0
=u=0orv=1

When x=o00, uv=co

— U=00 Or V=00,

—>u=0 to o and v=0to 1.

The joint density function of U and V is from equation (1) is,

1 — m-1 n-1
f(u,v)dudv=——-——e™ (uv)" " |u@l—Vv)[ "|J|dudv
() dudy = se ()™ -

N S SHLEENE (1-Vv)"*ududv
I'(m)I'(n)

— F(m + n) e—u um+n—1vm—l (1—V) n-1 dUdV
r'(m)IT(nT'm+n)

m+n-1 m-1

_ I'(m+n) o u duv (L-v)™ dv
r'(m)r(n) I'(m+n)

__ 1 vymrigy 1t v L) dv
(m+n) A(m,n)

f(u,v)dudv=f (u)f(v)dudv

..U and V are independent. Also U is gamma variate with parameter (m+n) and V is a beta
distributions of first kind.

Exercise

Derive the moments of beta distribution of first kind.
Derive the moments of Gamma distribution and hence find its mean and variance.

Define exponential distribution and state its constants.

Establish the relationship between a gamma variate and normal variate.

Derive the median of exponential distribution.

Derive the mean and variance of gamma distribution and comment on its additive
property.

oW N

7. Derive the r'raw moments of beta distribution of second kind and find its mean and
variance.
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8. Let X and Y be two independent gamma variate with parameter m and n respective. Then
prove that the variate U = X+Y, V = éare independent and U is a gamma variate with

parameter m+n and V is a beta variate of second kind with parameters m and n.

134



Unit-V

Sampling Distributions

5.1 Introduction
5.2 Chi-square Distribution
5.3 Student’s t Distribution

5.4 F-Distribution

5.1 Introduction

The entire large sample theory was based on the application of Normal test. However, if the

X-p or
cl</n

Z=(X-nP)//Npq etc., are far from normality and as such normal test can not be applied if n

sample size n is very small, the distribution of the various statistics, e.g., Z=

is small. In such cases exact sample tests, pioneered by Gosset (1908) who wrote under the pen
name of Student, and later on developed and extended by R.A.Fisher (1926), are used. The exact
sample tests can be applied to large samples. In all the exact sample tests, the basic assumption
is that the populations from which samples are drawn are normal, that is parent populations are
normally distributed.

5.2 Chi-square distribution

The square of a standard normal variance is known as y° — variate with one degrees of
freedom. In general, if Xj, X, ..., X, are n independent normal variables with mean p; and
variables Giz, then
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72 :Z(u}s a y° variate with n degrees of freedom.Thus, if X ~ N(u, o) then

"2 _N(0,D).

2
X— . :
st = (—ﬂ) is a 5 variate with 1 degrees of freedom.

(o2
Definition

Ar.v X is said to have a y° distribution with n degrees of freedom if its pdf is given by

f(ZZ)ZE—, 0<Xx<w,

Note:
n N N
When o = 5 and A=2,the gamma distribution becomes y* distribution.

MGF, Mean and Variance

By the definition of MGF,

M, (t) = Ele* |

= Te‘x f (x)dx

_Ixeze

i

Txgl e_[%_tJde

1
o)
2
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11
N
22 (1—2tj2

2

n

1 22

52 (1-2t)2
M, (t)=(1—2t)
Mx(t):(1—2t)*g

—1+ ot +”(” +1j/2! (2t +...
2\ 2

2

2
:1+n£+42 E+1 t—+
r 2\2
The Coefficient of %is n=x, =Mean
Mean = n

2
The Coefficient of t—isﬂ E+1
21 2.2

=n?+2n
1

=IL[2
! ! 2
Var (X)=p, =1, —(M)

=n?+2n—-n?
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Moments, Mean and Variance

Var (X)=2n

By the definition of r' moment about origin,

Put r=1,

Hr' = E[Xr]
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Put r=2,

Cummulants of y*distribution

By definition of cummulants

W, =n?+2n
' N2
Ha =H; _(Mlj

=n?+2n-n?

n, =2n=Var (X)

Kx (t)=log My (1)

139



=log(1- 2t)‘%

n
——Mogl-2t
2og( )

=~ (- logla-21)

2 3 4
_n 2t+(2t) +(2t) +(2t) +}
2_ 2 3 4
B 2 3
_n[,t 18 a8t 16t }
2_ 1 21 33 4 4

1
k, = The Coefficient of —in k, (t) _%

Mean =3 =n

2
k, = The Coefficient of % in k, (t)= %.4 =2n=var=u,

3
k; = The Coefficient of 32 in k, (t)= 16 8n =,

t! n 16
k, = The Coefficient of— in k, (t)=— I><4|—48n Ly

Hence ki, ko, ks, ks are first four central moments.
Limiting form of * — distribution

Consider a y° — variate with n — degrees of freedom. It is known that the mean and

variance of y° — variate respectively given by E(X?) = n and V(X% = 2n

2 2
. X° — X~ —n
Let us define the standard x2 —Vvariate is z = 2

o 2n
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M, (t) = E[e? |

ot
= E|eY2e Vo

n n 2t
log M, (t) = —t\/; +E(— IOQ(l_ﬁD

2 3
n nl| 2t V2n J2n
logM, (t) =—-t,|— +— + +
ogM, (t) \/;+2 \/§n+ > 3

el el

4t? ( 2t jz
2n N Jn +...
2 2 2

n
>

Take as lim

N—o0
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2

IimIogMZ(t):%.

t2

= lim M, (t) = e 2 which is MGF of Standard normal variate. Hence by uniqueness theorem, the

variable z is a standard normal variate.So the limiting form of x* distribution is normal

distribution.
Applications of * distribution

(i) Itis used to test if the hypothetical values of population variance is 6% = o¢°.

(ii) It is used to test the goodness of fit.

(iii) It is used to test the independence of attributes.

(iv) It is used to test the homogeneity of independence estimates of the population

correlation coefficient.

5.3 Student’s t — distribution
Definition

Let X1, X2, ...,x, be a random sample of size n from a normal population with mean p and
o°. Then the t-statistic is defined by,

X — . 1 .
t=2"# where X :EZXi, X; is sample mean and S® = ——3(x, —X), S® is an
S/vn n n-1

unbiased estimator of the population variance o’ and it follows Student’s t distribution with Y=
n-1 degrees of freedom with pdf is,

1 1

r+l

P25t

Derivation of Student’s t — distribution

f(t) =

Consider a normal population with mean p and variance o°,where 6% is unknown.
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Let X1, X2, ...,xn be a random sample of size n from this normal population. Then the
student t statistic is defined by,

X—u 1
t= where X = —ZX;
s/vJn n
S2=—"_3(x-X)*

L E(-%)

= (N-1)S? = 3(x, - X)°

12 = ()_(_,U)z
' S%/n

We know that, the sample variance,
s? = 1Z(Xi —X)?
n

ns® =2(x, —x)? =(n-1)S?

52N g2
1-n
()
2
_nh s
n-1n
_n(n-D(X—p)?
ns?
2 _n(x-g)
n-1 ns?
_n(>_(—,uZ/0'2)
ns?/o?
2
t? X—u 1
== : 1
y (S/\/ﬁj ns’ /o’ @

We know that if x; follows N(u, 6%),thenX ~ N(z,o/+/n).

IfX ~ N(z,o/~/n). Then (;‘j_r: j ~N(02)
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_ 2
X - /Ll 2 -
~ y“with 1 degrees of freedom.
( /¥n ] g

Also we know that, the sample variance

N g 2
_ z( X Xj ~ % with (n-1) degrees of freedom.

i=1 o

2
v in (1) is a ratio of two independent y? variates with one and (n-1)degrees of freedom.
4

Also we known that, the ratio of two independent y° variates is a § — variate of second

kind with parameter% and nT—l

.. The pdf of t can be written as,

1 x™
f(x)= : , 0<x<o0o,m>0&n>0
Amn) (1+x)""
2
Here x:t—, dx:gdt
y 4
it N Py o 0<t? <oo
ALin-tl) ey 7
2 2 1+—
4

After simplification, we get,
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f(t)dt = dt for —o <t <

Which is the pdf of t-distribution with y = n-1 degrees of freedom.

Limiting case of t — distribution

The density function of t — distribution with n degrees of freedom is,

f(t)= 11 - 1 — —o<t<oo
= = 2\ 2
‘/ﬁﬂ(z’zj (1+tJ
n

As n — ocowe have

lim f(t) =Ilim 11 . ! —

nN—o0 n—o 1 n 2 7

‘/ﬁﬁ(z’zj (1+tJ
n

I
_\22) |, (1+t—j )

By Sterling formula,

lim M =nX
R—o0 rn
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After simplification and applying limits, we get

s
f(t):Ee 2

which is the pdf of standard normal distribution. Therefore limiting form of t-distribution is

normal.
Constants of t-distribution

Prove that for t — distribution, all odd order moments vanished and even order moments

exists. That is,

i) ,,, =0 for r=0212,.

n"(2r-1(2r-2)..3.1
 (n=2)(n—4)..(n-T)

i) 42,

Proof:

Since f(t) is symmetrical about the line t=0, all the moments of odd order about origin

!

vanish (i.e.) u,,, =0 for r=012,.

In particular, z, =0=Mean . Hence the central moments coincide with moments about

origin.
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Sy, =0 for r=012,.

The moments of even order are given by,

!

Hor =Hor = E(t)zr

= thrf(t)dt

= thf 1 S

h ‘/ﬁﬂ(;g (1+t2]2
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1
|
2\y y

When t=0, y=1; when t=00, y=0

1

"y = T(n(l y)J \/_1( ] 1
-+ Har
1 i
2
n' 1 LI
=~ [@-y) ey 2 2 dy
B(,njo
2 2
nr I Der- r+—-1
=— [y -y dy
ﬂi’i 0
2%
1
By beta distribution of first kind, (m,n) = [ x"™*(1—x)""dx
0




(e
81

r+£—1 r+1—2...§11"1
2 2 22 2

A E =i

ernr (2r-1)f2r-3)..3.1

2{ (n=2)n—4)...(n—2r)

_n"(2r-1)2r-3)..31
Mo 2 n—4)...(n—2r)

In particular, put r=1,

_n 1 n
Ha n-2 n-2

n
Var (X)=——
="

Put r=2,

_ n%3.1
SR )

. 3n?
M= —2)n-4)
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And so on.

-y =Mean=0and , :Var(X)=L2.

Assumptions of t-distribution

1. The parent population from which the sample is drawn is normal.
2. The sample observations are independent. (i.e.) the sample is random.

3. The population standard deviation ¢ is unknown.

Applications of t-distribution
The t-distribution has a wide number of applications in Statistics.

1. Itis used to test if the sample mean (x)differs significantly from the hypothetical value p

of the population mean.

2. ltisused to test the significance of the difference between two sample means.

3. ltis used to test the significance of an observed sample correlation coefficient and sample
regression coefficient.

4. Itis used to test the significance of observed partial and multiple correlation coefficients.

Note:

When y =1, Student’s t-distribution reduces to Cauchy distribution. Therefore the pdf of

Student’s t-distribution is,
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ft)= oy —o<t<®
/4 2\
n35) [1+tj
y
Wheny =1,
£(t)= 111 1+1t2, _s<t<wm
o33)
1 1 ﬁ(; 1}_ r'(1)
Iz Jr 14t? 2'2)

Hence, when y =1Student’s t-distribution reduced to standard Cauchy distribution.

5.4 F - Distribution
Definition
If X and Y are two independent y?variates with n, and n,degrees of freedom

respectively, then F-Statistic is defined by, F =% .
n2

In other words, F-distribution is defined as the ratio of two independent y° variates

divided by their respective degrees of freedom and it follows Snedecor’s F-distribution with

(n,,n,) degrees of freedom with probability function given by,
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Derivation of F-distribution:

Let 4°, 7,°be the two independent y?variates with n, and n,degrees of freedom

respectively, f(” %.")=F(1.°) F(,7)
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= < —which is the probability function of F-distribution.
%) (tr.s)
2 LF+1

Constants of F-distribution r'™ order moments about origin

By the definition of r'" moments about origin,

!

u, =E(X")=ElF']

:TFrf(F)dF
0
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We know that

-1

o )
{de—ﬁ(m,n)
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Put r=2 in equation (1), we get,
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Var (X) = 5 :
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Exercise
1. Define central 4?2distribution.
2. Give the applications of student’s t-distribution.
3. Define F distribution.
4. Prove that limiting case of t-distribution is a normal distribution.
5. Define central 42distribution and derive its moment generating function cumulants
constants.
6. Prove that limiting form of 2 distribution is a normal distribution
7. Derive the probability density function of student’s t-distribution.
8. Find the constant of t-distribution.

9. State applications of Chi-square distribution.
10. Derive the constants of central F distribution.

11. Derive the probability function of central F distribution.
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